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1. Introduction

Linear second order difference and differential equations with polynomial coeffi-
cients appear in many research domains such as atomic, molecular and nuclear
physics, electrodynamics and acoustics. The links between them and classical
orthogonal polynomials are extensively studied by many authors. For instance,
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we know since Bochner [2] that classical orthogonal polynomials of continuous
variables are characterized by some second order differential equations. The
literature on this topic is extremely vast. We quote for instance [8]-[11]. This
characterization has been extended for q-classical orthogonal polynomials to
a second order q-difference equation (see [7], [14]). Analogously, classical or-
thogonal polynomials of discrete variables were characterized by a linear second
order difference equation [6].

A naturel question arises: Is there a similar characterization for Dunkl-
classical polynomials?

Recall that a monic orthogonal polynomial sequence {Pn}n≥0 is called
Dunkl-classical polynomial sequence (the associated form is called Dunkl-clas-
sical form) if {TµPn}n≥1 is an orthogonal polynomial sequence, where Tµ is the
Dunkl operator [5] defined by Tµ = D + 2µH−1, whith µ > −1

2 and D (resp.

H−1) denotes the derivative operator D = d
dx

(resp. the Hahn operator given

by (H−1f)(x) =
f(x)−f(−x)

2x ). 1

Y. Ben Cheikh and his coworker [1], the first who introduced the notion of
Dunkl-classical orthogonal polynomials, derived a differential-difference equa-
tion for Dunkl-classical symmetric polynomials in order to prove that the only
Dunkl-classical symmetric orthogonal polynomials are the generalized Hermite
polynomials and the generalized Gegenbauer polynomials. Later on, M. Sghaier
[15] characterized Dunkl-classical orthogonal polynomials by certain linear sec-
ond order differential-difference equation. In such characterization, only the
symmetric polynomials are considered.

The aim of this paper is to extend this characterization to nonsymmetric
Dunkl-classical polynomials. Namely, we prove the following result.

Theorem 1.1. Let {Pn}n≥0 a MOPS and let u0 its associated form. The
following assumptions are equivalent:

(a) The sequence {Pn}n≥0 is Dunkl-classical.

(b) There exist a complex number K, a sequence (λn)n≥0 in C
∗ and three

polynomials Φ (monic), Φ̃ and Ψ with degΦ̃ = degΦ ≤ 2 and degΨ = 1 such
that

xΦ(x)u0 = h−1(xΦ̃(x)u0) (1)

and

K

1− 4µ2

(
Φ(x) + 2µΦ̃(x)

)
(T 2

µPn+1)(x)−Ψ(x)(TµPn+1)(x)

1§ Corresponding author
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−
2µK

1− 2µ

(
Φ(x) + Φ̃(x)

)
(H−1TµPn+1)(x) = λnPn+1(x). (2)

The structure of this paper is as follows: The second section is devoted
to preliminary results and notations to be used in the sequel. In the third
section, we prove the main theorem. In section 4, we illustrate results of the
previous section by giving a differential-difference equation for a Dunkl-classical
nonsymmetric polynomial sequence.

2. Preliminaries and Notations

Let P be the vector space of polynomials with coefficients in C and let P ′ be
its dual. We denote by 〈u, f〉 the action of u ∈ P ′ on f ∈ P. In particular, we
denote by (u)n = 〈u, xn〉 , n ≥ 0 the moments of u.

The Dirac mass at the point c ∈ C denoted by δc is the form defined by

〈δc, f〉 = f(c), f ∈ P.

For u ∈ P ′, we define the forms hau, gu and Du = u′ by:

〈hau, f(x)〉 = 〈u, (haf)(x)〉 = 〈u, f(ax)〉 , f ∈ P, a ∈ C \ {0},

〈gu, f〉 = 〈u, gf〉 ,
〈
u′, f

〉
= −

〈
u, f ′

〉
, f, g ∈ P.

Let {Pn}n≥0 be a sequence of monic polynomials with degPn = n, n ≥ 0 and let
{un}n≥0 be its dual sequence, i.e. un ∈ P ′ and defined by < un, Pm >= δn,m,

where δn,m, n, m ≥ 0 is the kronecker delta function.
Let us recall some result [12]:

Lemma 2.1. For any u ∈ P ′ and any integer m ≥ 1, the following
statements are equivalent:

(i) < u,Pm−1 > 6= 0, < u, Pn >= 0, n ≥ m

(ii) ∃λν ∈ C, 0 ≤ ν ≤ m− 1, λm−1 6= 0 such that u =
m−1∑

ν=0

λνuν .

The form u is called regular if we can associate with it a PS {Pn}n≥0 such
that [4]:

< u,PmPn >= rnδn,m, n, m ≥ 0; rn 6= 0, n ≥ 0. (3)

The sequence {Pn}n≥0 is then said orthogonal with respect to u. In this
case, we have un = r−1

n Pnu0, n ≥ 0 and reciprocally. According to the previous
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lemma, we have u = λu0, where (u)0 = λ 6= 0. In what follows all regular forms
u will be taken normalized i.e, (u)0 = 1.

According to Favard’s theorem, a monic orthogonal polynomial sequence
(MOPS, for shorter) {Pn}n≥0 is characterized by the following three-term re-
currence relation [4]:

P0(x) = 1, P1(x) = x− β0,

Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0.
(4)

A linear functional u is said symmetric if and only if (u)2n+1 = 0, n ≥ 0. Or
equivalently, in (4) βn = 0, n ≥ 0. Let us introduce the Dunkl’s operator

(Tµf)(x) = f ′(x) + 2µ(H−1f)(x), f ∈ P,

where

(H−1f)(x) =
f(x)− f(−x)

2x
.

We define the operator Tµ from P ′ to P ′ as follows

< Tµu, f >= − < u, Tµf >, f ∈ P, u ∈ P ′.

In particular, this yields to

(Tµu)n = −µn(u)n−1, n ≥ 0,

where

(u)−1 = 0, µn = n+ 2µ[n], [n] =
1− (−1)n

2
, n ≥ 0.

It is easy to see that
Tµu = Du+ 2µH−1u,

where
< H−1u, f >= − < u,H−1f > .

Now, consider a MOPS {Pn}n≥0 as above and let

P [1]
n (x, µ) =

1

µn+1
(TµPn+1)(x), µ 6= −n−

3

2
, n ≥ 0.

Denoting by {u
[1]
n (µ)}n≥0 the dual sequence of {P

[1]
n (x, µ)}n≥0.

Lemma 2.2. [15]

Tµ(u
[1]
n (µ)) = −µn+1un+1, n ≥ 0. (5)
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3. Proof of the Main Theorem

For the proof, we need the following lemma:

Lemma 3.1. [3] The following formula hold

Tµδ0 = (1 + 2µ)δ′0, (6)

H−1δ0 = δ′0, (7)

H−1(v − h−1v) = 0, v ∈ P ′, (8)

Tµ(fu) = fTµu+ (Tµf)u+ 2µ(H−1f)(h−1u− u), f ∈ P, u ∈ P ′, (9)

Proof of Theorem 1.1. First of all, notice that for µ = 0 we meet the
D-classical orthogonal polynomial sequences, which satisfy a second order dif-
ferential equation. Henceforth, we will suppose that µ 6= 0.

[(a) ⇒ (b)] From the assumption, we have

un = r−1
n Pnu0, n ≥ 0 (10)

and
u[1]n (µ) = (r[1]n )−1P [1]

n (., µ)u
[1]
0 (µ), n ≥ 0. (11)

Substitution of (10) and (11) in (5) gives

Tµ(P
[1]
n (., µ)u

[1]
0 (µ)) = −χnPn+1u0, n ≥ 0, (12)

where

χn = µn+1
r
[1]
n

rn+1
, n ≥ 0. (13)

Using formula (9), equation (12) becomes

P
[1]
n (., µ)Tµ(u

[1]
0 (µ)) + Tµ(P

[1]
n (., µ))u

[1]
0 (µ)+

+2µH−1P
[1]
n (., µ)

(
h−1u

[1]
0 (µ)− u

[1]
0 (µ)

)
= −χnPn+1u0,

n ≥ 0.
(14)

Putting n = 0 in (14) and taking into account (13), we get

Tµ(u
[1]
0 (µ)) = −Ψu0, (15)

where

Ψ =
1 + 2µ

γ1
P1. (16)
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For n = 1, equation (14) becomes

P
[1]
1 (., µ)Tµ(u

[1]
0 (µ)) + u

[1]
0 (µ) + 2µh−1u

[1]
0 (µ) = −2

r
[1]
1

r2
P2u0. (17)

Substitution of (15) in (17) gives

u
[1]
0 (µ) + 2µh−1u

[1]
0 (µ) = KΦu0, (18)

where

KΦ =
1 + 2µ

γ1
P1P

[1]
1 (., µ)− 2

r
[1]
1

r2
P2, (19)

(K is a constant to make Φ monic).

Applying the operator h−1 to (18), we get

2µu
[1]
0 (µ) + h−1u

[1]
0 (µ) = Kh−1(Φu0). (20)

Multiplication of (20) by 2µ and substraction of the result from (18) gives

u
[1]
0 (µ) =

K

1− 4µ2
(Φu0 − 2µh−1(Φu0)). (21)

Now, putting n = 2 in (14), we obtain

P
[1]
2 (., µ)Tµ(u

[1]
0 (µ)) + Tµ(P

[1]
2 (., µ))u

[1]
0 (µ)+

+2µH−1P
[1]
2 (., µ)

(
h−1u

[1]
0 (µ)− u

[1]
0 (µ)

)
= −χ2P3u0.

(22)
Taking into account (15) and (21), we get

−2µK

1− 4µ2

(
Tµ(P

[1]
2 (., µ))− (1 + 2µ)H−1P

[1]
2 (., µ)

)
h−1(Φu0) =

(1 + 2µ

γ1
P1P

[1]
2 (., µ)−

K

1− 4µ2
ΦTµ(P

[1]
2 (., µ))

+
2µK

1− 2µ
ΦH−1P

[1]
2 (., µ)− χ2P3

)
u0.

Applying the operator h−1 to the last equation and taking into account the
facts that

h−1(xv) = −xh−1v, v ∈ P ′,

h−1(h−1v) = v, v ∈ P ′
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and

Tµ(P
[1]
2 (., µ))− (1 + 2µ)H−1P

[1]
2 (., µ) = 2x,

we obtain

xΦ(x)u0 = h−1(B(x)u0), (23)

where

B(x) =
1− 4µ2

4µK

(1 + 2µ

γ1
P1P

[1]
2 (., µ)−

K

1− 4µ2
ΦTµ(P

[1]
2 (., µ))

+
2µK

1− 2µ
ΦH−1P

[1]
2 (., µ)− χ2P3

)
.

(24)

To prove (1), we will show that in (23) polynomial B can be written as:

B(x) = xΦ̃(x), Φ̃ ∈ P. (25)

Using the definition of the operator h−1, we can easily see that

h−1(f(x)v) = f(−x)h−1v, f ∈ P, v ∈ P ′.

Then, (23) can be written as

xΦ(x)u0 = B(−x)h−1u0. (26)

Application of h−1 to (26) gives

B(x)u0 = −xΦ(−x)h−1u0. (27)

Multiplying (26) and (27) by −xΦ(−x) and B(−x) respectively and subtracting
the result, we obtain

−x2Φ(x)Φ(−x)u0 = B(x)B(−x)u0.

By the regularity of u0, we get

−x2Φ(x)Φ(−x) = B(x)B(−x).

Hence,

B(0) = 0, degB = 1 + degΦ.

Therefore, polynomial B can be written as in (25), with deg Φ̃ = degΦ and,
then, (1) follows immediately from (23).
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Now, multiplying (21) by x and taking into account (23), we get

xu
[1]
0 (µ) =

K

1− 4µ2
(xΦ(x) + 2µB(x))u0. (28)

Applying the operator h−1 to the last equation and using again (23), we obtain

xh−1u
[1]
0 (µ) = −

K

1− 4µ2
(B(x) + 2µxΦ(x))u0. (29)

Multiplying (14) by x and taking into account (15), (28) and (29), we get

K

1− 4µ2
(xΦ(x) + 2µB(x))TµP

[1]
n (., µ)− xΨ(x)P [1]

n (., µ)+

−
2µK

1− 2µ
(xΦ(x) +B(x))H−1P

[1]
n (., µ) = −χnxPn+1(x),

(30)
or, equivalently,

K

1− 4µ2
(xΦ(x) + 2µB(x))T 2

µPn+1 − xΨ(x)TµPn+1+

−
2µK

1− 2µ
(xΦ(x) +B(x))H−1TµPn+1 = λnxPn+1(x),

(31)
where

λn = −χnµn+1.

Substitution of (25) in (31) and simplification by x give (2).

[(b) ⇒ (a)] Assume that equation (2) is fulfilled then using the definition of

{P
[1]
n }n≥0, we get

K

1− 4µ2

(
Φ(x) + 2µΦ̃(x)

)
(TµP

[1]
n )(x)−Ψ(x)P [1]

n (x)+

−
2µK

1− 2µ

(
Φ(x) + Φ̃(x)

)
(H−1P

[1]
n )(x) =

λn

µn+1
Pn+1(x).

(32)
Therefore,

0 =
λn

µn+1
< u0, Pn+1 > = < u0,

K

1− 4µ2

(
Φ(x) + 2µΦ̃(x)

)
TµP

[1]
n

−Ψ(x)P
[1]
n −

2µK

1− 2µ

(
Φ(x) + Φ̃(x)

)
H−1P

[1]
n >

= − <
K

1− 4µ2
Tµ

(
(Φ(x) + 2µΦ̃(x))u0

)
+Ψ(x)u0

−
2µK

1− 2µ
H−1

(
(Φ(x) + Φ̃(x))

)
u0, P

[1]
n >, n ≥ 0.
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Taking into account the fact that {P
[1]
n (x)}n≥0 is a basis sequence, we obtain

K

1− 4µ2
Tµ

(
(Φ(x) + 2µΦ̃(x))u0

)
+Ψ(x)u0

−
2µK

1− 2µ
H−1

(
(Φ(x) + Φ̃(x))u0

)
= 0. (33)

On the other hand, multiplying (23) by x−1 and applying the formula

x−1(xv) = v − (v)0δ0, v ∈ P ′, (34)

we get
Φu0 = −h−1(Φ̃u0)+ < u0,Φ(x) + Φ̃(x) > δ0,

or, equivalently,

Φ̃u0 = −h−1(Φu0)+ < u0,Φ(x) + Φ̃(x) > δ0. (35)

Substituting (35) in (33) and taking account of (6), (7) and (8) we obtain

K

1− 4µ2
Tµ

(
Φu0 − 2µh−1(Φu0)

)
+Ψu0 = 0. (36)

Therefore

0 =<
K

1− 4µ2
Tµ

(
Φu0 − 2µh−1(Φu0)

)
+Ψu0, 1 >=< u0,Ψ > .

Taking into account that Ψ is a polynomial of degree one, we get

Ψ(x) = λP1(x), λ 6= 0.

So, (36) becomes

Tµ

( K

1− 4µ2

(
Φu0 − 2µh−1(Φu0)

))
= −λP1(x)u0.

But, according to Lemma 2.2,

Tµu
[1]
0 = −

1 + 2µ

γ1
P1(x)u0.

Therefore,

Tµu
[1]
0 = Tµ

( αK

1− 4µ2

(
Φu0 − 2µh−1(Φu0)

))
,
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where

α =
1 + 2µ

λγ1
.

Hence,

u
[1]
0 =

αK

1− 4µ2

(
Φu0 − 2µh−1(Φu0)

)
. (37)

Taking into account (23), we get

xu
[1]
0 =

αK

1− 4µ2
(xΦ(x) + 2µB(x))u0, (38)

xh−1u
[1]
0 (µ) = −

αK

1− 4µ2
(B(x) + 2µxΦ(x))u0. (39)

Multiplying (32) by αxu0 and taking into account (37), (38), (39) and (23), we
get

xTµ(P
[1]
n u

[1]
0 ) = α

λn

µn+1
xPn+1u0, n ≥ 0. (40)

Using (34), we obtain

Tµ(P
[1]
n u

[1]
0 ) = α

λn

µn+1
Pn+1u0, n ≥ 0. (41)

The regularity of u
[1]
0 comes from (3), (41) and the definition of {P

[1]
n }n≥0: For

n ≥ m we have

< u
[1]
0 , P

[1]
m P

[1]
n > = −

1

µm+1
< Tµ(P

[1]
n u

[1]
0 ), Pm+1 >

= −
αλn

µn+1µm+1
< Pn+1u0, Pm+1 >

= −
αλn

µn+1µm+1
< u0, Pm+1Pn+1 >

= −
αλn

µ2
n+1

rnδn,m.

Therefore {Pn}n≥0 is a Dunkl-classical orthogonal polynomial sequence.

Remark. The first author [3] showed that Dunkl-classical forms are char-
acterized by (23) and (36) with the following condition:

Ψ′(0) +
1

2

KΦ′′(0)

1− 4µ2
(4µ2[n]− n) +

1

3

KB′′′(0)

(1− 4µ2)
µ([n]− n) 6= 0. (42)

In this paper, following the previous proof, we can easily see that from (23) and
(36) only (without condition (42)) we prove the Dunkl-classical character.
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Corollary 3.2. A symmetric MOPS {Pn}n≥0 is Dunkl-classical if and
only if there exist a complex number K, a sequence (λn)n≥0 in C

∗ and two
polynomials Φ (monic), and Ψ with degΦ ≤ 2 and degΨ = 1 such that

K

1− 4µ2

(
Φ(x)−2µΦ(−x)

)
(T 2

µPn+1)(x)−Ψ(x)(TµPn+1)(x)+

−
2µK

1− 2µ

(
Φ(x)− Φ(−x)

)
(H−1TµPn+1)(x) = λnPn+1(x). (43)

Proof. The sequence {Pn}n≥0 is symmetric. Then, its corresponding form
u0 satisfies

u0 = h−1u0.

Multiplication of the above equation by xΦ(x) gives (1) with

Φ̃(x) = −Φ(−x). (44)

Therefore, according to Theorem 1.1, {Pn}n≥0 is a Dunkl-classical sequence if
and only if it satisfies (2). Using (44), we can easily see that equation (2) is
equivalent to (43). This completes the proof.

4. Example

In order to illustrate Theorem 1.1, we will consider the Dunkl-classical form Ĝ
defined by:

Ĝ = (x− 1)G(α, µ −
1

2
), (45)

where G(α, µ − 1
2 ) is the generalized Gegenbauer form.

This form is regular for α 6= 0, µ+ 1
2 6= −n, n ≥ 1 and satisfies [15]

Tµ

(
(x2 − 1)Ĝ

)
+

(
(−2α− 2µ − 3)x− (1 + 2µ)

)
Ĝ = 0. (46)

The last equation is equivalent to (36), with

Φ(x) =(x+ 1)(x−
1 + 2µ

1− 2µ
),

Ψ(x) =
(2α + 2µ+ 3)2

2α+ 2
(x+

1 + 2µ

2α+ 2µ+ 3
),

K =−
(1− 2µ)(2α + 2µ + 3)

2α+ 2
.
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Furthermore, using (45) and the fact that G(α, µ− 1
2) is symmetric, we can

easily see that Ĝ satisfies (1) with

Φ̃(x) = (x+ 1)(x+
1 + 2µ

1− 2µ
).

Therefore, according to Theorem 1.1 and its proof, the MOPS corresponding
to Ĝ satisfies

K

1− 2µ
(x2 − 1)(T 2

µPn+1)(x) −Ψ(x)(TµPn+1)(x)

−
4µK

1− 2µ
x(x+ 1)(H−1TµPn+1)(x) = λnPn+1(x), (47)

where λn is a non-zero complex number.
Comparing the coefficients of higher degree of (47), we get

λn =
2α+ 2µ+ 3

2α+ 2

(
µn − 2n− 2α− 2µ − 3

)
µn+1.

Notes that u0 is a nonsymmetric form. Since the sequence {Pn}n≥0 satisfies (4)
with [15]:

βn = an+1 − an, n ≥ 0,

where

a2n =
2n+ 2α+ 2µ + 1

4n+ 2α+ 2µ + 1
, a2n+1 =

2n+ 2α+ 2

4n+ 2α+ 2µ + 3
, n ≥ 0.
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