A CHARACTERIZATION OF
PRIMITIVE ALGEBRAS VIA B*–SEMINORMS

A.K. Gaur
Department of Mathematics
Duquesne University
Pittsburgh, PA 15282, USA

Abstract: Primitive algebras are characterized in terms of sub-seminorms. We prove a necessary and a sufficient condition for a B*–seminorm to be minimal. The results of this note are also valid for M*–seminorms introduced by Bhatt and others in [2].

AMS Subject Classification: 46H05, 47A10, 46H15
Key Words: B*–seminorms, minimal seminorms, primitive algebras

1. Introduction

Let A be a complex B*–algebra. For this algebra A, the norm is given by a B*–seminorm. A B*–seminorm on A is a seminorm p with the following conditions: For all \(a, b \in A, p(ab) \leq p(a) \cdot p(b) \) and \(p(a^*a) = (p(a))^2 \). A seminorm p on A is an M*–seminorm if for all \(a, b \in A, p(ab) \leq p(a) \cdot p(b) \) and \(p(a^*a) = p(a) \). Clearly, every B*–seminorm on A is an M*–seminorm on A [2].

Let \(N(A) \) be the set of all B*–seminorms on A. A partial ordering on \(N(A) \) is defined as follows. For \(p, q \in N(A), p \leq q \) if and only if \(p(a) \leq q(a) \) for all \(a \in A \). We say that a B*–seminorm \(p \) on A is a subseminorm if \(p \in Q \), whenever Q is a subset of \(N(A) \) such that \(p(a) = \max\{q(a) : q \in Q\} \). The set of all sub-seminorms on A is denoted by \(NS(A) \).
Let A be a complex Banach*—algebras where norm is a B^*—seminorm on A. We call a B^*—seminorm p on A is minimal if for a non-zero p, $p = q$, whenever p is a nonzero B^*—seminorm on A dominated by p. Let $MN(A)$ denote the set of all minimal B^*—seminorms on A. Then $MN(A) \subseteq NS(A)$.

Remark 1. We note that the norm on A coincides with the largest B^*—seminorm on A. To see this, let $g(a) = \sup\{p(a) : p \in N(A), a \in A\}$. Then for all a in A, $\|a\| \leq g(a)$. Also, $g(a) \leq \|a^*a\|^{1/2} = \|a\|$. Hence, $g(a) = \|a\|, \forall a \in A$. This idea is also true in case of M^*—seminorms, see [2].

We denote by $I_d(A)$ the set of all ideals of A. The set of primitive ideals and maximal ideals of A that are written as $PR(A)$ and $M(A)$ respectively.

2. Minimal Norms and Maximal Ideals of A

In the following proposition, we present a characterization of minimal norms on A in terms of maximal ideal space of A.

Proposition 1. A B^*—seminorm p, is minimal if and only if M_p is a maximal ideal.

Proof. For each B^*—seminorm p on A, let $M_p = \{a \in A : p(a) = 0\}$. Then the quotient star algebra A/M_p with the norm $\| \cdot \|_p$ is a B^*—algebra, say B_p. Let $a \to \lambda_a$ be the canonical map from A onto A/M_p. Then for all $\lambda_a \in B_p$, $\|\lambda_a\|_p = \inf\{\|a + x\| : x \in M_p\}$. We write $\overline{p}(\lambda_a) = p(a)$. Since, \overline{p} is a B^*—seminorm on B_p, we have by Remark 1, $\overline{p}(\lambda_a) \leq \|\lambda_a\|_p$.

Further, by (1.8.1) in [5] $\|\lambda_a\|_p \leq p(\lambda_a)$. Thus $p(a) = \inf\{\|a + x\| : x \in M_p\}, a \in A$.

Suppose that I is an ideal in A and A/I is the quotient B^*—algebra with the quotient norm $\| \cdot \|_Q$. Then a functional p on A can be defined by $p(a) = \|\lambda_a\|_Q, a \in A$. This functional p is a B^*—seminorm p on A. Also, $I = I_d(A)$. Hence the mapping $p \to I_p$ maps $N(A)$ onto $I_d(A)$. Furthermore, if p and q are in $N(A)$ with $p \leq q$, we have $I_q \leq I_p$.

Next, we will show that if $p, q \in N(A)$ with $I_q \subseteq I_p$ then $p(a) \leq q(a), a \in A$. Since $p(a) \leq \inf\{\|a + x\| : x \in I_q\}$, we have $p(a) \leq q(a)$. Thus we have shown that the mapping $p \to I_p$ is one to one and p is minimal if and only if M_p is a maximal ideal. In fact, we have established that $p \to I_p$ maps $MN(A)$ one to one onto $M(A)$. \qed
Definition 1. a A nonzero B^*–seminorm p is external if I_p is a prime ideal of A.

b With the null kernel topology, $PR(A)$ is called the structure space of A. The structure space is a locally compact T_0 space whose points are the T_1 elements of $M(A)$. Thus it is a π– space if and only if $M(A) = PR(A)$.

Proposition 2. Let $p \in NS(A), p \neq 0$. The map $p \to I_p$ is a continuous one to one mapping from the set of all such B^*–seminorms under the pointwise convergence topology, into the structure space of A.

Proof. Let \hat{A} be the set if equivalence classes of non-zero topologically irreducible star-representations of A. If $p \in NS(A)$, then there exists a $\pi \in \hat{A}$ such that $p(a) = |\pi(a)|$. With this, I_p is a primitive ideal because ker $\pi = I_p$. Thus $NS(A) \setminus \{0\} \to PR(A)$ is a one to one map.

Let $F : NS(A) \setminus \{0\} \to PR(A)$ be the mapping defined by $p \to I_p$. Suppose that S is a subset of $PR(A)$, which is closed in the null-kernel topology. Let $\{p_\lambda\}$ be a net in $F^{-1}(S)$ such that $p_\lambda \to p$. Since $I_{p_\lambda} \in S$, for all λ, we have $I_p \supseteq \bigcap\{I_{p_\lambda}\}$. Since S is closed, it follows that $I_p \in S$. Thus $p \in F^{-1}(S)$ and $F^{-1}(S)$ is closed in the topology of pointwise convergence.

Definition 2. An algebra A is said to be primitive if the mapping $p \to I_p$ defines an onto map.

The following theorem establishes a necessary and sufficient condition for A to be Primitive.

Theorem 1. The algebra A is primitive if and only if for each $\pi \in \hat{A}$, the B^*–seminorm p_π is a sub nonzero seminorm on A.

Proof. For each $\pi \in \hat{A}$, define the B^*–seminorm $p_\pi(a) = |\pi(a)|, a \in A$. Suppose that A is primitive, then ker$(\pi) = I_{p_\pi}$. Hence, p_π is a nonzero seminorm because $I_{p_\pi} \in PR(A)$.

To prove the converse, let p_π be in $NS(A)$ and $I_p \in PR(A)$. Then there exists $\pi \in \hat{A}$ with ker $= I_p$. This means that $I_{p_\pi} = I_p, p = p_\pi$, and $p \in NS(A)$.

Corollary 1. If the structure space of A is T_1, then A is a primitive algebra.
Proof. Let I_p be a primitive ideal in A for some p in $N(A)$. Since $PR(A)$ is a T_1-space, we have $I_p \in M(A)$. Hence by Theorem 1, p is minimal and therefore sub and nonzero. Thus, A is primitive.

Remark 2. If A has a T_1-structure space then the nonzero sub seminorms are minimal B^*-seminorms. Further, if A is primitive then the bijection map F (which is continuous) is not a homeomorphism.

The following theorem gives a necessary and a sufficient condition for the map $p \mapsto I_p$ to be a homeomorphism.

Theorem 2. The map $p \mapsto I_p$ is a homeomorphism if and only if the structure space of A is a T_2-space.

Proof. Let the structure space, $PR(A)$ be a T_2-space. The $PR(A)$ is also a T_1-space and the map $F : NS(A) \setminus \{0\} \rightarrow PR(A)$ is one to one and onto. Denote the set of all closed subsets of $PR(A)$ by $Cl(A)$. The space $Cl(A)$ is a compact T_2-space. Define the map $\overline{F} : N(A) \rightarrow Cl(A)$ by $\overline{F}(p) = \overline{I_p}$. Then by Theorem 2.2 in [6] \overline{F} is a homeomorphism.

Next, we define the map $\phi : PR(A) \rightarrow Cl(A)$ by $\phi(I_p) = \{I_p\}$. Then by [1], the map $\phi : PR(A) \rightarrow \phi(PR(A))$ is a homeomorphism. Our main objective is to show that the map F is open. Suppose $G = \phi \circ F$. Then G is well defined. Let V be an open subset of $NS(A) \setminus \{0\}$. Then for an open set, U, in $N(A)$, V can be written as $V = U \cap (NS(A) \setminus \{0\})$. Therefore, $G(V) = \overline{F(U)} \cap \phi(PR(A))$ is open in $\phi(PR(A))$ because $\overline{F(U)}$ is open in $PR(A)$. We also note that $\phi^{-1}(G(V))$ is open in $PR(A)$ since ϕ is a homeomorphism onto its range. In fact, $F(V) = \phi^{-1}(G(V))$ and $F(V)$ is open. Accordingly, F is a homeomorphism.

Remark 3. In 2006, [2] the authors have used a similar seminorm, M^*-defined on a $*$-subalgebra of a given $*$-algebra. They have shown that an M^*-seminorm in unbounded if an $*$-representation of A exists. More on this to [3] [4]. The results of this paper hold for M^*-seminorms.

Remark 4. A B^*-seminorm p on A is extremal if, whenever q, r are B^*-seminorms on A with $p(a) = \max\{r(a), q(a)\}, a \in A$ we have $p = q$ or $p = r$. Let $EN(A)$ denote the set of all extremal B^*-seminorms on A. Then we have
the following

\[MN(A) \subseteq NS(A) \subseteq EN(A) \]

It is easy to show that a nonzero \(B^* \)-seminorm \(p \) is extremal if and only if \(I_p \) is a prime ideal. The mapping \(p \to I_p \) maps \(EN(A) \setminus \{0\} \) one to one onto \(PR(A) \).

References

