DYNAMICS OF HYPERBOLIC WEIGHTED COMPOSITION OPERATORS

Bahmann Yousefi¹, Fariba Ershad²§
¹,²Department of Mathematics
Payame Noor University
P.O. Box 19395-3697, Tehran IRAN

Abstract: In the present paper we investigate conditions under which a hyperbolic self-map of the open unit disk induces a hypercyclic weighted composition operator in the space of holomorphic functions on the unit ball in \(C^N \).

AMS Subject Classification: 47B33, 47B38
Key Words: weighted composition operator, hypercyclic operator, Denjoy-Wolff point, hyperbolic map

1. Introduction

For \(z = (z_1, ..., z_N) \) and \(w = (w_1, ..., w_N) \) in \(C^N \), write \(< z, w > \) for the Euclidean inner product \(\sum_{j=1}^{N} z_j \bar{w}_j \) and let \(|z| =< z, z >^{1/2} \). With this notation, the unit ball in \(C^N \) is the set \(B_N = \{ z \in C^N : |z| < 1 \} \) and the unit sphere in \(C^N \) is the set \(S_N = \{ z \in C^N : |z| = 1 \} \), analogously to the unit disc and circle for \(N = 1 \). The space \(H(B_N) \), is the set of all holomorphic fuctions on \(B_N \), can be made into a F-space by a complete metric for which a sequence \(\{f_n\} \) in \(H(B_N) \) converges to \(f \in H(B_N) \) if and only if \(f_n \rightarrow f \) uniformly on every compact subsets of \(B_N \). Each \(\varphi \in H(B_N) \) and holomorphic self-map \(\psi \) of \(B_N \) induces a linear weighted composition operator \(C_{\varphi,\psi} : H(B_N) \rightarrow H(B_N) \) de-
fined by $C_{\varphi,\psi}(f)(z) = \varphi(z)f(\psi(z))$ for every $f \in H(B_N)$ and $z \in B_N$. Indeed, $C_{\varphi,\psi} = M_\varphi C_\psi$ where M_φ denotes the operator of multiplication by φ and C_ψ is a composition operator by means of the definition $C_\psi(f) = f \circ \psi$ for every $f \in H(B_N)$.

A bounded linear operator T on a F-space X is said to be hypercyclic if there exists a vector $x \in X$ for which the orbit $\text{Orb}(T, x) = \{T^n x : n \in \mathbb{N}\}$ is dense in X and in this case we refer to x as a hypercyclic vector for T.

The holomorphic self maps of B_N are divided into classes of elliptic and non-elliptic. The elliptic type is an automorphism and has a fixed point in B_N. It is well known that this map is conjugate to a rotation.

For simplicity, throughout this paper we use the notation $" \to "$ for indicating uniform convergence on compact subsets of B_N. Also, by ψ_n we denote the nth iterate of ψ. To state the main result of the paper, we need the following theorems from [3].

Theorem 1.1. (Denjoy-Wollf Iteration in B_N) Suppose ψ is a holomorphic self-map of the open unit ball B_N without interior fixed point. Then there is a point $w \in \partial B_N$ such that $\psi_n \to w$ and $0 < d(w) \leq 1$ where

$$d(w) = \lim_{|z| \to 1^-} \inf \frac{1 - |\psi(z)|^2}{1 - |z|^2}.$$

The boundary point w is called the Denjoy-Wolff point of ψ.

Theorem 1.2. (Julia’s Lemma in B_N) Let ψ be an analytic map of the unit ball into itself with Denjoy-Wolff point $w \in \partial B_N$. Then for every $z \in B_N$,

$$\frac{|1 - <\psi(z), w>|^2}{1 - |\psi(z)|^2} \leq d(w) \frac{|1 - <z, w>|^2}{1 - |z|^2}.$$

Recall that a holomorphic self-map ψ of B_N is called elliptic if ψ has a fixed point in B_N. Also, if ψ has no interior fixed point, then it is called hyperbolic whenever $d(w) < 1$, and is called parabolic if $d(w) = 1$.

For simplicity, we call a weighted composition operator $C_{\varphi,\psi}$, a hyperbolic weighted composition operator whenever the compositional symbol ψ is hyperbolic.

Definition 1.3. We say that a mapping $\varphi : B_N \to \mathbb{C}$ is semi-nonexpansive provided there exists a neighborhood U_w of w such that $|\varphi(z) - \varphi(w)| \leq |z - w|$ for all z in $U_w \cap B_N$.
The next section of the present paper shows that weighted composition operators with non-constant weight function and hyperbolic compositional symbol can be hypercyclic on $H(B_N)$. For some sources see [1]-[7].

2. Main Result

In this section we investigate the hypercyclicity of a hyperbolic weighted composition operator acting on $H(B_N)$.

Proposition 2.1. Let φ be a nonzero holomorphic map on B_N and ψ be a hyperbolic map of B_N with w the Denjoy-Wolff point such that $\varphi(w) \neq 0$. If φ is semi-nonexpansive, then $C_{\varphi,\psi}^*$ is not hypercyclic, but $C_{\varphi,\psi}$ is hypercyclic whenever φ never vanishes on B_N, C_ψ is hypercyclic and $|\varphi(w)| = 1$.

Proof. Let K be a compact subset of B_N. By Theorem 1.2, there exists a constant $c > 0$ such that

$$|1 - < \psi_n(z), w >|^2 \leq c(1 - |\psi_n(z)|^2)$$

for every $z \in K$ and every $n \in \mathbb{N}$. But $|1 - < \psi_n(z), w >|^2 = |w - \psi_n(z)|^2$, thus $|w - \psi_n(z)|^2 \leq c(1 - |\psi_n(z)|^2)$ for every $z \in K$ and every $n \in \mathbb{N}$. On the other hand, since φ is semi-nonexpansive, there exists a neighborhood U_w of w satisfying $|\varphi(w) - \varphi(z)| \leq |w - z|$ for every z in $U_w \cap B_N$. Since $\psi_n \rightarrow w$, there exists N such that for all $n > N$, $\psi_n(z) \in U_w$. Substituting $\psi_n(z)$ instead of z in the previous relation we get

$$|\varphi(w) - \varphi(\psi_n(z))| \leq |w - \psi_n(z)|$$

$$= |1 - < \psi_n(z), w >|$$

$$\leq c^{1/2}(1 - |\psi_n(z)|^2)^{1/2}, \quad (*)$$

for every $n > N$. Now we apply the techniques used in [7]. Since ψ is hyperbolic, thus $0 < d(w) < 1$ and by Theorem 1.2 we have

$$\frac{|1 - < \psi(z), w >|^2}{1 - |\psi(z)|^2} \leq d(w) \frac{|1 - < z, w >|^2}{1 - |z|^2}$$

for all $z \in B_N$. By substituting $\psi_n(z)$ for $\psi(z)$ in the above inequality, we get

$$\frac{|1 - < \psi_n(z), w >|^2}{1 - |\psi_n(z)|^2} \leq d(w)^n \frac{|1 - < z, w >|^2}{1 - |z|^2}$$
for every \(z \in B_N \) and \(n \in \mathbb{N} \). Also, note that since \(K \) is compact, then there exists a constant \(\beta > 0 \) such that

\[
4 \frac{1 - |z, w|}{1 - |z|^2} < \beta
\]

for all \(z \) in \(K \). So it follows that

\[
1 - |\psi_n(z)|^2 = (1 - |\psi_n(z)|)(1 + \psi_n(z))
\]

\[
\leq 2|1 - \langle \psi_n(z), w \rangle|
\]

\[
\leq 4 \frac{|1 - \langle \psi_n(z), w \rangle|^2}{1 - |\psi_n(z)|^2}
\]

\[
\leq 4 \frac{1 - |z, w|^2}{1 - |z|^2} d(w)^n
\]

\[
< \beta d(w)^n.
\]

Hence we obtain

\[
1 - |\psi_n(z)|^2 \leq \beta d(w)^n. \quad (**)
\]

Now by using the relations (*) and (**), we get

\[
|1 - \frac{1}{\varphi(w)} \varphi(\psi_n(z))| < \frac{c_1^2}{|\varphi(w)|} (1 - |\psi_n(z)|^2)^{1/2}
\]

\[
\leq \frac{c_1^2 \beta^{1/2}}{|\varphi(w)|} d(w)^{n/2}.
\]

Since \(0 < d(w) < 1 \), thus \(\sum_{n=0}^{\infty} 1 - \frac{1}{\varphi(w)} \varphi(\psi_n(z)) \) and so \(\prod_{n=0}^{\infty} 1/\varphi(w) \varphi(\psi_n(z)) \) converges uniformly on \(K \). Define

\[
g(z) = \prod_{n=0}^{\infty} \frac{1}{\varphi(w)} \varphi(\psi_n(z)).
\]

Since \(\varphi(w) \neq 0 \) and \(\psi_n \xrightarrow{k} w \), so there exists a neighborhood \(U_w \) of \(w \) such that \(\varphi \circ \psi_n \neq 0 \) on \(U_w \) for all \(n \) large enough. Let \(z = (z_1, z') \in B_N \) where \(z' = (z_2, ..., z_N) \in \mathbb{C}^{N-1} \). Define \(f(z_1) = g(z_1, z') \), then \(f \) is a nonzero holomorphic function. Thus \(g \) is also a nonzero holomorphic function with respect to \(z_1 \). By the same method we can see that \(g \) is holomorphic with respect to other variables \(z_2, ..., z_n \). This implies that \(g \) is a nonzero holomorphic function on \(B_N \). Clearly, \(C_{\varphi, \psi} g = \varphi(w) g \), and so \(\varphi(w) \) is an eigenvalue of \(C_{\varphi, \psi} \). But it is well-known that the adjoint of a hypercyclic operator has no eigenvector, thus \(C_{\varphi, \psi}^* \) fails to be hypercyclic. Also, note that \(C_{\varphi, \psi} M_g = M_g (\varphi(w) C_{\psi}) \), and \(g \)
has no zero in B_N whenever φ never vanishes. Thus, M_g is one to one and has dense range and so $C_{\varphi,\psi}$ is quasisimilar to $\varphi(w)C_{\psi}$. Now if $|\varphi(w)| = 1$ and C_{ψ} is hypercyclic, then $\varphi(w)C_{\psi}$ and so $C_{\varphi,\psi}$ is also hypercyclic on $H(B_N)$. This completes the proof.

References

