ORDINARY SPECIAL WEIERSTRASS n-SEMIGROUPS

E. Ballico

Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: We study ordinary Weierstrass n-semigroups on genus g curves, which are defined as the n-semigroups such that (a_1, \ldots, a_n) is a gap if $0 < a_1 + \cdots + a_n < g$, and a non-gap if $a_1 + \cdots + a_n \geq g + 2$. Most of the results are for curves with general moduli.

AMS Subject Classification: 14H55

Key Words: Weierstrass n-semigroup, semigroup of non-gaps, ordinary n-semigroup

1. Ordinary Weierstrass n-Semigroups

Let X be a smooth and connected projective curve of genus $g \geq 3$ defined over an algebraically closed field with characteristic zero. Fix $P_1, \ldots, P_n \in X$ such that $P_i \neq P_j$ for all $i \neq j$. Let $H(P_1, \ldots, P_n) \subset \mathbb{N}^n$ be the set of all n-ples $(a_1, \ldots, a_n) \in \mathbb{N}^n$ such that there is a rational function on X with $a_1 P_1 + \cdots + a_n P_n$ as its divisor of poles ([1], [2]). The set $H(P_1, \ldots, P_n)$ is a semigroup (called the Weierstrass semigroup of P_1, \ldots, P_n) for the componentwise addition $+: \mathbb{N}^n \times \mathbb{N}^n \to \mathbb{N}^n$. The elements of the finite set $G(P_1, \ldots, P_n) := \mathbb{N}^n \setminus H(P_1, \ldots, P_n)$ are called the gaps of (P_1, \ldots, P_n). Note that g is uniquely determined by $H(P_1, \ldots, P_n)$ by the formula $g = \#(G(P_1, \ldots, P_n) \cap \mathbb{N}^1 \times \{0, \ldots,$
0). For any \(a = (a_1, \ldots, a_n) \in \mathbb{N}^n \) set \(\|a\| := a_1 + \cdots + a_n \). For any \(i \in \{1, \ldots, n\} \) set \(e_i := (a_1, \ldots, a_n) \) with \(a_j = 0 \) if \(j \neq i \) and \(e_i = 1 \). For all \(a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathbb{N}^n \) set \(a \leq b \) if and only if \(a_i \leq b_i \) for all \(i \). Write \(a < b \) if \(a \leq b \) and \(a \neq b \). Let \(A \subset \mathbb{N}^n \) be a semigroup. We say that \(a, b \in A \) are consecutive if \(a < b \) and there is no \(c \in A \) with \(a < c < b \). In this way we get the notion of maximal chains between \(ta, b \) with \(a < b \). \(A \) is said to be catenary if for all \(a, b \in A \) with \(a < b \) any two maximal chains between \(a \) and \(b \) are catenary. \(H(P_1, \ldots, P_n) \) is catenary because all integers \(h^0(O_X(a_1P_1 + \cdots + a_nP_n)) \) and \(h^1(O_X(a_1P_1 + \cdots + a_nP_n)) \), \((a_1, \ldots, a_n) \in \mathbb{N}^n \) are known in terms of \(g \), the integer \(a_1 + \cdots + a_n \) and the partial relation \(\leq \) in \(H(P_1, \ldots, P_n) \). If \(a = (a_1, \ldots, a_n) \neq 0 \), then \(h^0(O_X(a_1P_1 + \cdots + a_nP_n)) - 1 \) is the number of elements of \(H(P_1, \ldots, P_n) \) in a maximal chain from 0 to \(a \), while \(h^1(O_X(a_1P_1 + \cdots + a_nP_n)) = h^0(O_X(a_1P_1 + \cdots + a_nP_n)) + g - 1 - \|a\| \) (Riemann-Roch).

Let \(A \subset \mathbb{N}^n \) with \(\mathbb{N}^n \setminus A \) finite. We say that \(A \) has genus \(g \) if \(\sharp (\mathbb{N}^n \setminus A) \cap \mathbb{N}e_i = g \) for all \(i \), \(A \supset \{\|a\| \geq 2g\} \), it is catenary and it satisfies the following condition ♠:

♠: if \(\|a\| = 2g - 2 \) and \(a + e_i \notin A \) for some \(i \), then \(a \in A \) and \(a + e_j \notin A \) for all \(j = 1, \ldots, n \).

\(H(P_1, \ldots, P_n) \) satisfies ♠, because \(|\omega_X| \) has no base points and \(a = (a_1, \ldots, a_n) \in \mathbb{N}^n \) with \(\|a\| = 2g - 2 \) and \(a + e_i \in G(P_1, \ldots, P_n) \) for some \(i \Leftrightarrow a_1P_1 + \cdots + a_nP_n \in |\omega_X| \Leftrightarrow a + e_i \in G(P_1, \ldots, P_n) \) for all \(i \).

Set \(w(P_1, \ldots, P_n) := \sum_{(a_1, \ldots, a_n) \in \mathbb{N}^n} h^1(O_X(a_1P_1 + \cdots + a_nP_n)) - (g+n) \) (the weight) and \(v(P_1, \ldots, P_n) := \sum_{(a_1, \ldots, a_n) \in \mathbb{H}(P_1, \ldots, P_n) \setminus \{0\}} h^1(O_X(a_1P_1 + \cdots + a_nP_n)) \) (the gist) of \(H(P_1, \ldots, P_n) \). The non-special semigroup is the semigroup \(\{a \in \mathbb{N}^n : \|a\| \geq g + 1\} \). This is the only n-semigroup with \(w(P_1, \ldots, P_n) = 0 \) and the only n-semigroup with \(v(P_1, \ldots, P_n) = 0 \).

Definition 1. We say that \(H(P_1, \ldots, P_n) \) is ordinary if all \(a \in \mathbb{N}^n \setminus \{0\} \) with \(\|a\| < g \) are gaps, \(H(P_1, \ldots, P_n) \) contains all \(a \) with \(\|a\| \geq g + 2 \) and it is not non-special, i.e. there is some \(a \in H(P_1, \ldots, P_n) \) with \(\|a\| = g \).

For an ordinary n-semigroup we have \(w(P_1, \ldots, P_n) = v(P_1, \ldots, P_n) = \sharp \{a \in H(P_1, \ldots, P_n) : \|a\| = g\} \) and \(H(P_1, \ldots, P_n) \) is uniquely determined by the set \(E(P_1, \ldots, P_n) := \{a \in H(P_1, \ldots, P_n) : \|a\| = g\} \) (Remark 1). The notion of ordinary n-semigroup is well-defined for an arbitrary n-semigroup, i.e. a semigroup not coming from \(X, P_1, \ldots, P_n \). When \(n > 1 \) ordinary Weierstrass n-semigroups are very restricted among the ordinary n-semigroups of genus \(g \) (see Remark 2). We say that \(H(P_1, \ldots, P_n) \) is strongly ordinary if it is ordinary and \(\sharp (E(P_1, \ldots, P_n)) = 1 \).
Question 1. Fix g and n. Which are the possible sets $E(P_1, \ldots, P_n)$ for some X of genus g and some $P_1, \ldots, P_n \in X$ with $H(P_1, \ldots, P_n)$ ordinary? Among all g, n and all ordinary $H(P_1, \ldots, P_n)$ with X of genus g call $\alpha(g, n)$ the maximal cardinality of a set $E(P_1, \ldots, P_n)$. Describe the asymptotic shape of the function $\alpha(g, n)$, either fixing g and taking $n \to +\infty$ or fixing n and taking $g \to +\infty$?

2. Properties of Ordinary n-Semigroups and their Existence

For any $a = (a_1, \ldots, a_n) \in \mathbb{N}^n$ let supp(a) denote the set of all $i \in \{1, \ldots, n\}$ such that $a_i \neq 0$.

Remark 1. Let $H(P_1, \ldots, P_n)$ be an ordinary semigroup.

Observation 1. Fix $a = (a_1, \ldots, a_n)$ with $\|a\| = g$. Since $\{\|b\| \leq g - 1\} \subset G(P_1, \ldots, P_n)$, then: $a \in E(P_1, \ldots, P_n) \iff h^0(\mathcal{O}_X(a_1, \ldots, a_n)) = 2 \iff h^1(\mathcal{O}_X(a_1, \ldots, a_n)) = 1$.

Claim 1. Fix $a = (a_1, \ldots, a_n) \in E(P_1, \ldots, P_n)$. Then $a + e_i \in G(P_1, \ldots, P_n)$ for all $1 \leq i \leq n$.

Proof of Claim 1. $a + e_i \in H(P_1, \ldots, P_n)$ if an only if $h^0(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n + P_i)) = 3$ and $h^1(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n + P_i)) = 1$. Since $\|a + (x + 1)e_i\| = g + 1 + x \geq g + 2$ for all $x > 0$, we have $a + (x + 1)e_i \in H(P_1, \ldots, P_n)$. By induction on x we get $h^0(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n + (x + 1)P_i)) = 3 + x$ and $h^1(\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n + (x + 1)P_i)) = 1$, which is obviously false if $x \geq g - 1$.

Claim 2. We have $h^1(\mathcal{O}_X(b_1 P_1 + \cdots, b_n P_n)) = 0$ for all $b = (b_1, \ldots, b_n) \in \mathbb{N}^n$ with $b_1 + \cdots + b_n = g + 1$.

Proof of Claim 2. Fix $b = (b_1, \ldots, b_n)$ with $b_1 + \cdots + b_n = g + 1$. Take $i \in \{1, \ldots, n\}$ such that $b_i \neq 0$. If $b - e_i \in G(P_1, \ldots, P_n)$, then use Claim 1. If $(c_1, \ldots, c_n) := b - e_i \in H(P_1, \ldots, P_n)$, then $h^1(\mathcal{O}_X(c_1 P_1 + \cdots + c_n P_n)) = 0$ and hence $h^1(\mathcal{O}_X(b_1 P_1 + \cdots, b_n P_n)) = 0$.

Claim 2 gives the following result.

Observation 2. $w(P_1, \ldots, P_n) = v(P_1, \ldots, P_n) = \sharp(E(P_1, \ldots, P_n))$. \hfill \□
Claim 3. Fix \(b = (b_1, \ldots, b_n) \) with \(\|b\| = g + 1 \). We have \(b \in G(P_1, \ldots, P_n) \) if and only if \(b - e_i \in G(P_1, \ldots, P_n) \) for all \(i \) with \(b_i > 0 \) or \(b - e_i \in G(P_1, \ldots, P_n) \) for some \(i \) with \(b_i > 0 \).

Proof of Claim 3. The “only if” part is true by Claim 1. For the “if” part use Observation 1.

We say that a genus \(g \) semigroup is ordinary if it satisfies all claims and observations of Remark 2.

Remark 2. The total weight of all Weierstrass points on a smooth curve \(X \) of genus \(g \) is \(g^3 - g^2 \). Hence if \(n > g^3 - g^2 \) no \(H(P_1, \ldots, P_n) \) may have \(x e_i \in G(P_1, \ldots, P_n) \) if and only if \(x \leq g - 1 \) or \(x = g \) for all \(i \).

Theorem 1. Fix integers \(g \geq 3 \) and \(n \geq 2 \) and take \(a \in \mathbb{N}^n \) such that \(\|a\| = g \). Let \(X \) be a general smooth curve of genus \(g \). Then there are \(P_1, \ldots, P_n \in X \) such that \(P_i \neq P_j \) for all \(i \neq j \), \(H(P_1, \ldots, P_n) \) is strongly ordinary and \(E(P_1, \ldots, P_n) = \{a\} \).

Proof. Write \(a = (a_1, \ldots, a_n) \).

(a) In this step we assume \(\text{supp}(a) = \{1, \ldots, n\} \). This assumption implies \(n \leq g \). First assume \(n = 1 \). In this case we not only have the existence part, but that \((X, P) \) is in the smooth locus of the Weierstrass subset of \(\mathcal{M}_{g,1} \), i.e. in the set of all ramification points of the relative dualizing sheaf. The case \(n > 1 \) is obtained deforming \((gP, 0, \ldots, 0)\) into \((a_1P_1, a_2P_2, \ldots, a_nP_n)\) inside the ramification divisors of the relative dualizing sheaf. At the very least we get \(P_1, \ldots, P_n \in X \) such that \(P_i \neq P_j \) for all \(i \neq j \), \(\mathcal{O}_X(a_1P_1 + \cdots + a_nP_n) \) is spanned, \(h^0(\mathcal{O}_X(a_1P_1 + \cdots + a_nP_n)) = 2 \) and that for all \(i = 1, \ldots, n \) we have \(h^1(\mathcal{O}_X(b_1P_1 + \cdots + b_nP_n)) = 0 \), where \((b_1, \ldots, b_n) = a + e_i \). We also get that the set \(T(a) \) of all ordinary \((X, P_1, \ldots, P_n)\) with \(E(P_1, \ldots, P_n) \supseteq \{a\} \) has dimension \(3g - 3 + n - 1 \). To conclude we only need to check that \(E(P_1, \ldots, P_n) = \{a\} \) for a general \((X, P_1, \ldots, P_n) \in T(a) \), i.e. that if \(b \neq a \), then \(T(a) \) and \(T(b) \) have no common component of dimension \(3g - 3 + n - 1 \). Since \(\text{supp}(a) = \text{supp}(b) = \{1, \ldots, n\}, a \neq b \), and \(\|a\| = \|b\| \), we may, permuting the points \(P_1, \ldots, P_n \), to assume \(a_n \neq b_n \). Fix a general \((X, P_1, \ldots, P_{n-1}) \in \mathcal{M}_{g,n-1} \). It is sufficient to prove the existence of \(P_n, Q_n \in X \setminus \{P_1, \ldots, P_{n-1}\} \) such that \(H(P_1, \ldots, P_n) \) is ordinary with \(a \in E(P_1, \ldots, P_n) \), \(H(P_1, \ldots, P_{n-1}, Q_n) \) is ordinary with \(b \in E(P_1, \ldots, P_{n-1}, Q_n) \) and \(P_n \neq Q_n \). Since \(\|a\| = \|b\| \) and \(a_n \neq b_n \), we have \(a_1 + \cdots + a_{n-1} = g - a_n \neq g - b_n \). Set \(R := \omega_X(-a_1P_1 + \cdots - a_{n-1}P_{n-1}) \) and \(L := \omega_X(-b_1P_1 + \cdots - b_{n-1}P_{n-1}) \). Since we are in characteristic zero and \(P_1, \ldots, P_{n-1} \) are general, \(h^1(R) = 1 \) and \(h^1(L) = 1 \), i.e. \(h^0(R) = a_n \) and \(h^0(L) = b_n \),
$h^0(L) = b_n$. Assume for the moment $a_n > 1$ and $b_n > 1$. By the Brill-Noether formula ([4, Theorem 15 (iv)]), R (resp. L) has $a_n((a_n - 1)(g - 1) + g - 2 + n)$ (resp. $b_n((b_n - 1)(g - 1) + g - 2 + n)$) ramification points. Since this ramification points come from deformations of the ramification points of $\omega_X(-gP + a_iP)$ and $\omega_X(-gP + b_iP)$, these ramification points are simple ramification points. Since $a_n \neq b_n$ we may find ramification points P_n of R and Q_n of L with $Q_n \neq P_n$. Now assume that $\min \{a_n, b_n\} = 1$, say $b_n = 1$. In this case $|L|$ has a unique divisor of degree $g - 1$ and hence it is sufficient to use that (since $a_n > 1$) R has at least g ramification points.

(b) Now assume $\text{supp}(a) \subset \{1, \ldots, n\}$. With no loss of generality we may assume $\text{supp}(a) = \{1, \ldots, m\}$. Write $a = (a', 0, \ldots, 0)$ with $a' \in \mathbb{N}^m$. Take P_1, \ldots, P_m such that $H(P_1, \ldots, P_m)$ is the only ordinary m-semigroup with $\{a'\} = E(P_1, \ldots, P_m)$. Since we are in characteristic zero, by [4, Theorem 15] it is sufficient to take as P_{m+1}, \ldots, P_n and general $(P_{m+1}, \ldots, P_n) \in X^{n-m}$.

Theorem 2. Fix integers $g \geq 3$ and $n \geq 2$.

(a) If $n > g^3 - g^2$, then there is no ordinary (X, P_1, \ldots, P_n) with $g e_i \in E(P_1, \ldots, P_n)$ for all i.

(b) If $2 \leq m \leq g^3 - g^2$, $n \geq m$, and X is general, then there are $P_1, \ldots, P_n \in X$, $P_i \neq P_j$ for all $i \neq j$, such that $H(P_1, \ldots, P_n)$ is ordinary and $E(P_1, \ldots, P_n) = \{ge_i\}_{1 \leq i \leq m}$.

Proof. Part (a) follows from the Brill-Noether formula for the canonical line bundle, which says that $g^3 - g^2$ is the total weight of all Weierstrass points of a genus g curve. Now assume that X is general. All its Weierstrass points are ordinary and $g^3 - g^2$ is their number. Fix n, m with $2 \leq m \leq g^3 - g^2$, $n \geq m$, and take as P_1, \ldots, P_m any m distinct Weierstrass points.

(a) Assume $n = m$. We have $h^0(O_X(tP_i)) = 1$ if $0 \leq t \leq g - 1$, $h^1(O_X(gP_i)) = 2$, $h^1(O_X(gP_i)) = 0$ and $h^1(O_X(tP_i)) = 0$ for all $t > g$. Therefore to prove that $H(P_1, \ldots, P_n)$ is ordinary and that $E(P_1, \ldots, P_n) = \{ge_i\}_{1 \leq i \leq n}$ it is sufficient to prove that $h^1(O_X(a_1P_1 + \cdots + a_nP_n)) = 0$ if either $a_1 + \cdots + a_n \geq g + 1$ or $a_1 + \cdots + a_n = g$ and $a_i < g$ for all i. Since $h^1(O_X(gP_i)) = 0$ for all i, it is sufficient to prove that $h^1(O_X(a_1P_1 + \cdots + a_nP_n)) = 0$ if $a_1 + \cdots + a_n = g$ and $a_i < g$ for all i. Assume the existence of $a = (a_1, \ldots, a_n)$ with $a_1 + \cdots + a_n = g$, $a_i < g$ for all i, and $h^1(O_X(a_1P_1 + \cdots + a_nP_n)) > 0$. Among these $a \in \mathbb{N}^n$ take one such that the integer $c := \sharp(\text{supp}(a))$ is minimal. We have $2 \leq c \leq g$. With no loss
of generality we may assume \(\supp(a) = \{1, \ldots, c\} \). Set \(L := \omega_X(-\sum_{i=1}^{c-1} a_i P_i) \). We have \(\deg(L) = g - 2 + a_n \).

(a1) Assume \(c = 2 \) and \(a_2 = 1 \). Since \(P_1 \) is an ordinary Weierstrass point, we have \(h^1(O_X((g-1)P_1)) = 1 \). Let \(D \) be the only element of \(|\omega_X(-(g-1)P_1)| \). Since \(h^1(O_X((g-1)P_1 + P_2)) > 0 \), \(P_2 \) is in the support of \(D \). Since the monodromy group of the Weierstrass points is the full symmetric group ([3]), we get that all the Weierstrass points of \(X \) different from \(P_1 \) are in the support of \(D \). Hence \(g - 1 = \deg(D) > g^2 - g^2 - 1 \), a contradiction.

(a2) Assume \(c = 2 \) and \(a_2 > 1 \). Since \(P_1 \) is ordinary, we have \(h^0(L) = a_2 \). Since \(h^1(O_X(a_1 P_1 + \cdots + a_n P_n)) > 0 \), \(P_2 \) is a ramification point of \(L \). Since the monodromy group of the Weierstrass points is the full symmetric group ([3]), all the Weierstrass points of \(X \) different from \(P_1 \) are ramification points of \(|L| \). The Brill-Segre formula for \(L \) gives that the ramification points of \(|L| \) are at most \(a_2 ((a_2 - 1)(g-1) + (g-2 + a_2)) \leq (g-1)((g-2)(g-1) + 2g-2) < g^3 - g^2 - 1 \), a contradiction.

(a3) Assume \(c > 2 \) and \(a_c = 1 \). Since \(c > 2 \), the minimality property for \(c \) shows that \(h^1(O_X(a_1 P_1 + \cdots + (a_{c-1} + a_c) P_{c-1})) = 0 \). Hence \(h^0(L) = 1 \). We get that \(P_c \) is in the base locus of \(L \). Since the monodromy group of the general Weierstrass points is the full symmetric group ([3]), we get that all Weierstrass points, except at most \(P_1, \ldots, P_{c-1} \), are in this base locus. We get a contradiction, because \(\deg(L) = g - 1 < g^3 - g^2 - (c-1) \), by our choice of the integer \(c \).

(a4) Assume \(c > 2 \) and \(a_c > 1 \). Since \(c > 2 \), the minimality property for \(c \) shows that \(h^1(O_X(a_1 P_1 + \cdots + (a_{c-1} + a_c) P_{c-1})) = 0 \). Hence \(h^0(L) = a_c \). We use again the Brill-Segre formula. The definition of \(c \) gives \(a_c \leq g+1-c \). Hence the number of ramification points of \(|L| \) is at most \(a_c ((a_c - 1)(g-1) + (g-2 + a_c)) \leq (g+1-c)((g-c)(g-1) + 2g-1-c) \). Since the monodromy group of the general Weierstrass points is the full symmetric group ([3]), all Weierstrass points of \(X \), except at most \(c-1 \), are ramification points of \(|L| \). Therefore it is sufficient to prove that for all \(c = 3, \ldots, g-1 \) we have \((g+1-c)((g-c)(g-1) + 2g-1-c) \leq g^3 - g^2 - c \). Call \(u(g,c) \) the difference between the right hand side and the left hand side of the last inequality. Since \(u(g,c) \) in an increasing function of \(c \), it is sufficient to use that \(u(g,3) = g^3 - g^2 - 3 - (g-2)(g-3)(g-1) - (g-2)(2g-4) = g^3 - g^2 - 3 - g^3 + 6g^2 - g + 6 - 2g^2 + 8g - 8 > 0 \).

(b) Now assume \(n > m \). Take \(m \) distinct Weierstrass points \(P_1, \ldots, P_m \),
apply to them part (a) and then take a general \((P_{m+1}, \ldots, P_n) \in X^{n-m}\). Apply [4, Theorem 15].

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

