SUBSPACE TRANSITIVITY OF TUPLES OF OPERATORS

Bahmann Yousefi1,§, Elham Fathi2

1,2Department of Mathematics
Payame Noor University
P.O. Box 19395-3697, Tehran, IRAN

Abstract: In this paper, we introduce subspace hypercyclicity and transitivity of tuples of operators and we give some relations between these concepts and the subspace transitivity criterion for a tuple of operators.

AMS Subject Classification: 47B37, 47B33
Key Words: tuple, subspace hypercyclicity, subspace transitivity, hypercyclicity criterion

1. Introduction

By an \(n\)-tuple of operators we mean a finite sequence of length \(n\) of commuting continuous linear operators on a Banach space \(X\).

\textbf{Definition 1.1.} Let \(\mathcal{T} = (T_1, T_2, \ldots, T_n)\) be an \(n\)-tuple of operators acting on a separable infinite dimensional Banach space \(X\) over \(\mathbb{C}\) and let \(M\) be a nonzero subspace of \(X\). We will let

\[\mathcal{F} = \{T_1^{k_1}T_2^{k_2}\ldots T_n^{k_n} : k_i \geq 0, i = 1, \ldots, n\} \]

be the semigroup generated by \(\mathcal{T}\). For \(x \in X\), the orbit of \(x\) under the tuple \(\mathcal{T}\)
is the set $\text{Orb}(T, x) = \{Sx : S \in \mathcal{F}\}$. A vector x is called a subspace-hypercyclic (or M-hypercyclic) vector for T if $\text{Orb}(T, x) \cap M$ is dense in M and in this case the tuple T is called subspace-hypercyclic for M. The set of all M-hypercyclic vectors of T is denoted by $HC(T, M)$. Also, for all $k \geq 2$, by $T_d^{(k)}$ we will refer to the set of all k copies of an element of \mathcal{F}, i.e.

$$T_d^{(k)} = \{S_1 \oplus \ldots \oplus S_k : S_1 = \ldots = S_k \in \mathcal{F}\}.$$

We say that $T_d^{(k)}$ is subspace-hypercyclic, with respect to M, provided there exist $x_1, \ldots, x_k \in X$ such that $\{W(x_1 \oplus \ldots \oplus x_k) : W \in T_d^{(k)}\} \cap M$ is dense in the k copies of M, $M \oplus \ldots \oplus M$.

Note that if T_1, T_2, \ldots, T_n are commutative bounded linear operators on a Banach space X, and $\{m_j(i)\}_j$, is a sequence of natural numbers for $i = 1, \ldots, n$, then we say $\{T_1^{m_j(1)}T_2^{m_j(2)}\ldots T_n^{m_j(n)} : j \geq 0\}$ is M-hypercyclic if there exists $x \in X$ such that $\{T_1^{m_j(1)}T_2^{m_j(2)}\ldots T_n^{m_j(n)}x : j \geq 0\} \cap M$ is dense in M.

Definition 1.2. Suppose that $T = (T_1, T_2, \ldots, T_n)$ is an n-tuple of operators acting on a separable infinite dimensional Banach space X over \mathbb{C} and M is a nonzero subspace of X. We say that a tuple $T = (T_1, T_2, \ldots, T_n)$ is called M-transitive with respect to a tuple of nonnegative integer sequences

$$((k_j(1))_j, (k_j(2))_j, \ldots, (k_j(n))_j),$$

if for every nonempty relatively open subsets U, V of X there exists $j_0 \in \mathbb{N}$ such that $T_1^{-k_j(1)}T_2^{-k_j(2)}\ldots T_n^{-k_j(n)}(U) \cap V$ contains a relatively open nonempty subset of M. Also, we say that an n-tuple T is M-transitive if it is M-transitive with respect an n-tuple of nonnegative integer sequences.

Suprisingly, there are something that does not happen for single operators. For example, hypercyclic tuples can arise in finite dimensional, and there are operators that have somewhere dense orbits that are not everywhere dense (see [1]). Also, we note that there are subspace-hypercyclic operators that are not hypercyclic (see [2]).

2. Main Results

In this section, we investigate subspace-transitivity for tuples of operators.

Theorem 2.1. Suppose that $T = (T_1, T_2, \ldots, T_n)$ is an n-tuple of operators acting on a separable infinite dimensional Banach space X over \mathbb{C} and
M is a nonzero subspace of X. Then \mathcal{T} is M-transitive if and only if for any nonempty sets $U \subset M$ and $V \subset M$, both relatively open, there exists a tuple (k_1, k_2, \ldots, k_n) of integers such that $T_1^{-k_1}T_2^{-k_2} \ldots T_n^{-k_n}(U) \cap V$ is nonempty and $T_1^{-k_1}T_2^{-k_2} \ldots T_n^{-k_n} M \subset M$.

Proof. Let \mathcal{T} be M-transitive with respect to M and let U and V be nonempty relatively open subsets of M. Hence there exists a tuple (k_1, k_2, \ldots, k_n) of integers such that $T_1^{-k_1}T_2^{-k_2} \ldots T_n^{-k_n}(U) \cap V$ contains a relatively open nonempty set W. To show that $T_1^{-k_1}T_2^{-k_2} \ldots T_n^{-k_n} M \subset M$, let $x \in M$ and note that

$$T_1^{k_1}T_2^{k_2} \ldots T_n^{k_n} W \subset U \cap T_1^{k_1}T_2^{k_2} \ldots T_n^{k_n} V \subset U \subset M.$$

If $x_0 \in W$, then there exists $r > 0$ small enough such that $x_0 + rx \in W$, since W is relatively open. Thus

$$T_1^{k_1}T_2^{k_2} \ldots T_n^{k_n} (x_0 + rx) = T_1^{k_1}T_2^{k_2} \ldots T_n^{k_n} x_0 + rT_1^{k_1}T_2^{k_2} \ldots T_n^{k_n} x \in M,$$

which implies that $T_1^{k_1}T_2^{k_2} \ldots T_n^{k_n} x \in M$. Thus $T_1^{k_1}T_2^{k_2} \ldots T_n^{k_n} M \subset M$. Conversely, note that $T_1^{k_1}T_2^{k_2} \ldots T_n^{k_n} : M \to M$ is continuous and so

$$T_1^{-k_1}T_2^{-k_2} \ldots T_n^{-k_n}(U) \cap V$$

is relatively open and nonempty subset of M. This completes the proof. \hfill \Box

Lemma 2.2. Suppose that $\mathcal{T} = (T_1, T_2, \ldots, T_n)$ is an n-tuple of operators acting on a separable infinite dimensional Banach space X over \mathbf{C} and M is a nonzero subspace of X. Suppose that \mathcal{T} is subspace-transitive with respect to M. Then M contains a dense G_δ set.

Proof. Let $\{B_n : n \in \mathbb{N}\}$ be a countable open basis for the relative topology of M. In Theorem 2.1, put $U = B_i$ and $V = B_j$, then there exists $K_{i,j}^m \in \mathbb{N} \cup \{0\}$ for $m = 1, \ldots, n$ satisfying that $T_1^{-k_{i,j}^1}T_2^{-k_{i,j}^2} \ldots T_n^{-k_{i,j}^n}(B_i) \cap B_j$ is relatively open. Hence, the sets

$$G_i = \bigcup_j T_1^{-k_{i,j}^1}T_2^{-k_{i,j}^2} \ldots T_n^{-k_{i,j}^n}(B_i) \cap B_j$$

are relatively open. Also, each G_i is dense since it intersects each relatively open set in M. Hence, $\bigcap_i G_i$ is also dense and the proof is complete. \hfill \Box

Corollary 2.3. Under the hypothesis and the notations of Lemma 2.2, the set

$$\bigcap_i \bigcup\{T_1^{-k_1}T_2^{-k_2} \ldots T_n^{-k_n}(B_i) \cap M : K_1, \ldots, k_n \geq 0\}$$
is a dense subset of \(M \).

Proof. Since
\[
\bigcap_i \bigcup_j T_1^{-k_{i,j}} T_2^{-k_{i,j}} \ldots T_n^{-k_{i,j}} (B_i) \cap B_j
\]
is a subset of
\[
\bigcap_i \bigcup \{T_1^{-k_1} T_2^{-k_2} \ldots T_n^{-k_n} (B_i) \cap M : K_1, \ldots, k_n \geq 0\},
\]
it is clear.

Theorem 2.4. Suppose that \(\mathcal{T} = (T_1, T_2, \ldots, T_n) \) is an \(n \)-tuple of operators acting on a separable infinite dimensional Banach space \(X \) over \(\mathbb{C} \) and \(M \) is a nonzero subspace of \(X \). If \(\mathcal{T} \) is \(M \)-transitive, then \(\mathcal{T} \) is \(M \)-hypercyclic.

Proof. Let \(\{B_n : n \in \mathbb{N}\} \) be a countable open basis for the relative topology of \(M \). Note that
\[
x \in \bigcap_i \bigcup \{T_1^{-k_1} T_2^{-k_2} \ldots T_n^{-k_n} (B_i) \cap M : K_1, \ldots, k_n \geq 0\}
\]
if and only if for any integer \(j \geq 1 \), there exists a tuple \((k_1, k_2, \ldots, k_n) \) of integers such that \(T_1^{k_1} T_2^{k_2} \ldots T_n^{k_n} x \in B_j \). This occurs if and only if \(\text{Orb}(\mathcal{T}, x) \cap M \) is dense in \(M \) or equivalently, if \(x \in HC(\mathcal{T}, M) \). Hence
\[
HC(\mathcal{T}, M) = \bigcap_i \bigcup \{T_1^{-k_1} T_2^{-k_2} \ldots T_n^{-k_n} (B_i) \cap M : K_1, \ldots, k_n \geq 0\}.
\]
Now by Corollary 2.3, the proof is complete.

References
