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Abstract: The modified extended direct algebraic method (MEDA) is a
powerful solution method for obtaining new exact complex solutions of some
nonlinear system of partial differential equations such as classical Drinfel’d-
Sokolov-Wilson system (DSWE),(2+1)-dimensional Davey-Stewartson system
and generalized Hirota-Satsuma coupled KdV system.
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1. Introduction

Recently many new approach to obtain the exact solutions of nonlinear dif-
ferential equations have been proposed. Among these are variational iteration
method [1]-[7], tanh function method [8], [9], modified extended tanh function
method [10]-[16], sine-cosine method [17], [18], Exp-method [19], inverse scat-
tering method [20], Hirota’s bilinear method [21], the homogeneous balance
method [22], the Riccati expansion method with constant coefficients [23], [24].
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Recently, the direct algebraic method and symbolic computation have been
suggested to obtain the exact complex solutions of nonlinear partial differential
equations [25], [26].

The aim of this paper is to extend the modified extended direct algebraic
(MEDA) method to solve three different types of nonlinear systems of partial
differential equations such as the classical Drinfel’ d-Sokolov-Wilson system,
(2+1)-dimensional Davey-Stewartson system and generalized Hirota-Satsuma
coupled KdV system.

2. Modified Extended Direct Algebraic Method

Consider the following nonlinear system of partial differential equations with
independent variables x and t and dependent variables u and v,

F1(u, v, ut, vt, ux, vx, utt, vtt, uxx, vxx, ...) = 0,

F2(u, v, ut, vt, ux, vx, utt, vtt, uxx, vxx, ...) = 0.
(1)

Applying the transformation u(x, t) = u(z) and v(x, t) = v(z), where z =
i(x − ct) + γ, i2 = −1 where γ is an arbitrary constant, converts (1) into a
system of ordinary differential equations (ODEs)

Q1(u, v,−ciu′,−civ′, iu′, iv′, ...) = 0,

Q2(u, v,−ciu′,−civ′, iu′, iv′, ...) = 0,
(2)

where the prime denote the derivative with respect to the same variable z.
Using some mathematical operations, the system (2) is converted into a second
-order ordinary differential equation (ODE)

G(u,−ciu′, iu′, c2u′′,−u′′, ...) = 0. (3)

In order to seek the solutions of equation (1), we introduce the following ansatze

u(z) = a0 +

M
∑

j=1

(ajφ
j + bjφ

−j), (4)

φ′ = b+ φ2, (5)

where b is a parameter to be determined, φ = φ(z), φ′ = dφ/dz. The param-
eter M can be found by balancing the highest-order derivative term with the
nonlinear terms, see [27]. Substituting (4) into (3) with (5) with yield a system
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of algebraic equations with respect to aj, bj , b and c (where j=1,...,M) because
all the coefficients of φj have to vanish. We can then determine a0, aj , bj , b and
c equation (4) has the general solutions:

(I) If b < 0: φ = −
√
−b tanh(

√
−bz) or φ = −

√
−b coth(

√
−bz), It depends

on initial conditions.

(II) If b > 0: φ =
√
b tan(

√
bz), or φ = −

√
b cot(

√
bz), It depends on initial

conditions.

(III) If b = 0: φ = (−1)/z.

Substituting the results into (3), then we obtain the exact travelling wave
solutions of equation (1). To illustrate the procedure, three examples related to
classical Drinfel’d-Sokolov-Wilson system,(2+1)-dimensional Davey-Stewartson
system, generalized Hirota -Satsuma coupled KdV system are given in the fol-
lowing.

3. Applications

3.1. Classical Drinfel’d-Sokolov-Wilson System

Consider

ut + pvvx = 0,

vt + qvxxx + ruvx + suxv = 0,
(6)

where p, q, r and s are arbitrary constants. Recently, DSWE and the coupled
DSWE, a special case of the classical DSWE, have been studied by several
authors [25] and the references therein. Using a complex variation z defined
as z = i(x− ct) + γ, we can convert (6) into ODEs, which read

−ciu′ + ipvv′ = 0 ⇒ u′ = (p/c)vv′, (7)

−civ′ − qiv′′′ + ru(iv′) + siu′v = 0, (8)

where the prime denotes the derivative with respect to z. Integrating (7), we
obtain

u = (p/2c)v2 + c1, (9)

where c1 is an arbitrary integration constant. Substituting u into (8) yields

−cv′ − qv′′′ + [(p(r + 2s))/2c]v2v′ + rc1v
′ = 0.



160 A.R. Shehata, E.M. Kamal, H.A. Kareem

Let (p(r + 2s)/2c) = k, rc1 = h,

⇒ (h− c)v′ − qv′′′ + kv2v′ = 0. (10)

Integrating (11), we obtain

(h− c)v − qv′′ + (k/3)v3 = c2, (11)

where c2 is an arbitrary integration constant.
Balancing the order of v3 with the order of v′′ in equation (11), we find

M = 1.
So the solution of equation (11) takes the form:

v(z) = a0 + a1φ+ b1φ
−1. (12)

Inserting equation (12) into equation (11) and making use of equation (5),

− c2 + (h− c)[a0 + a1φ+ b1φ
−1]

− q[2a1bφ+ 2b1bφ
−1 + 2a1φ

3 + 2b1b
2φ−3]

+ k/3[(a30 + 6a0a1b1) + (3a20a1 + 3a21b1)φ

+ (3a20b1 + 3a1b
2
1)φ

−1 + (3a0a
2
1)φ

2

+ (3a0b
2
1)φ

−2 + (a31)φ
3 + (b31)φ

−3] = 0.

(13)

We get a system of algebraic equations, for a0, a1, b1 and b in the form:

−c2 + ha0 − ca0 + (k/3)a30 + 2ka0a1b1 = 0, (1′)

ha1 − ca1 − 2qa1b+ ka20a1 + ka21b1 = 0, (2′)

hb1 − cb1 − 2qb1b+ ka20b1 + ka1b
2
1 = 0, (3′)

ka0a
2
1 = 0, (4′)

ka0b
2
1 = 0, (5′)

−2qa1 + (k/3)a31 = 0, (6′)

−2qb1b
2 + (k/3)b31 = 0. (7′)

(14)

These equations give the following three case:

Case (I): a1 = 0. From equation (7′): b =
√

k/6qb1. From equation (3′):
c = h + ka20 −

√

2qk/3b1 (8′). From equation (1′): c = h + (k/3)a20 − (c2/a0)
⇒ substituting c into(8′) we get b1 = (2ka30 + 3c2)/(

√
6qka0) ⇒ b = (2ka30 +

3c2)/(6qa0). Let A =
√

((2ka30 + 3c2)/(ka0)), with a0 being arbitrary constant,

v(x, t) = a0 +Acot(
√
bz). (15)
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So, the travelling wave solution is given by:

u(x, t) = (p/2c)[a0 +A(cot(
√
bz))]2 + c1. (16)

Case (II): b1 = 0, from equation (6′): a1 =
√

6q/k ,
from equation (2′) : c = h− 2qb+ ka20 (∗) ,
from equation (1′): c = h+ (k/3)a20 − (c2/a0) ⇒ substituting c into (∗)
we get b = (2ka30 + 3c2)/(6qa0), with a0 being arbitrary constant,

v(x, t) = a0 +Atan(
√
bz) (17)

so, the travelling wave solution is given by

u(x, t) = (p/2c)[a0 +A(tan(
√
bz))]2 + c1. (18)

Case (III): From equation (7′): b =
√

k/6qb1, and from equation (6′): a1 =
√

6q/k. From equation (3′): h− c− 2qb+ ka20 + ka1b1 = 0, therefore equation
(1′): h− c+(k/3)a20 +2ka1b1− (c2/a0), Hence b1 = (2ka30 +3c2)/(4

√
6kqa0) ⇒

b = (2ka30 + 3c2)/(24qa0), where a0 is arbitrary constant,

v(x, t) = a0 + (A/2)[tan(
√
bz) + cot(

√
bz)], (19)

so, the travelling wave solution is given by

u(x, t) = (p/2c)[a0 + (A/2)(tan(
√
bz) + cot(

√
bz))]2 + c1. (20)

Thus, we have been obtained three solutions for the system (6).

3.2. (2+1)-Dimensional Davey-Stewartson System

The (2+1)-dimensional Davey-Stewartson System [29] reads :

iut + uxx − uyy − 2|u|2u− 2uv = 0,

vxx + vyy + 2(|u|(2))xx = 0.
(21)

Using the wave variables,

u(x, y, t) = u(z), v(x, y, t) = v(z), z = i(αx + βy − ct) + γ, (22)

where α, β, c,and γ are constants,by similar manner as above convert (21) into
the ODE :

cu′ − α2u′′ + β2u′′ − 2u3 − 2uv = 0, (23)
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−α2v′′ − β2v′′ + (u2)′′ = 0. (24)

Integrating (24) in the system and neglecting constants of integration, We have
found :

v = u2/(α2 + β2). (25)

Substituting (25) into (23) of the system we find

cu′ − (α2 − β2)u′′ − 2((α2 + β2 + 1)/((α2 + β2)))u3 = 0.

Let (α2 − β2) = c1,

((α2 + β2 + 1)/(α2 + β2)) = c2 ⇒ cu′ − c1u
′′ − 2c2u

3 = 0. (26)

Balancing the order of u3 with the order of u′′ in equation (26), we find: M=1.
So, the solution takes the form :

u(z) = a0 + a1φ+ b1φ
−1. (27)

Inserting equation (27) into equation (26) and making use of equation (5),

c[(a1b− b1) + a1φ
2 − b1bφ

−2]− c1[2a1bφ+ 2b1bφ
−1 + 2a1φ

3 + 2b1b
2φ−3]

− 2c2[(a
3
0 + 6α0a1b1) + (3a20a1 + 3a21b1)φ+ (3a20b1 + 3a1b

2
1)φ

−1

+ (3a0a
2
1)φ

2 + (3a0b
2
1)φ

−2 + (a31)φ
3 + (b31)φ

−3] = 0.

(28)

We get a system of algebraic equations, for a0, a1, b1 and b.

ca1b− cb1 − 2c2a
3
0 − 12c2a0a1b1 =0, (1′′)

−2c1a1b− 6c2a
2
0a1 − 6c2a

2
1b1 =0, (2′′)

−2c1b1b− 6c2a
2
0b1 − 6c2a1b

2
1 =0, (3′′)

ca1 − 6c2a0a
2
1 =0, (4′′)

−cb1b− 6c2a0b
2
1 =0, (5′′)

−2c1a1 − 2c2a
3
1 =0, (6′′)

−2c1b1b
2 − 2c2b(1)

(3) =0. (7′′)

(29)

We solve the obtained system of algebraic equations give the following three
cases:

Case (I): a1 = 0, then from equation (7′′): b1 =
√

c1/c2bi, from equation
(3′′): b = (−3c2a

2
0)/c1, ⇒ b1 = −3a20i

√

c2/c1, with a0 being arbitrary constant,
the travelling wave is given by :

u(x, y, t) = a0(1−
√
3(cot(Biz))), (30)
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so, the travelling wave solution is given by :

v(x, y, t) = (1/A)[a0(1−
√
3(cot(Biz)))]2, (31)

where A = α2 + β2; B = a0(
√

(3c2)/c1).

Case (II): b1 = 0, then from equation (6′′) : a1 =
√

c1/c2ı, and from
equation (2′′): b = (−3c2a

2
0)/c1. Here a0 is arbitrary constant. The travelling

wave solution is given by

u(x, y, t) = a0(1−
√
3(tan(Biz))). (32)

Therefore, the travelling wave solution is given by:

v(x, y, t) = (1/A)[a0(1−
√
3(tan(Biz)))]2. (33)

Case (III): From equation (6′′): a1 =
√

c1/c2 i, and from equation (7′′):
b1 =

√

c1/c2 bi, moreover from equation (3′′): b = (−3c2a
2
0)/(2c1). Hence

b1 = (3/2)a20i(
√

c2/c1).

Here a0 is arbitrary constant. The travelling wave solution in this case is given
by :

u(x, y, t) = a0[1 +
√

3/2 i(tan(B/
√
2z) + cot(B/

√
2z))]. (34)

So, the travelling wave solution is given by

v(x, y, t) = (1/A)[a0(1 +
√

3/2 i(tan(B/
√
2z) + cot(B/

√
2z)))]2. (35)

3.3. Generalized Hirota-Satsuma Coupled KdV System

Consider the generalized Hirota-Satsuma coupled KdV system [30],

ut = (1/4)uxxx + 3uux + 3(w − v2)x, (36)

vt = −(1/2)vxxx − 3uvx, (37)

wt = −(1/2)wxxx − 3uwx. (38)

When w = 0, (36)-(38) reduce to be the well-known Hirota-Satsuma coupled
KdV system. We seek traveling wave solutions for (36)-(38)in the form

u(x, t) = u(z), v(x, t) = v(z), w(x, t) = w(z), z = ik(x− ct) + h, (39)
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where h is an arbitrary constant.

Substituting (39) into (36)-(38) yields an

−ckiu′ = −(1/4)k3iu′′′ + 3kiuu′ + 3ki(w − v2)′, (40)

−ckiv′ = (1/2)k3iv′′′ − 3kiuv′, (41)

−ckiw′ = (1/2)k3iw′′′ − 3kiuw′. (42)

Integrating (40), and divided the above three equations by ki,we get:

−cu = −(1/4)k2u′′ + (3/2)u2 + 3(w − v2), (43)

−cv′ = (1/2)k2v′′′ − 3uv′, (44)

−cw′ = (1/2)k2w′′′ − 3uw′. (45)

From equation (44) and (45)we get:

(1/2)k2v′′′ = (3u− c)v′, (46)

(1/2)k2w′′′ = (3u− c)w′. (47)

By dividing equation (46) on (47) we get:

v′′′/w′′′ = v′/w′ ⇒ w′/w′′′ = v′/v′′′ ⇒ w′ = A0v
′. (48)

Integrating (48), we get:

w = A0v +B0. (49)

Let

u = αv2 + βv + γ, (50)

where A0, B0, α, β and γ are constants, see [31].

From equation (50), we have:

u′ = 2αvv′ + βv′ = (2αv + β)v′, u′′ = (2αv + β)v′′ + 2α(v′)2.

Multiply u′′ by k2 we obtain

k2u′′ = (2(α)v + (β))k2v′′ + 2(α)k2(v′)2. (51)

From equation (43):

k2u′′ = 6u2 + 4cu+ 12(w − v2). (52)
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Substituting (49) and (50) into (52):

k2u′′ = 6[αv2 + βv + γ]2 + 4c[αv2 + βv + γ] + 12[A0v +B0 − v2] ⇒
k2u′′ = 6[α2v4 + 2αβv3 + β2 + 2αγv2 + 2βγv + γ2]

+ 4cαv2 + 4cβv + 4cγ − 12v2 + 12A0v + 12B0,

k2u′′ = 6α2v4 + 12αβv3 + [6β2 + 12αγ + 4cα − 12]v2

+ [12βγ + 4cβ + 12A0]v + [6γ2 + 4cγ + 12B0].

(53)

Substituting u = αv2 + βv + γ into (46) we receive

1/2k2v′′′ = 3αv2v′ + 3βvv′ + (3γ − c)v′.

Multipling by 2:

k2v′′′ = 6αv2v′ + 6βvv′ + 2(3γ − c)v′. (54)

Integrating (54)m yields

k2v′′ = 2αv3 + 3βv2 + 2(3γ − c)v + c1, (55)

where c1 is an integration constant. Integrating (55) once again and multipling
by 2 we have:

k2(v′)2 = αv4 + 2βv3 + 2(3γ − c)v2 + 2c1v + c2, (56)

where c2 is an integration constant.

Substituting (53),(56)onto (51) we get:

(2αv + β)k2v′′ = 4α2v4 + 8αβv3 + (6β2 + 8cγ − 12)v2

+ (12βγ + 4cβ + 12A0 − 4αc1)v + (6γ2 + 4cγ + 12B0 − 2αc2). (57)

Let 4α2 = k0, 8αβ = k1, 6β
2+8cα−12 = k2, 12βγ+4cβ+12A0−4αc1 = k3,

6γ2+4cγ+12B0−2αc2 = k4, 2αk
2 = k5, βk

2 = k6. Then equation (57) becomes:

(k5v + k6)v
′′ = k0v

4 + k1v
3 + k2v

2 + k3v + k4. (58)

Balancing the order of v4 with the order of vv′′ in equation (58), gives M = 1.

So,the solution takes the form:

v = a0 + a1φ+ b1φ
−1. (59)
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Inserting equation (59) into equation (58) and making use of equation (5), we
get:

[k0(a
4
0 + 12a20a1b1 + 6a21b

2
1) + k1(a

3
0 + 6a0a1b1)

+ k2(a
2
0 + 2a1b1) + k3(a0) + k4 − (4k5a1b1b)]

+ [k0(4a
3
0a1 + 12a0a

2
1b1) + k1(3a

2
0a1 + 3a21b1)

+ k2(2a0a1) + k3(a1)− (2k5a0a1b+ 2k6a1b)]φ

+ [k0(4a
3
0b1 + 12a0a1b

2
1) + k1(3a

2
0b1 + 3a1b

2
1)

+ k2(2a0b1) + k3(b1)− (2k5a0b1b+ 2k6b1b)]φ
−1

+ [k0(6a
2
0a

2
1 + 4a31b1) + k1(3a0a

2
1) + k2(a

2
1)− (2k5a

2
1b+ 2k5a1b1)]φ

2

+ [k0(6a
2
0b

2
1 + 4a1b

3
1) + k1(3a0b

2
1) + k2(b

2
1)− (2k5b

2
1b+ 2k5a1b1b

2)]φ−2

+ [k0(4a0a
3
1) + k1(a

3
1)− (2k5a0a1 + 2k6a1)]φ

3

+ [k0(4a0b
3
1) + k1(b

3
1)− (2k5a0b1b

2 + 2k6b1b
2)]φ−3

+ [k0(a
4
1)− (2k5a

2
1)]φ

4 + [k0(b
4
1)− (2k5b

2
1b

2)]φ−4 = 0.

(60)

We get a system of algebraic equations, for a0, a1, b1 and b

k0a
4
0 + 12k0a

2
0a1b1 + 6k0a

2
1b

2
1 + k1a

3
0 + 6k1a0a1b1

+ k2a
2
0 + 2k2a1b1 + k3a0 − 4k5a1b1b+k4 = 0, (1′′′)

4k0a
3
0a1 + 12k0a0a

2
1b1 + 3k1a

2
0a1 + 3k1a

2
1b1 + 2k2a0a1

+ k3a1 − 2k5a0a1b− 2k6a1b = 0, (2′′′)

4k0a
3
0b1 + 12k0a0a1b

2
1 + 3k1a

2
0b1 + 3k1a1b

2
1 + 2k2a0b1

+ k3b1 − 2k5a0b1b− 2k6b1b = 0, (3′′′)

6k0a
2
0a

2
1 + 4k0a

3
1b1 + 3k1a0a

2
1 + k2a

2
1 − 2k5a

2
1b−2k5a1b1 = 0, (4′′′)

6k0a
2
0b

2
1 + 4k0a1b

3
1 +3 k1a0b

2
1 + k2b

2
1 − 2k5b

2
1b− 2k5a1b1b

2 = 0, (5′′′)

4k0a0a
3
1 + k1a

3
1 − 2k5a0a1 − 2k6a1 = 0, (6′′′)

4k0a0b
3
1 + k1b

3
1 − 2k5a0b1b

2 − 2k6b1b
2 = 0, (7′′′)

k0a
4
1 − 2k5a

2
1 = 0, (8′′′); k0b

4
1 − 2k5b

2
1b

2 = 0.(9′′′)

(61)

We solve the obtained system of algebraic equations give the following three
cases:

Case (I): a1 = 0, from equation (5′′′) : b = (6k0a
2
0 + 3k1a0 + k2)/(2k5) ;

from equation (9′′′) : b1 = (6k0a
2
0 + 3k1a0 + k2)/

√
2k0k5,

v(x, t) = a0 +A(cot(A1z)), (62)
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so, the travelling wave solution is given by:

w(x, t) = A0[a0 +A(cot(A1z))] +B0, (63)

so, the travelling wave solution is given by:

u(x, t) = α[a0 +A(cot(A1z))]
2 + β[a0 +A(cot(A1z))] + γ, (64)

where

A =
√

(6k0a20 + 3k1a0 + k2)/k0;

A1 =
√
b =

√

(6k0a
2
0 + 3k1a0 + k2)/(2k5).

Case (II): b1 = 0, from equation (8′′′): a1 =
√

(2k5)/k0. From equation
(4′′′) :b = (6k0a

2
0 + 3k1a0 + k2)/(2k5),

v(x, t) = a0 +A(tan(A1z)), (65)

so, the travelling wave solution is given by:

w(x, t) = A0[a0 +A(tan(A1z))] +B0, (66)

so, the travelling wave solution is given by:

u(x, t) = α[a0 +A(tan(A1z))]
2 + β[a0 +A(tan(A1z))] + γ. (67)

Case (III): From equation (8′′′) : a1 =
√

(2k5)/k0.
From equation (9′′′): b1 =

√

(2k5)/k0b and from equation (4′′′): b =
(−(6k0a

2
0 + 3k1a0 + k2))/(4k5). Hence

b1 = −(6k0a
2
0 + 3k1a0 + k2)/2

√

2k0k5,

v(x, t) = a0 + (Ai/
√
2)(tan((A1i/

√
2)z) + cot((A1i/

√
2)z)). (68)

So, the travelling wave solution is given by:

w(x, t) = A0[a0 + (Ai/
√
2(tan((A1i/

√
2)z) + cot((A1i/

√
2)z)) +B0. (69)

Therefore, the travelling wave solution is given by:

u(x, t) = α[a0 + (Ai/
√
2(tan((A1i/

√
2)z) + cot((A1i/

√
2)z))]2

+ β[a0 + (Ai/
√
2(tan((A1i/

√
2)z) + cot((A1i/

√
2)z))] + γ. (70)
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4. Conclusion

In this paper, the MEDA method has been successfully applied to obtain so-
lutions of some important nonlinear systems of partial differential equations
namely, the classical Drinfel’d-Sokolov-Wilson system (DSWW), the (2+1)-di-
mensional Davey-Stewartson system, and the generalized Hirota-Satsuma cou-
pled KdV system, it is also a promising method to solve other nonlinear systems.
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