POWER OF A GRAPH AND BINDING NUMBER

H.B. Walikar1, B.B. Mulla2§

1Department of Mathematics
Karnatak University
Dharwad, 580003, Karnataka State, INDIA

2Department of Mathematics
Smt. Indira Gandhi College of Engineering
Sector-16, Koparkhairane, Navi Mumbai, 400709, Maharashtra State, INDIA

Abstract: V.G. Kane (see [2]) asked to study the class of graphs satisfying $\text{bind}(G^k) \geq (\text{bind}(G))^k$. Here we determine binding number of power of various classes of graphs along with the solution for the parametric equation $\text{bind}(G^k) = (\text{bind}(G))^k$. We also show that $\text{bind}(G^2) = (\text{bind}(G))^2$ if and only if $G = H^+$, where H^+ is the graph obtained from H by adjoining a pendant edge to each vertex of H, by proving that the diophantine equation $mq^2 - np^2 = 0$ has no nontrivial integral solution. In Theorem 3.4, we prove that there exists no graph G such that $\text{bind}(G^k) = (\text{bind}(G))^k$ for $k \geq 3$ by seeking integral solution for $mq^k - np^k = 0$.

AMS Subject Classification: 05C
Key Words: binding number, power, hallian index

1. Introduction

We consider only finite simple graphs G with vertex set $V(G)$ and edge set $E(G)$. For a graph $G = (V,E)$ and a set $X \subseteq V$, we denote by $\Gamma(X)$ the set
of vertices joined to each vertex of \(X \). A set of independent edges which cover all vertices of a graph is called 1-factor of a graph. By (1,2)-factor of a graph \(G \) we mean, a set of independent edges or vertex disjoint cycles which cover all vertices of \(G \). Clearly the cycles in the definition are of odd length. A graph \(G \) is hallian, if \(|\Gamma(X)| \geq |X| \) for any set \(X \subseteq V \) or equivalently if \(G \) has a (1,2)-factor (see [1]). Thus, \(G \) is a hallian graph if its vertices can be covered by a set of vertex disjoint even paths or odd cycles. A graph \(G \) is \(k \)-hallian, if for any set \(A \) of vertices of order at most \(k \), the subgraph of \(G \) induced by the set \(V - A \) is hallian. The largest \(k \) such that \(G \) is \(k \)-hallian is called the hallian index of \(G \) and is denoted by \(h(G) \). Clearly, \(h(G) \leq \delta(G) - 1 \), where \(\delta(G) \) denotes the minimum degree among the vertices of \(G \). The graph \(G^k \) of \(G \) is a graph whose vertex set is same as that of \(G \) and two vertices \(u, v \) in \(G^k \) are adjacent if \(d(u, v) \leq k \). For concepts not defined here see ([5]). The binding number of a graph \(G \) is defined by D.R. Woodall (see [3]) as

\[
bind(G) = \min_{X \in \Sigma} \frac{|\Gamma(X)|}{|X|}
\]

where \(\Sigma \) is the set of all admissible sets of \(G \). Further an admissible set \(X \) is said to be a realizing set if \(bind(G) = \frac{|\Gamma(X)|}{|X|} \). We enlist few results from [1], [2], [3] and [4] and are as follows:

Theorem 1.1. (see [2]) If \(G = K_{n,n,\ldots,n} \) then

\[
bind(G) = \min_{i=1,2,\ldots,k} \left\{ \frac{\sum_{j=1}^{i} n_j}{\sum_{j \neq i} n_i} \right\}
\]

Theorem 1.2. (see [1]) If a graph \(G \) on \(n \) vertices has \(h(G) = \delta(G) - 1 \) and \(k(G) \geq h(G) \) then

\[
bind(G) = \frac{n-1}{n-\delta(G)}.
\]

Theorem 1.3. (see [3]) \(bind(K_n) = n - 1, \ n \geq 1 \).

Proposition 1.4. (see [2]) If \(G \) has a 1-factor then

\[
bind(G) \geq 1.
\]

Proposition 1.5. (see [2]) For any graph \(G \), \(bind(G) \leq \frac{n}{\beta_0 - 1} \), where \(\beta_0 \) denotes the vertex independence number of \(G \).

Theorem 1.6. (see [1]) For any graph \(G \), \(h(G) \leq \delta(G) - 1 \).
Lemma 1.7. (see [4]) If \(\text{bind}(G) = 1 \) then there exists a realizing set \(X \) such that \(X \cap \Gamma(X) = \phi \).

2. Results

Theorem 2.1.

\[
\text{bind}(P_n^2) = \begin{cases} \frac{n-1}{n-2} & \text{if } n \geq 5, n = 3, n \neq 2 \\ 1 & \text{if } n = 4 \end{cases}
\]

Proof. Let \(G = P_n^2 \). We consider two cases.

Case 1: If \(n \) is even, then for any vertex \(u \) of \(G \), \(G - u \) contains a triangle and \((n - 4)/2\) disjoint edges leading to hallian graph.

Case 2: If \(n \) is odd, then \(G - u \) contains a triangle and \((n - 1)/2\) disjoint edges leading to hallian graph. From above two cases, it is clear that hallian index \(h(G) \geq 1 \). Since \(\delta(G) = 2 \) and by proposition 1.6 (see [1]) we have \(h(G) = 1 \). For \(k(G) = 2 \), label the vertices of \(G \) as \(u_1, u_2, u_3, \ldots, u_{i-1}, u_i, u_{i+1}, \ldots, u_n \). Clearly removal of end vertices of \(G \) does not disconnect \(G \). Also removal of a vertex of degree 3 or 4 does not disconnect \(G \) as there exist an edge \(u_{i-1}u_{i+1} \in E(P_n^2) \) implying that \(k(G) \neq 1 \) and \(k(G) = 2 \). Thus, by Theorem 1.2 (see [1]), \(\text{bind}(P_n^2) = \frac{n-1}{n-2} \). For \(n = 4 \), the end vertices of \(P_4^2 \) form an independent set. Thus, by proposition 1.5 (see [2]), we have \(\text{bind}(P_4^2) \leq 1 \). Also \(P_4^2 \) contains 1-factor and hence by proposition 1.4 (see [2]) \(\text{bind}(P_4^2) \geq 1 \). Finally, \(\text{bind}(P_4^2) = 1 \).

Theorem 2.2.

\[
\text{bind}(C_n^2) = \begin{cases} \frac{n-1}{n-4} & \text{if } n \geq 7 \\ 2 & \text{if } n = 6 \\ 4 & \text{if } n = 5 \end{cases}
\]

Proof. For \(n = 5, C_5^2 = K_5 \) and by Theorem 1.3 (see [3]) the result follows. For \(n = 6, C_6^2 = K_{2,2,2} \) and by Theorem 1.1 (see [2]), \(\text{bind}(C_6^2) = 2 \). For \(n \geq 7 \) and let \(G = C_n^2 \), we have \(\delta(G) = 4, h(G) \leq 3 \). Further it is not difficult to show that \(h(G) \geq 3 \) since removal of any three consecutive vertices from \(G \) results into a hallian graph \(P_{n-3}^2 \). And removal of any three arbitrary vertices from \(G \) results into a graph having \((1,2)\)-factor which is hallian, therefore \(h(G) \geq 3 \) and hence \(h(G) = 3 \). Also from \(G \) one can easily see that \(k(G) \leq 4 \) and
δ(G) = 4. Further removal of any three vertices from G does not disconnect it and hence k(G) ≥ 4 implies that k(G) = 4. Thus, by Theorem 1.2 (see [1]) bind(C^2_n) = \frac{n-1}{n-4}.

3. Parametric Equation

Lemma 3.1. There is no integral solution for the equation \(mq^k - np^k = 0 \) for \(0 < n < m \) and \(0 < q < p \) where \(m, n, p \) and \(q \) are positive integers.

Proof. Suppose \(0 < n < m \) and \(0 < q < p \), then \(n + t = m \) and \(q + l = p \) for some integers \(t \geq 1 \), \(l \geq 1 \), and the equation \(mq^k - np^k = 0 \) reduces to \(m(p - 1)^k = p^k(m - t) \). Now applying binomial theorem we notice that

\[
m \left\{ p^k - kC_1 l + kC_2 p^{k-2} l^2 - \ldots + (-1)^{k-1} kpl^{k-1} + (-1)^{k} l^k \right\} = p^k m - p^k t \quad (1)
\]

\[
\Rightarrow tp^k - mkC_1 p^{k-1} l + mkC_2 p^{k-2} l^2 - \ldots + m(-1)^{k-1} kpl^{k-1} + m(-1)^k l^k = 0 \quad (2)
\]

On dividing (2) by \(l^k \), we obtain

\[
t(p/l)^k - mkC_1 (p/l)^{k-1} + mkC_2 (p/l)^{k-2} - \ldots + m(-1)^{k-1} k (p/l) + m(-1)^k = 0. \quad (3)
\]

Also on dividing (2) by \(p^k \), we obtain

\[
m(-1)^k (l/p)^k + m(-1)^{k-1} k (l/p)^{k-1} + \ldots - mk (l/p) + t = 0 \quad (4)
\]

\[
\Rightarrow (l/p)^k \left\{ m(-1)^k + m(-1)^{k-1} k (p/l) + \ldots + mkC_2 (p/l)^{k-2} - mC_1 (p/l)^{k-1} + t (p/l)^k \right\} = 0. \quad (5)
\]

Comparing the coefficient of \((p/l)^k\) in equation (3) and (5), we observe that \(t = (l/p)^k \times t \) that gives \(l = p \). Since \(q + l = p \), we get \(q = 0 \), a contradiction to the fact that \(q > 0 \). Similarly, we can prove that \(n = 0 \). □
Corollary 3.1.1. The only integral solution to the equation $mq^k - np^k = 0$ is $m = n = 1, p = q = 1$.

Theorem 3.2. $\text{bind}(G^2) = (\text{bind}(G))^2$ if and only if $G = H^+$ for some connected graph H.

Before proving Theorem 3.2, we prove following Lemma.

Lemma 3.3. If $\text{bind}(G^2) = (\text{bind}(G))^2$ then $\text{bind}(G) = 1$.

Proof. Case 1: Let $\text{bind}(G) < 1$, Suppose $\text{bind}(G) = \frac{m}{n}$ with $m < n$. Then G is a spanning subgraph of G^2 and hence $\text{bind}(G) \leq (\text{bind}(G))^2$. But $\text{bind}(G^2) = (\text{bind}(G))^2 = m^2/n^2 < m/n = \text{bind}(G)$, a contradiction.

Case 2: Let $\text{bind}(G) > 1$. Let X and Y be the realizing sets of G^2 and G respectively. Observe that $\frac{|\Gamma_{G^2}(X)|}{|X|} = \frac{|\Gamma_G(Y)|}{|Y|}$ with $|\Gamma_{G^2}(X)| > |X|$ and $|\Gamma_G(Y)| > |Y|$ so that $\text{bind}(G^2) > 1$ and by Lemma 3.1, $mq^k - np^k = 0$ for $0 < n < m$ and $0 < q < p$ has no integral solution at $k=2$. Thus, $\text{bind}(G) = 1$ holds.

4. Proof of Theorem 3.2

Proof. We prove this theorem in various steps as claims.

Step 1: Every realizing set in G is a realizing set in G^2. By Lemma 1.7 (see [4]) there exists a realizing set in G^2 such that $X \cap \Gamma_{G^2}(X) = \emptyset$ and $|\Gamma_{G^2}(X)| = |X|$. But $\Gamma_G(X) \subseteq \Gamma_{G^2}(X)$ always holds and $X \cap \Gamma_G(X) \subseteq X \cap \Gamma_{G^2}(X) = \emptyset$ which forces us to conclude that $X \cap \Gamma_{G^2}(X) \neq \emptyset$. Clearly, $|\Gamma_G(X)| \leq |\Gamma_G| = |X|$ holds. If $|\Gamma_G X < |X|$ then, $\text{bind}(G) \leq \frac{|\Gamma_G(X)|}{|X|} < 1$, a contradiction to the fact that $\text{bind}(G) = 1$. Therefore, $|\Gamma_G(X)| = |X|$ holds and hence $1 = \text{bind}(G) \leq \frac{|\Gamma_G(X)|}{|X|} = 1$ implies $\text{bind}(G) = \frac{|\Gamma_G(X)|}{|X|}$ that proves that X is a realizing set in G. Further, X is an independent set as $X \cap \Gamma_G(X) = \emptyset$.

Step 2: $d_G(u, v) \geq 3$ for every $u, v \in X$. Assume that $d_G(u, v) \leq 2$ for some $u, v \in X$. Moreover $d_G(u, v) \neq 1$ and by step 1, X is an independent set and hence $d_G(u, v) = 2$. But in G^2 the vertices u and v are adjacent giving $u, v \in \Gamma_{G^2}(X)$ and thereby $X \cap \Gamma_{G^2}(X) = \emptyset$, a contradiction.
Step 3: $X \cup \Gamma_G(X) = V(G)$. If $u \in V(G)$, $v \notin X \cup \Gamma_G(X)$ and a shortest path $\rho: u = u_1, u_2, u_3, \ldots, u_{t-1}, u_t = v$ for some vertex $v \in X$, then $u_{t-1} \in \Gamma_G(X)$ and u_{t-2} must lie in $V(G) - (X \cup \Gamma_G(X))$. If $u_{t-2} \notin V(G) - (X \cup \Gamma_G(X))$ then $u_{t-2} \in X$ or $u_{t-2} \in \Gamma_G(X)$. If $u_{t-2} \in X$ then v and u_{t-2} belong to X and they are adjacent in G^2. Hence they are in $X \cap \Gamma_G(X)$, a contradiction.

Step 4: $deg_G u = 1$ for all $u \in X$. Assume that $deg_G u \geq 2$ for some vertex $u \in X$, then there exists two vertices v and w in $\Gamma_G(X)$ such that uv and vw is an edge in G. Also, there exists at least one more vertex say w' in X such that v is adjacent to w' or w is adjacent to w'. Since there exists one-to-one correspondence between the vertices of X and those of $\Gamma_G(X)$, we take without loss of generality a vertex w adjacent to w'. Consequently, $d(u, w) = 2$, a contradiction to claim 2. From all the claims 1 to 4, we conclude that $G = H^+$ where $H = \langle \Gamma_G(X) \rangle$ an induced subgraph induced by $\Gamma_G(X)$. Conversely, suppose $G = H^+$ for some connected graph H. Label the vertices of H as $v_1, v_2, \ldots, v_{p/2}$ and end vertices of G as $u_1, u_2, \ldots, u_{p/2}$ so that G is a graph of order p such that $u_i v_i$ is an edge on G for $i = 1, 2, \ldots, p/2$. Clearly, G has 1-factor so that $bind(G) \geq 1$. By taking $X = \{u_1, u_2, \ldots, u_{p/2}\}$, we have $\Gamma_G(X) = \{v_1, v_2, \ldots, v_{p/2}\}$ and hence $bind(G) \leq \frac{|\Gamma_G(X)|}{|X|} = 1$ which leads to $bind(G) = 1$. Also $1 = bind(G) \leq bind(G^2)$. From graph G^2 we have $\Gamma_G(X) = \{v_1, v_2, \ldots, v_{p/2}\}$ and $bind(G^2) \leq \frac{|\Gamma_G^2(X)|}{|X|} = 1$. Thus $bind(G^2) = (bind(G))^2$ holds.

Theorem 4.1. There does not exists a graph G such that $bind(G^k) = (bind(G))^k$ for $k \geq 3$.

The proof follows from following Lemma

Lemma 4.2. If $bind(G) = 1$ then, $bind(G^k) > 1$ for $k \geq 3$.

Proof. Assume that $bind(G^k) \leq 1$, then following cases arise.

Case 1: If $bind(G^k) < 1$, then, $1 = bind(G) \leq bind(G^k) < 1$, a contradiction.

Case 2: Let $bind(G^k) = 1$ then, there exists a realizing set X in G^k such that $X \cap \Gamma_{G^k}(X) = \phi$ with $|X| = |\Gamma_{G^k}(X)|$. But $\Gamma_G(X) \subseteq \Gamma_{G^2}(X) \subseteq \ldots \subseteq \Gamma_{G^k}(X)$. And $|\Gamma_G(X)| = |X|$, $|\Gamma_{G^2}(X)| = |X|$, $|\Gamma_{G^3}(X)| = |X|$, \ldots, $|\Gamma_{G^{k-1}}(X)| = |X|$ holds. Otherwise $bind(G) \leq \frac{|\Gamma_G(X)|}{|X|} < 1$, a contradiction. Further $X \cap \Gamma_{G^i}(X) = \phi$ for $i = 1, 2, 3, \ldots, k$. For the claim $X \cup \Gamma_G(X) = V(G)$, assume there exist $u \in V(G)$
and \(u \notin X \cup \Gamma_G(X) \) and a shortest path \(\rho : u = u_1, u_2, u_3, \ldots, u_{t-2}, u_{t-1}, u_t = v \) for some vertex \(v \in X \), then \(u_{t-1} \in \Gamma_G(X) \) and \(u_{t-2} \) must lie in \(V(G) - (X \cup \Gamma_G(X)) \). If \(u_{t-2} \notin V(G) - (X \cup \Gamma_G(X)) \) then \(u_{t-2} \in X \) or \(u_{t-2} \in \Gamma_G(X) \). If \(u_{t-2} \in X \) then \(v \) and \(u_{t-2} \) belong to \(X \) and they are adjacent in \(G^2 \). Hence they are in \(X \cap \Gamma_G^2(X) \), a contradiction. On the other hand if \(u_{t-2} \in \Gamma_G(X) \) then there exist a vertex \(w \in X \) (\(w \) may not be distinct from \(v \)) such that \(u_{t-2} \) is an edge in \(G \), then the path \(\rho' : u = u_1, u_2, u_3, \ldots, u_{l-2}, u_{l-1}, u_l = v \) is shorter than \(\rho \), a contradiction. Thus \(X \cup \Gamma_G(X) = V(G) \) holds. Lastly we prove that \(\Gamma_G^k(X) = V(G) \) for \(k \geq 3 \) which shows that \(X \) is not a realizing set, a contradiction to the assumption that it is a realizing set. We claim that for every vertex \(u \in X \) there exist a vertex \(v \in X \) such that \(d_G(u, v) = 3 \). Clearly \(d_G(u, v) > 2 \) for every \(u, v \in X \), since \(X \cap \Gamma_G^i(X) = \emptyset \) for \(i = 1, 2 \). Let \(u \in X \) and \(v \) is any other vertex from \(G^k \neq K_p \) \((k \geq 3) \) in \(X \) such that \(d_G(u, v) = l \geq 4 \). Further \(u = u_1, u_2, u_3, \ldots, u_{l-2}, u_{l-1}, u_l = v \) be path in \(G \). Hence by above finding the vertices \(u_2, u_3, \ldots, u_{l-2}, u_{l-1} \) are either in \(X \) or \(\Gamma_G(X) \), since \(X \cup \Gamma_G(X) = V(G) \). But \(u = u_1 \in X \) so \(u_2 \in \Gamma_G(X) \), \(u_3 \in \Gamma_G(X) \). Moreover \(X \cap \Gamma_G^i(X) = \emptyset \) for \(i = 1, 2 \) therefore there exist a vertex \(w \in X \) such that \(u_3w \) is an edge in \(G \). In fact vertex \(w \) plays the role of \(v \) in \(G \) and thus every pair of vertices in \(X \) are adjacent in \(G^k, k \geq 3 \).

References

