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Abstract: The necessary optimality conditions for the unconstrained ker-
nelled quasidifferentiable optimization is given. The problem of minimizing a
kernelled quasidifferentiable function on a set described by equality-type qua-
sidifferentiable constraints is considered and the first-order necessary optimality
condition for a minimum is derived under regularity condition.
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1. Introduction

Quasidifferential calculus, developed by Demyanov and Rubinov [1], is of con-
siderable importance in nonsmooth analysis and optimization. Necessary op-
timality conditions, in the multiplier form, of unconstrained and constrained
quasidifferentiable optimization have being studied since the early of 1980’s.
The necessary optimality conditions in geometric form for quasidifferentiable
optimization were proposed by Polyakova [6] and Shapiro [7]. The versions of

Received: March 4, 2015 c© 2015 Academic Publications, Ltd.
url: www.acadpubl.eu

§Correspondence author



124 S.-D. Lin, W. Xia, Z.-Q. Xia

the Lagrange multiplier type in the inequality constrained case were developed
by Eppler [3] and Luderer [5]. For the equality and inequality constrained case,
optimality conditions with Lagrange multipliers were studied by Gao [4].

It is well known that the quasidifferential is not uniquely defined. Xia [8]
introduced the notion of the kernelled quasidifferential, which can be taken as
a representative of the equivalent class of quasidifferentials. The purpose of
this paper is to explore necessary optimality conditions for unconstrained and
constrained kernelled quasidifferentiable optimization. The rest of the paper
is organized as follows. In Section 2, some preliminary definitions and results
used in the paper are provided. In Section 3, the first-order necessary opti-
mality conditions for unconstrained kernelled quasidifferentiable optimization
is proposed, the problem of minimizing a kernelled quasidifferentiable function
on a set described by equality-type quasidifferentiable constraints is considered
and the first-order necessary optimality condition for a minimum is derived
under regularity condition.

2. Preliminaries

A function f defined on an open set O ⊂ Rn is called quasidifferentiable at a
point x ∈ O, in the sense of Demyanov and Rubinov [1], if it is directionally
differentiable at x and there exist two nonempty convex compact sets ∂ f(x)
and ∂ f(x) such that the directional derivative can be represented as

f ′(x; d) = max
u∈ ∂f(x)

〈u, d〉+ min
v∈∂f(x)

〈v, d〉, ∀d ∈ Rn.

where 〈·, ·〉 denotes the usual inner product in Rn. The pair of sets Df(x) =
[ ∂ f(x), ∂ f(x)] is called a quasidifferential of f at x, ∂ f(x) and ∂ f(x) are
called a subdifferential and a superdifferential, respectively. Denote by Df(x)
the set of quasidifferentials of f at x, then Df(x) ∈ Df(x).

A set K ⊂ Rn is called a cone if λx ∈ K when x ∈ K and λ > 0. The set

K∗ = {w ∈ Rn | 〈w, v〉 ≥ 0,∀v ∈ K}

is called the cone conjugate to K. If K is a convex cone, the set

K◦ = {w ∈ Rn | 〈w, v〉 ≤ 0,∀v ∈ K}

is called the polar of K.
Let Ω ⊂ Rn and x ∈ cl Ω, where ‘cl’ refers to the closure. The set

γ(x,Ω) = {d ∈ Rn | ∃αd > 0 such that x+ αd ∈ Ω,∀α ∈ (0, αd]}



NECESSARY CONDITIONS FOR A CLASS OF... 125

is called the cone of admissible directions with respect to Ω at x.
Let Yn be the set of all nonempty convex compact sets in Rn. Denote

A ± B = {a ± b | a ∈ A, b ∈ B} and λA = {λa | a ∈ A}, where A,B ∈ Yn and
λ ≥ 0.

Definition 2.1. Suppose that the function f is defined on an open set

O ⊂ Rn and quasidifferentiable at a point x ∈ O, and let

S =
⋂

Df(x)∈Df(x)

( ∂ f(x) + ∂ f(x)), S =
⋂

Df(x)∈Df(x)

( ∂ f(x)− ∂ f(x)).

The sets S and S are called kernel and super-kernel, respectively. [S, S] is called
a quasi-kernel of Df(x).

Let ∆n(x) denote the set of all functions defined on an open set O ⊂ Rn

and quasidifferentiable at a point x ∈ O.

Definition 2.2. Let f ∈ ∆n(x). The quasi-kernel of Df(x) is said to be

an kernelled quasidifferential of f at x if and only if

[S, S] ∈ Df(x),

and the quasi-kernel [S, S] is a quasidifferential, denoted by

Dkf(x) = [∂ kf(x), ∂kf(x)].

If f has an kernelled quasidifferential at x ∈ Rn, then f is said to be an kernelled

quasidifferentiable function at x.

3. Necessary Optimality Conditions

In this section, first-order necessary optimality conditions for the unconstrained
and constrained kernelled quasidifferentiable optimization are presented.

Theorem 3.1. Let a function f be kernelled quasidifferentiable on Rn, then

for x∗ ∈ Rn to be a local minimizer of the function f on Rn it is necessary that

0 ∈ ∂ kf(x
∗). If x∗ is a strict local minimizer of f on Rn, then 0 ∈ int ∂ kf(x

∗).

Proof. Since f is kernelled quasidifferentiable on Rn, then Dkf(x
∗) exists.

If x∗ is a local minimizer of the function f on Rn, then by Theorem 3.1 in
Chapter V of [2], one has that −∂ kf(x

∗) ⊂ ∂ kf(x
∗). By the Definition 2.1,

it is easy to check that 0 ∈ ∂ kf(x
∗), then 0 ∈ ∂ kf(x

∗). If x∗ is a strict local
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minimizer of f on Rn, then, according to Theorem 3.1 in Chapter V of [2],
−∂ kf(x

∗) ⊂ int ∂ kf(x
∗), hence 0 ∈ int ∂ kf(x

∗). �

Theorem 3.2. Let a function f be kernelled quasidifferentiable on Rn and

K be a convex cone in Rn. If min
d∈K

f ′(x; d) = 0 then 0 ∈ ∂ kf(x) +K◦.

Proof. Since f is kernelled quasidifferentiable on Rn, then by Theorem 16.3
in [1], one has that min

d∈K
f ′(x; d) = 0 if and only if −∂ kf(x) ⊂ ∂ kf(x)−K∗. It

follows immediately from the definitions of K∗ and K◦ that −K∗ = K◦, and
by the Definition 2.1, it is easy to check that 0 ∈ ∂ kf(x). Then if −∂ kf(x) ⊂
∂ kf(x)−K∗, one has that 0 ∈ ∂ kf(x) +K◦. �

Theorem 3.3. Let f be a kernelled quasidifferentiable function on Rn.

For f to attain its local minimum on a set Ω ⊂ Rn at the point x∗ ∈ int Ω it is

necessary that 0 ∈ ∂ kf(x
∗).

Proof. If f attains its local minimum on Ω ⊂ Rn at x∗, then by The-
orem 16.1 in [1] min

d∈γ(x∗,Ω)
f ′(x∗; d) = 0. It follows from Theorem 3.2 that

0 ∈ ∂ kf(x
∗) + γ◦(x∗,Ω). Since x∗ ∈ intΩ, the cone γ(x∗,Ω) = Rn, and

therefore γ◦(x∗,Ω) = {0}. Hence 0 ∈ ∂ kf(x
∗). �

A set Ω ⊂ Rn is called quasidifferentiable if it can be represented in the
form

Ω = {x ∈ Rn |h(x) ≤ 0},

where h is quasidifferentiable on Rn. Take x ∈ Rn and consider the cones

γ1(x) = {g ∈ Rn |h′(x; g) < 0}, Γ1(x) = {g ∈ Rn |h′(x; g) ≤ 0}.

Let h(x) = 0. We say that the regularity condition is satisfied at the point x if
cl γ1(x) = Γ1(x).

Theorem 3.4. Let f be a kernelled quasidifferentiable function on Rn and

h be a quasidifferentiable function on Rn. Let the point x∗ ∈ Ω and h(x∗) = 0.
Assume also that the regularity condition holds at x∗. For f to attain its local

minimum on Ω at x∗ it is necessary that

0 ∈
⋂

v∈ ∂ h(x∗)

(∂ kf(x
∗) + cl cone(∂ h(x∗) + v)),

where ‘cone’ denotes the convex conical hull.

Proof. Since f is kernelled quasidifferentiable on Rn and x∗ ∈ Ω ⊂ Rn,
Dkf(x

∗) exists. Note that the regularity condition holds at x∗ and h(x∗) = 0,
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then, according to Corollary 3.1 in Chapter V of [2],

−∂ kf(x
∗) ⊂

⋂

v∈ ∂ h(x∗)

(∂ kf(x
∗) + cl cone(∂ h(x∗) + v)).

Since 0 ∈ ∂ kf(x
∗), then

0 ∈
⋂

v∈ ∂ h(x∗)

(∂ kf(x
∗) + cl cone(∂ h(x∗) + v)). �
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