International Journal of Pure and Applied Mathematics Volume 102 No. 2 2015, 349-356 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v102i2.12

WO-CONTINUITY AND WK-CONTINUITY ON ASSOCIATED w-spaces

Young Key Kim¹, Won Keun Min²
¹Department of Mathematics MyongJi University
Youngin, 449-728, KOREA
²Department of Mathematics Kangwon National University
Chuncheon, 200-701, KOREA

Abstract: We introduce the concepts of WO-continuity and WK-continuity on associated w-spaces. We investigate some properties and relationships between WO-continuity, WK-continuity, W-continuity, W-continuity and continuity on associated w-spaces.

AMS Subject Classification: 54A10, 54A20, 54D10, 54D30 **Key Words:** weak neighborhood systems, weak structures, associated *w*-spaces, *WO*-continuous, *WK*-continuous

1. Introduction

In [16], Siwiec introduced the notions of weak neighborhoods and weak base in a topological space. The author introduced the weak neighborhood systems defined by using the notion of weak neighborhoods in [13]. The weak neighborhood system induces a weak neighborhood space (briefly WNS) which is independent of neighborhood spaces [4] and general topological spaces [2]. In [13], the author introduced the notion of new interior operator and closure operator on a WNS. We also introduced the notion of weak structure which is

Received: April 21, 2015

© 2015 Academic Publications, Ltd. url: www.acadpubl.eu

§Correspondence author

defined by the properties of new interior operator and closure operator in a WNS. The set of all g-open subsets [5] of a topological space is a kind of weak structure.

In this paper, we introduce the concepts of WO-continuity and WK-continuity on associated w-spaces. In particular, we investigate some properties and relationships between WO-continuity, WK-continuity, W-continuity, W-continu

2. Preliminaries

Let X be a topological space and $S \subseteq X$. The closure (resp. interior) of S will be denoted by clS (resp. intS). A subset S of X is called a *preopen* set [11] (resp. α -set [15], semi-open [6]) if $S \subseteq int(cl(S))$ (resp. $S \subseteq int(cl(int(S))), S \subseteq cl(int(S)))$. The complement of a preopen set (resp. α -set, semi-open) is called a *preclosed* set (resp. α -closed set, semi-closed). The family of all preopen sets (resp. α -sets, semi-open sets) in X will be denoted by PO(X) (resp. $\alpha(X), SO(X)$). We know the family $\alpha(X)$ is a topology finer than the given topology on X.

A subset A of a topological space (X, τ) is said to be:

(a) g-closed [5] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X;

(b) *gp*-closed [7] if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X;

(c) gs-closed [3] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X;

(d) $g\alpha$ -closed [9] if $\tau^{\alpha}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X where $\tau^{\alpha} = \alpha(X)$;

(e) $g\alpha$ -closed [8] if $\tau^{\alpha}Cl(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is α -open in X;

(f) $g\alpha$ -closed [8] if $\tau^{\alpha}Cl(A) \subseteq Int(Cl(U))$ whenever $A \subseteq U$ and U is α -open in X;

(g) αg -closed [9] if $\tau^{\alpha} Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X;

(h) α g-closed [9] if $\tau^{\alpha}Cl(A) \subseteq Int(Cl(U))$ whenever $A \subseteq U$ and U is open in X;

(i) g-open (resp. gp-open, gs-open, $g\alpha$ -open, $g\alpha$ -open, αg -open, αg -open, αg -open) if the complement A is g-closed (resp. gp-closed, gs-closed, $g\alpha$ -closed, $g\alpha$ -closed, αg -closed, αg -closed, αg -closed).

(j) The family of all g-open (resp. gp-open, gs-open, $g\alpha$ -open, $g\alpha$ -open, $g\alpha$ -open, αg -open, αg -open) sets in X will be denoted by gO(X) (resp. $gpO(X), gsO(X), g\alpha O(X), g\alpha O(X), g\alpha O(X), \alpha gO(X), \alpha gO(X)$.

Definition 2.1 ([14]). Let X be a nonempty set. A subfamily w_X of the power set P(X) is called a *weak structure* on X if it satisfies the following:

(1) $\emptyset \in w_X$ and $X \in w_X$.

(2) For $U_1, U_2 \in w_X, U_1 \cap U_2 \in w_X$.

Then the pair (X, w_X) is called a *w*-space on X. Then $V \in w_X$ is called a *w*-open set and the complement of a *w*-open set is a *w*-closed set.

Definition 2.2 ([14]). Let (X, w_X) be a *w*-space. For a subset *A* of *X*, the *w*-closure of *A* and the *w*-interior of *A* are defined as the following:

(1) $wCl(A) = \cap \{F : A \subseteq F, X - F \in w_X\}.$

(2) $wInt(A) = \bigcup \{ U : U \subseteq A, U \in w_X \}.$

Theorem 2.3 ([14]). Let (X, w_X) be a w-space and $A \subseteq X$. (1) If A is w-open, then wInt(A) = A. (2) If A is w-closed, then wCl(A) = A.

A collection **H** of subsets of X is called an *m*-family [12] on X if \cap **H** $\neq \emptyset$. Let $f : X \to Y$ be a function; then it is obvious $f(\mathbf{H}) = \{f(F) : F \in \mathbf{H}\}$ is an *m*-family on Y.

3. WO-Continuity; WK-Continuity

Definition 3.1. Let X be a nonempty set and let (X, τ) be a topological space. A subfamily w_{τ} of the power set P(X) is called an associated *weak* structure on X if $\tau \subseteq w_{\tau}$. Then the pair (X, w_{τ}) is called an associated *w-space* with τ .

The collection of all w-open sets [14] (resp. w-closed sets) in a w-space X will be denoted by WO(X) (resp. WC(X)). We set $W(x) = \{U \in WO(X) : x \in U\}$. The collection of all open sets (resp. closed sets) in a topological space X will be denoted by O(X) (resp. C(X)). We set $O(x) = \{U \in O(X) : x \in U\}$.

Remark 3.2. Let X be a nonempty set and let (X, τ) be a topological space. The family $gO(X), g\alpha O(X), g\alpha O(X), g\alpha O(X), \alpha gO(X)$ and $\alpha gO(X)$ all associated weak structures on a topological space X.

Definition 3.3. Let $f : (X, w_{\tau}) \to (Y, \mu)$ be a function on an associated w-space with τ and a topological space (Y, μ) . Then f is said to be

(1) WO-continuous if for $x \in X$ and $V \in O(f(x))$, there is $U \in W(x)$ such that $f(U) \subseteq V$,

(2) WK-continuous if for every open set V in Y, $f^{-1}(V)$ is a w-open set in X.

Theorem 3.4. Let $f : (X, w_{\tau}) \to (Y, \mu)$ be a function on an associated w-space with τ and a topological space (Y, μ) . Then the following statements are equivalent:

(1) f is WO-continuous. (2) $f(wCl(A)) \subseteq cl(f(A))$ for $A \subseteq X$. (3) $wCl(f^{-1}(V)) \subseteq f^{-1}(cl(V))$ for $V \subseteq Y$. (4) $f^{-1}(int(V)) \subseteq wInt(f^{-1}(V))$ for $V \subseteq Y$

Proof. (1) \Rightarrow (2) Let $x \in wCl(A)$. If f(x) is not in cl(f(A)), then there exists $V \in O(f(x))$ such that $V \cap f(A) = \emptyset$. By WO-continuity, there is $U \in O(x)$ such that $f(U) \subseteq V$ and so $f(U) \cap f(A) = \emptyset$. Hence $U \cap A = \emptyset$ and it is a contradiction.

 $(2) \Rightarrow (3)$ Let $A = f^{-1}(B)$ for $B \subseteq Y$; then by (2), $f(wCl(A)) \subseteq cl(f(A)) = cl(f(f^{-1}(B))) \subseteq cl(B)$. Thus $wCl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

 $(3) \Rightarrow (4)$ By Theorem 2.3, it is obvious.

(4) \Rightarrow (1) Let $V \in O(f(x))$ for $x \in X$. Then $f(x) \in int(V)$ and by (4), $x \in f^{-1}(int(V)) \subseteq wInt(f^{-1}(V))$. There exists $U \in O(x)$ such that $x \in U \subseteq wInt(f^{-1}(V))$.

Corollary 3.5. Let $f : (X, w_{\tau}) \to (Y, \mu)$ be a function on an associated w-space with τ and a topological space (Y, μ) . Then the following statements are equivalent:

(1) f is WO-continuous.

(2) $f^{-1}(V) = wInt(f^{-1}(V))$ for every open set $V \in Y$. (3) $f^{-1}(B) = wCl(f^{-1}(B))$ for every closed set $B \subseteq Y$.

Proof. From Theorem 2.3, it is obvious.

Remark 3.6. Let $f : (X, w_{\tau}) \to (Y, \mu)$ be a function on an associated w-space and a topological space (Y, μ) . If w_{τ} is gO(X) (resp. $g\alpha O(X)$, $g\alpha O(X)$), then f is gO(X) (resp. $g\alpha O(X)$, $g\alpha O(X)$, $g\alpha O(X)$) continuous.

Theorem 3.7. Let $f: (X, w_{\tau}) \to (Y, \mu)$ be a function on an associated w-space and a topological space (Y, μ) . Then f is WK-continuous if and only if for every closed set F in Y, $f^{-1}(F)$ is w-closed in X.

Proof. It is obvious.

Every WK-continuous function is a WO-continuous function. But the converse may not be true as shown the following.

Example 3.8. For $X = Y = \{a, b, c\}$ let $\tau = \{\emptyset, \{b\}, X\}$ and $\mu = \{\emptyset, \{a, b\}, Y\}$. Consider an associated w-space $w_{\tau} = \{\emptyset, \{a\}, \{b\}, X\}$ with the topological space (X, τ) . Let $f : (X, w_{\tau}) \to (Y, \mu)$ be a function defined by f(x) = x, for $x \in X$. Then f is WO-continuous, but not WK-continuous.

Remark 3.9. Let $f: (X, w_X) \to (Y, w_Y)$ be two *w*-spaces. Then *f* is said to be

(1) *W*-continuous [14] if for $x \in X$ and $V \in W(f(x))$, there is $U \in W(x)$ such that $f(U) \subset V$,

(2) W -continuous [14] if for every $A \in W(f(x)), f^{-1}(A)$ is in W(x).

Let $f: (X, w_{\tau}) \to (Y, w_{\mu})$ be a function on two associated *w*-spaces with topological spaces (X, τ) and (Y, μ) , respectively. Then we get the following implications but the converses may not be true:

continuity
$$\Rightarrow$$
 WK-continuity \Rightarrow WO-continuity
 \uparrow \uparrow
W -continuity \Rightarrow W-continuity

Example 3.10. For $X = \{a, b, c\}$ let $\tau = \{\emptyset, \{b\}, X\}$. Consider an associated w-space $w_{\tau} = \{\emptyset, \{a\}, \{b\}, X\}$ with the topological space (X, τ) .

Let $f: (X, w_{\tau}) \to (X, w_{\tau})$ be a function defined by f(a) = c, f(b) = b and f(c) = a. Then f is both *WK*-continuous and *WO*-continuous, but neither *W*-continuous nor *W*-continuous.

Let (X, w_X) be a *w*-space and **H** an *m*-family on *X*. Then we say that an *m*-family **H** *w*-converges [14] to $x \in X$ if **H** is finer than W(x) i.e., $W(x) \subseteq \mathbf{H}$. If **F** is a filter base, we denote by $\langle \mathbf{F} \rangle$ the filter generated by **H**.

Theorem 3.11. Let $f : (X, w_{\tau}) \to (Y, \mu)$ be a function on an associated w-space and a topological space (Y, μ) . Then if f is WO-continuous, then for an m-family **H** w-converging to $x \in X$, a filter $\langle f(\mathbf{H}) \rangle$ converges to f(x).

Proof. Suppose f is WO-continuous and \mathbf{H} is an m-family w-converging to $x \in X$. By WO-continuity, for $V \in O(f(x))$, there exists $U \in W(x)$ such that $f(U) \subseteq V$. Since $f(W(x)) \subseteq f(\mathbf{H}), V \in \langle f(\mathbf{H}) \rangle$ i.e., $O(f(x)) \subseteq \langle f(\mathbf{H}) \rangle$. Hence the filter $\langle f(\mathbf{H}) \rangle$ converges to f(x).

From the relationship between WO-continuity and WK-continuity, we get the following.

Corollary 3.12. Let $f: (X, w_{\tau}) \to (Y, \mu)$ be a function on an associated w-space and a topological space (Y, μ) . Then if f is WK-continuous, then for an m-family \mathbf{H} w-converging to $x \in X$, a filter $\langle f(\mathbf{H}) \rangle$ converges to f(x).

Theorem 3.13. Let $f : (X, w_{\tau}) \to (Y, w_{\mu})$ be a bijective function on two associated w-spaces with topological spaces (X, τ) and (Y, μ) , respectively. If $\mu = w_{\mu}$, then f is WK-continuous iff for an m-family **H** w-converging to $x \in X$, $f(\mathbf{H})$ w-converges to f(x).

Proof. Since $\mu = w_{\mu}$, every WK-continuous function is W -continuous. Hence from Theorem 4.7 in [14], we get the result.

Let (X, w_X) be a *w*-space and $Y \subseteq X$. $w \mid Y = \{V \subseteq X : V = U \cap Y \text{ for some } U \in W(x)\}$ is called a weak structure relative [14] to Y. $(Y, w \mid Y)$ is called subspace of the *w*-space X.

A w-space (X, w_X) is called W-compact [14] if every cover of X by w-open sets has finite subcover. A subset A of a w-space (X, w_X) is called W-compact [14] relative to A if every collection $\{U_i : i \in J\}$ of w-open subsets of X such that $A \subseteq \bigcup \{U_i : i \in J\}$, there exists a finite subset J_0 of J such that $A \subseteq \bigcup \{U_i : i \in J_0\}$. A subset A of a w-space (X, w_X) is said to be W-compact if A is W-compact as a subspace of X.

Theorem 3.14. Let (X, w_{τ}) be an associated w-space and (Y, μ) a topological space. If $f : (X, w_{\tau}) \to (Y, \mu)$ is WK-continuous and A is a W-compact subset of X, then f(A) is compact in Y.

Proof. Let $\{U_i : i \in J\}$ be a cover of f(A) by open subsets of Y. Then $A \subseteq \cup \{f^{-1}(U_i) : i \in J\}$, where $\{f^{-1}(U_i) : i \in J\}$ is a cover of A by w-open subsets of X. Since A is W-compact, there exists a finite subset J_0 of J such that $A \subseteq \cup \{f^{-1}(U_i) : i \in J_0\}$. Hence $f(A) \subseteq \cup \{U_i : i \in J_0\}$.

Corollary 3.15. Let $f : (X, w_{\tau}) \to (Y, w_{\mu})$ be a function on two associated w-spaces with topological spaces (X, τ) and (Y, μ) , respectively. If f is WK -continuous and A is a W-compact subset of X, then f(A) is compact in Y.

Proof. From Remark 3.9, it is obvious.

References

- K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, *Mem. Fac. Sci. Kochi Univ. (Math.)*, **12** (1991), 5-13.
- [2] A. Csázár, Generalized Topology, Generalized Continuity, Acta Math. Hungar., 96 (2002), 351-357.
- [3] J. Dontchev and H. Maki, On sg-closed sets and semi-λ-closed sets, Q & A in General Topology, 15(1997), 259-266.
- [4] D. C. Kent and W. K. Min, Neighborhood Spaces, International Journal of Mathematics and Mathematical Sciences, 32(7) (2002), 387-399.
- [5] N. Levine, Generalized closed sets in topology, *Rend. Cir. Mat. Palermo*, 19(1970), 89-96.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T¹/₂, Mem. Fac. Sci. Kochi Univ. Ser. A, 17(1996), 33-42.
- [8] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in Topology, Bulletin of Fukuoka University of Education, 42(3)(1993), 13-21.
- [9] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, 15(1994), 51-63.

- [10] H. Maki, R. Devi and K. Balachandran, Generalized α -closed maps and α -generalized closed maps, *Indian J. pure appl. Math.*, **29**(1)(1998), 37-49.
- [11] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. and Phys. Soc. Egypt*, 53 (1982), 47-53.
- [12] W.K. Min, Some Results on Generalized Topological Spaces and Generalized Systems, Acta Math. Hungar., 108 (1-2) (2005), 171-181.
- [13] W.K. Min, On Weak Neighborhood Systems and Spaces, Acta Math. Hungar., 121(3) (2008), 283-292.
- [14] W.K. Min and Y.K. Kim, Weak structures and w-spaces, Far East Journal of Mathematical Sciences, accepted.
- [15] O. Njastad, On some classes of nearly open sets, Pacific Journal of Mathematics, 15(3)(1964), 961-970.
- [16] F. Siwiec, On Defining a Space by a Weak Base, Pacific Journal of Mathematics, 52(1) (1974), 351-357.