WO-CONTINUITY AND WK-CONTINUITY
ON ASSOCIATED w-spaces

Young Key Kim\(^1\), Won Keun Min\(^2\)§

\(^1\)Department of Mathematics
MyongJi University
Youngin, 449-728, KOREA

\(^2\)Department of Mathematics
Kangwon National University
Chuncheon, 200-701, KOREA

Abstract: We introduce the concepts of WO-continuity and WK-continuity on associated w-spaces. We investigate some properties and relationships between WO-continuity, WK-continuity, W-continuity, W*,-continuity and continuity on associated w-spaces.

AMS Subject Classification: 54A10, 54A20, 54D10, 54D30

Key Words: weak neighborhood systems, weak structures, associated w-spaces, WO-continuous, WK-continuous

1. Introduction

In [16], Siwiec introduced the notions of weak neighborhoods and weak base in a topological space. The author introduced the weak neighborhood systems defined by using the notion of weak neighborhoods in [13]. The weak neighborhood system induces a weak neighborhood space (briefly WNS) which is independent of neighborhood spaces [4] and general topological spaces [2]. In [13], the author introduced the notion of new interior operator and closure operator on a WNS. We also introduced the notion of weak structure which is

Received: April 21, 2015

§Correspondence author
defined by the properties of new interior operator and closure operator in a WNS. The set of all g-open subsets [5] of a topological space is a kind of weak structure.

In this paper, we introduce the concepts of WO-continuity and WK-continuity on associated w-spaces. In particular, we investigate some properties and relationships between WO-continuity, WK-continuity, W-continuity, W^*-continuity and continuity on associated w-spaces.

2. Preliminaries

Let X be a topological space and $S \subseteq X$. The closure (resp. interior) of S will be denoted by clS (resp. $intS$). A subset S of X is called a preopen set [11] (resp. α-set [15], semi-open [6]) if $S \subseteq int(cl(S))$ (resp. $S \subseteq int(int(S)))$. The complement of a preopen set (resp. α-set, semi-open) is called a preclosed set (resp. α-closed set, semi-closed). The family of all preopen sets (resp. α-sets, semi-open sets) in X will be denoted by $PO(X)$ (resp. $\alpha(X)$, $SO(X)$). We know the family $\alpha(X)$ is a topology finer than the given topology on X.

A subset A of a topological space (X, τ) is said to be:

(a) g-closed [5] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X
(b) gp-closed [7] if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X
(c) gs-closed [3] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X
(d) $g\alpha$-closed [9] if $\tau^\alpha Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in X where $\tau^\alpha = \alpha(X)$
(e) $g\alpha^*$-closed [8] if $\tau^\alpha Cl(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is α-open in X
(f) $g\alpha^{**}$-closed [8] if $\tau^\alpha Cl(A) \subseteq Int(Cl(U))$ whenever $A \subseteq U$ and U is α-open in X
(g) αg-closed [9] if $\tau^\alpha Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X
(h) $\alpha^{**}g$-closed [9] if $\tau^\alpha Cl(A) \subseteq Int(Cl(U))$ whenever $A \subseteq U$ and U is open in X
(i) g-open (resp. gp-open, gs-open, $g\alpha$-open, $g\alpha^*$-open, $g\alpha^{**}$-open, αg-open, $\alpha^{**}g$-open) if the complement of A is g-closed (resp. gp-closed, gs-closed, $g\alpha$-closed, $g\alpha^*$-closed, $g\alpha^{**}$-closed, αg-closed, $\alpha^{**}g$-closed).
(j) The family of all g-open (resp. gp-open, gs-open, $g\alpha$-open, $g\alpha^*$-open, $g\alpha^{**}$-open, αg-open, $\alpha^{**}g$-open) sets in X will be denoted by $gO(X)$ (resp. $gpO(X), gsO(X), g\alpha O(X), g\alpha^*O(X), g\alpha^{**}O(X), \alpha gO(X), \alpha^{**}gO(X)$.
Definition 2.1 ([14]). Let X be a nonempty set. A subfamily w_X of the power set $P(X)$ is called a weak structure on X if it satisfies the following:

1. $\emptyset \in w_X$ and $X \in w_X$.
2. For $U_1, U_2 \in w_X$, $U_1 \cap U_2 \in w_X$.

Then the pair (X, w_X) is called a w-space on X. Then $V \in w_X$ is called a w-open set and the complement of a w-open set is a w-closed set.

Definition 2.2 ([14]). Let (X, w_X) be a w-space. For a subset A of X, the w-closure of A and the w-interior of A are defined as the following:

1. $wCl(A) = \cap \{F : A \subseteq F, X - F \in w_X\}$.
2. $wInt(A) = \cup \{U : U \subseteq A, U \in w_X\}$.

Theorem 2.3 ([14]). Let (X, w_X) be a w-space and $A \subseteq X$.

1. If A is w-open, then $wInt(A) = A$.
2. If A is w-closed, then $wCl(A) = A$.

A collection H of subsets of X is called an m-family [12] on X if $\cap H \neq \emptyset$. Let $f : X \to Y$ be a function; then it is obvious $f(H) = \{f(F) : F \in H\}$ is an m-family on Y.

3. WO-Continuity; WK-Continuity

Definition 3.1. Let X be a nonempty set and let (X, τ) be a topological space. A subfamily w_τ of the power set $P(X)$ is called an associated weak structure on X if $\tau \subseteq w_\tau$. Then the pair (X, w_τ) is called an associated w-space with τ.

The collection of all w-open sets [14] (resp. w-closed sets) in a w-space X will be denoted by $WO(X)$ (resp. $WC(X)$). We set $W(x) = \{U \in WO(X) : x \in U\}$. The collection of all open sets (resp. closed sets) in a topological space X will be denoted by $O(X)$ (resp. $C(X)$). We set $O(x) = \{U \in O(X) : x \in U\}$.

Remark 3.2. Let X be a nonempty set and let (X, τ) be a topological space. The family $gO(X), g\alpha O(X), g\alpha^\ast O(X), g\alpha^\ast\ast O(X), \alpha O(X)$ and $\alpha^\ast\ast gO(X)$ all associated weak structures on a topological space X.

Definition 3.3. Let $f : (X, w_\tau) \to (Y, \mu)$ be a function on an associated w-space with τ and a topological space (Y, μ). Then f is said to be
(1) **WO-continuous** if for \(x \in X \) and \(V \in O(f(x)) \), there is \(U \in W(x) \) such that \(f(U) \subseteq V \),

(2) **WK-continuous** if for every open set \(V \) in \(Y \), \(f^{-1}(V) \) is a \(w \)-open set in \(X \).

Theorem 3.4. Let \(f : (X, w\tau) \rightarrow (Y, \mu) \) be a function on an associated \(w \)-space with \(\tau \) and a topological space \((Y, \mu) \). Then the following statements are equivalent:

1. \(f \) is WO-continuous.
2. \(f(w\text{Cl}(A)) \subseteq \text{cl}(f(A)) \) for \(A \subseteq X \).
3. \(w\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{cl}(V)) \) for \(V \subseteq Y \).
4. \(f^{-1}(\text{int}(V)) \subseteq w\text{Int}(f^{-1}(V)) \) for \(V \subseteq Y \)

Proof. (1) \(\Rightarrow \) (2) Let \(x \in w\text{Cl}(A) \). If \(f(x) \) is not in \(\text{cl}(f(A)) \), then there exists \(V \in O(f(x)) \) such that \(V \cap f(A) = \emptyset \). By WO-continuity, there is \(U \in O(x) \) such that \(f(U) \subseteq V \) and so \(f(U) \cap f(A) = \emptyset \). Hence \(U \cap A = \emptyset \) and it is a contradiction.

(2) \(\Rightarrow \) (3) Let \(A = f^{-1}(B) \) for \(B \subseteq Y \); then by (2), \(f(w\text{Cl}(A)) \subseteq \text{cl}(f(A)) = \text{cl}(f(f^{-1}(B))) \subseteq \text{cl}(B) \). Thus \(w\text{Cl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B)) \).

(3) \(\Rightarrow \) (4) By Theorem 2.3, it is obvious.

(4) \(\Rightarrow \) (1) Let \(V \in O(f(x)) \) for \(x \in X \). Then \(f(x) \in \text{int}(V) \) and by (4), \(x \in f^{-1}(\text{int}(V)) \subseteq w\text{Int}(f^{-1}(V)) \). There exists \(U \in O(x) \) such that \(x \in U \subseteq w\text{Int}(f^{-1}(V)) \).

Corollary 3.5. Let \(f : (X, w\tau) \rightarrow (Y, \mu) \) be a function on an associated \(w \)-space with \(\tau \) and a topological space \((Y, \mu) \). Then the following statements are equivalent:

1. \(f \) is WO-continuous.
2. \(f^{-1}(V) = w\text{Int}(f^{-1}(V)) \) for every open set \(V \in Y \).
3. \(f^{-1}(B) = w\text{Cl}(f^{-1}(B)) \) for every closed set \(B \subseteq Y \).

Proof. From Theorem 2.3, it is obvious.

Remark 3.6. Let \(f : (X, w\tau) \rightarrow (Y, \mu) \) be a function on an associated \(w \)-space and a topological space \((Y, \mu) \). If \(w\tau \) is \(gO(X) \) (resp. \(g\alpha O(X) \), \(g\alpha^*O(X) \), \(g\alpha^{**}O(X) \)), then \(f \) is \(gO(X) \) (resp. \(g\alpha O(X) \), \(g\alpha^*O(X) \), \(g\alpha^{**}O(X) \)) continuous.
Theorem 3.7. Let \(f : (X, w_\tau) \rightarrow (Y, \mu) \) be a function on an associated \(w \)-space and a topological space \((Y, \mu)\). Then \(f \) is \(WK \)-continuous if and only if for every closed set \(F \) in \(Y \), \(f^{-1}(F) \) is \(w \)-closed in \(X \).

Proof. It is obvious. \(\square \)

Every \(WK \)-continuous function is a \(WO \)-continuous function. But the converse may not be true as shown the following.

Example 3.8. For \(X = Y = \{a, b, c\} \) let \(\tau = \{\emptyset, \{b\}, X\} \) and \(\mu = \{\emptyset, \{a, b\}, Y\} \). Consider an associated \(w \)-space \(w_\tau = \{\emptyset, \{a\}, \{b\}, X\} \) with the topological space \((X, \tau)\). Let \(f : (X, w_\tau) \rightarrow (Y, \mu) \) be a function defined by \(f(x) = x \), for \(x \in X \). Then \(f \) is \(WO \)-continuous, but not \(WK \)-continuous.

Remark 3.9. Let \(f : (X, w_X) \rightarrow (Y, w_Y) \) be two \(w \)-spaces. Then \(f \) is said to be

1. \(W \)-continuous [14] if for \(x \in X \) and \(V \in W(f(x)) \), there is \(U \in W(x) \) such that \(f(U) \subseteq V \),

2. \(W^* \)-continuous [14] if for every \(A \in W(f(x)) \), \(f^{-1}(A) \) is in \(W(x) \).

Let \(f : (X, w_\tau) \rightarrow (Y, w_\mu) \) be a function on two associated \(w \)-spaces with topological spaces \((X, \tau)\) and \((Y, \mu)\), respectively. Then we get the following implications but the converses may not be true:

\[
\text{continuity } \Rightarrow WK\text{-continuity } \Rightarrow WO\text{-continuity} \\
\text{\uparrow} \quad \text{\uparrow} \\
W^*\text{-continuity } \Rightarrow W\text{-continuity}
\]

Example 3.10. For \(X = \{a, b, c\} \) let \(\tau = \{\emptyset, \{b\}, X\} \). Consider an associated \(w \)-space \(w_\tau = \{\emptyset, \{a\}, \{b\}, X\} \) with the topological space \((X, \tau)\).

Let \(f : (X, w_\tau) \rightarrow (X, w_\tau) \) be a function defined by \(f(a) = c \), \(f(b) = b \) and \(f(c) = a \). Then \(f \) is both \(WK \)-continuous and \(WO \)-continuous, but neither \(W^* \)-continuous nor \(W \)-continuous.

Let \((X, w_X) \) be a \(w \)-space and \(H \) an \(m \)-family on \(X \). Then we say that an \(m \)-family \(H \) \(w \)-converges [14] to \(x \in X \) if \(H \) is finer than \(W(x) \) i.e., \(W(x) \subseteq H \). If \(F \) is a filter base, we denote by \(< F > \) the filter generated by \(H \).
Theorem 3.11. Let \(f : (X, w_\tau) \to (Y, \mu) \) be a function on an associated \(w \)-space and a topological space \((Y, \mu)\). Then if \(f \) is \(W\text{O} \)-continuous, then for an \(m \)-family \(H \) \(w \)-converging to \(x \in X \), a filter \(< f(H) >\) converges to \(f(x) \).

Proof. Suppose \(f \) is \(W\text{O} \)-continuous and \(H \) is an \(m \)-family \(w \)-converging to \(x \in X \). By \(W\text{O} \)-continuity, for \(V \in O(f(x)) \), there exists \(U \in W(x) \) such that \(f(U) \subseteq V \). Since \(f(W(x)) \subseteq f(H) \), \(V \in < f(H) > \) i.e., \(O(f(x)) \subseteq < f(H) > \). Hence the filter \(< f(H) >\) converges to \(f(x) \).

From the relationship between \(W\text{O} \)-continuity and \(WK \)-continuity, we get the following.

Corollary 3.12. Let \(f : (X, w_\tau) \to (Y, \mu) \) be a function on an associated \(w \)-space and a topological space \((Y, \mu)\). Then if \(f \) is \(WK \)-continuous, then for an \(m \)-family \(H \) \(w \)-converging to \(x \in X \), a filter \(< f(H) >\) converges to \(f(x) \).

Theorem 3.13. Let \(f : (X, w_\tau) \to (Y, w_\mu) \) be a bijective function on two associated \(w \)-spaces with topological spaces \((X, \tau)\) and \((Y, \mu)\), respectively. If \(\mu = w_\mu \), then \(f \) is \(WK \)-continuous iff for an \(m \)-family \(H \) \(w \)-converging to \(x \in X \), \(f(H) \) \(w \)-converges to \(f(x) \).

Proof. Since \(\mu = w_\mu \), every \(WK \)-continuous function is \(W^* \)-continuous. Hence from Theorem 4.7 in [14], we get the result.

Let \((X, w_X)\) be a \(w \)-space and \(Y \subseteq X \). \(w | Y = \{V \subseteq X : V = U \cap Y \text{ for some } U \in W(x)\} \) is called a weak structure relative [14] to \(Y \). \((Y, w | Y)\) is called subspace of the \(w \)-space \(X \).

A \(w \)-space \((X, w_X)\) is called \(W \)-\textit{compact} [14] if every cover of \(X \) by \(w \)-open sets has finite subcover. A subset \(A \) of a \(w \)-space \((X, w_X)\) is called \(W \)-\textit{compact} [14] relative to \(A \) if every collection \(\{U_i : i \in J\} \) of \(w \)-open subsets of \(X \) such that \(A \subseteq \bigcup \{U_i : i \in J\} \), there exists a finite subset \(J_0 \) of \(J \) such that \(A \subseteq \bigcup \{U_i : i \in J_0\} \). A subset \(A \) of a \(w \)-space \((X, w_X)\) is said to be \(W \)-\textit{compact} if \(A \) is \(W \)-\textit{compact} as a subspace of \(X \).

Theorem 3.14. Let \((X, w_\tau)\) be an associated \(w \)-space and \((Y, \mu)\) a topological space. If \(f : (X, w_\tau) \to (Y, \mu) \) is \(WK \)-continuous and \(A \) is a \(W \)-\textit{compact} subset of \(X \), then \(f(A) \) is compact in \(Y \).
Proof. Let \(\{U_i : i \in J\} \) be a cover of \(f(A) \) by open subsets of \(Y \). Then \(A \subseteq \bigcup \{f^{-1}(U_i) : i \in J\} \), where \(\{f^{-1}(U_i) : i \in J\} \) is a cover of \(A \) by \(w \)-open subsets of \(X \). Since \(A \) is \(W \)-compact, there exists a finite subset \(J_0 \) of \(J \) such that \(A \subseteq \bigcup \{f^{-1}(U_i) : i \in J_0\} \). Hence \(f(A) \subseteq \bigcup \{U_i : i \in J_0\} \). \(\square \)

Corollary 3.15. Let \(f: (X, w_\tau) \to (Y, w_\mu) \) be a function on two associated \(w \)-spaces with topological spaces \((X, \tau) \) and \((Y, \mu) \), respectively. If \(f \) is \(WK^* \)-continuous and \(A \) is a \(W \)-compact subset of \(X \), then \(f(A) \) is compact in \(Y \).

Proof. From Remark 3.9, it is obvious. \(\square \)

References

