Γ*-DERIVATION ACTING AS AN ENDOMORPHISM AND AS AN ANTI-ENDOMORPHISM IN SEMIPRIME Γ-RING M WITH INVOLUTION

Ali Kareem Kadhim¹§, Hajar Sulaiman², Abdul-Rahman Hammed Majeed³
¹,²School of Mathematical Sciences
Universiti Sains Malaysia, 11800 USM
Penang, MALAYSIA
³Department of Mathematics
University of Baghdad
Baghdad, Iraq

Abstract: Let M be a semiprime Γ-ring with involution satisfying the condition that $aαbβc = aβbαc$ ($a, b, c \in M$ and $α, β \in Γ$). An additive mapping $d : M \to M$ is called Γ*-derivation if $d(xαy) = d(x)αy* + xαd(y)$. In this paper we will prove that if d is Γ*-derivation of a semiprime Γ-ring with involution which is either an endomorphism or anti-endomorphism, then $d=0$.

AMS Subject Classification: 16W10, 16W25, 16N60
Key Words: endomorphism of Γ-ring M, semiprime Γ-ring with involution, Γ*-derivation

1. Introduction

Let M and Γ be additive abelian groups. If there exists a mapping $M \times Γ \times
\(M \rightarrow M \) defined by \((x, \alpha, y) \rightarrow (x\alpha y)\) which satisfies the conditions

(i) \(x\alpha y \in M \).

(ii) \((x + y)\alpha z = x\alpha z + y\alpha z, \ x(\alpha + \beta)y = x\alpha y + x\beta y, \ x\alpha(y + z) = x\alpha y + x\alpha z.\)

(iii) \((x\alpha y)\beta z = x\alpha(y\beta z). \) (see [5], [7])

Then \(M \) is called a \(\Gamma \)-ring. Every ring \(M \) is a \(\Gamma \)-ring with \(M = \Gamma \). However a \(\Gamma \)-ring need not be a ring. \(\Gamma \)-rings, more general than rings, were introduced by Nobusawa [10]. Bernes [12] slightly weakened the conditions in the definition of \(\Gamma \)-ring in the sense of Nobusawa. Let \(M \) be a \(\Gamma \)-ring. Then an additive subgroup \(U \) of \(M \) is called a left (right) ideal of \(M \) if \(M\Gamma U \subset U \) (\(U\Gamma M \subset U \)). If \(U \) is both a left and a right ideal, then we say \(U \) is an ideal of \(M \). Suppose again that \(M \) is a \(\Gamma \)-ring. Then an additive subgroup \(U \) of \(M \) is called a left (right) ideal of \(M \) if \(M\Gamma U \subset U \) (\(U\Gamma M \subset U \)). If \(U \) is both a left and a right ideal, then we say \(U \) is an ideal of \(M \). Suppose again that \(M \) is a \(\Gamma \)-ring. Then \(M \) is said to be 2-torsion free if \(2x = 0 \) implies \(x = 0 \) for all \(x \in M \). An ideal \(P \) of a \(\Gamma \)-ring \(M \) is said to be prime if \(\alpha \Gamma M \Gamma b = (0) \) with \(a, b \in M \), implies \(a = 0 \) or \(b = 0 \) and semiprime if \(a\Gamma M\Gamma a = (0) \) with \(a \in M \) implies \(a = 0 \). Furthermore, \(M \) is said to be a commutative \(\Gamma \)-ring if \(x\alpha y = y\alpha x \) for all \(x, y \in M \) and \(\alpha \in \Gamma \). Moreover, the set \(Z(M) = \{x \in M : x\alpha y = y\alpha x \text{ for all } \alpha \in \Gamma, \ y \in M \} \) is called the center of the \(\Gamma \)-ring \(M \). If \(M \) is a \(\Gamma \)-ring, then \([x, y]_\alpha = x\alpha y - y\alpha x \) is known as the commutator of \(x \) and \(y \) with respect to \(\alpha \), where \(x, y \in M \) and \(\alpha \in \Gamma \). We make the basic commutator identities:

\[
[x\alpha y, z]_\beta = [x, z]_\beta x\alpha y + x[\alpha, \beta]_\beta y + x\alpha[y, z]_\beta \tag{1}
\]

\[
[x, y\alpha z]_\beta = [x, y]_\beta y\alpha z + y[\alpha, \beta]_\beta xz + y\alpha[x, z]_\beta \tag{2}
\]

for all \(x, y, z \in M \) and \(\alpha, \beta \in \Gamma \). Now, we consider the following assumption:

(A) \(x\alpha y\beta z = x\beta y\alpha z \) for all \(x, y, z \in M \) and \(\alpha, \beta \in \Gamma \).

According to assumption (A), the above commutator identities reduce to

\[
[x\alpha y, z]_\beta = [x, z]_\beta x\alpha y + x\alpha[y, z]_\beta \quad \text{and} \quad [x, y\alpha z]_\beta = [x, y]_\beta y\alpha z + y\alpha[x, z]_\beta.
\]

which we will extensively used.

Definition 1. [7] An additive mapping \(d : M \rightarrow M \) is called a derivation if \(d(x\alpha y) = d(x)\alpha y + x\alpha d(y) \) which holds for all \(x, y \in M \) and \(\alpha \in \Gamma \).

Definition 2. [2] An additive mapping \(\phi : M \rightarrow M \) is said to be homomorphism if \(\phi(x\alpha y) = \phi(x)\alpha\phi(y) \) which holds for all \(x, y \in M \) and \(\alpha \in \Gamma \).
Definition 3. [2] An additive mapping $\psi : M \rightarrow M$ is called an anti-homomorphism if $\psi(x\alpha y) = \psi(y)\alpha\psi(x)$ which holds for all $x, y \in M$ and $\alpha \in \Gamma$.

Note: A derivation d of M is said to act as a homomorphism [resp. as an anti-homomorphism] on a subset S of M if $d(x\alpha y) = d(x)\alpha d(y)$ [resp. $d(x\alpha y) = d(y)\alpha d(x)$] for all $x, y \in S$ and $\alpha \in \Gamma$.

Definition 4. [11] Let M be a Γ-ring, then an additive mapping $f : M \rightarrow M$ is said to be endomorphism if $f(x\alpha y) = f(x)\alpha f(y)$ which holds for all $x, y \in M$ and $\alpha \in \Gamma$.

Definition 5. [11] Let M be a Γ-ring, then an additive mapping $f : M \rightarrow M$ is called an anti-endomorphism if $f(x\alpha y) = f(y)\alpha f(x)$ which holds for all $x, y \in M$ and $\alpha \in \Gamma$.

Definition 6. [8] An additive mapping $(x\alpha x) \rightarrow (x\alpha x)^*$ on a Γ-ring M is called an involution if $(x\alpha y)^* = y^*\alpha^* x$ and $(x\alpha x)^{**} = x\alpha x$ which holds for all $x, y \in M$ and $\alpha \in \Gamma$.

Definition 7. An additive mapping $d : M \rightarrow M$ is called a Γ^*-derivation if $d(x\alpha y) = d(x)\alpha y^* + x\alpha d(y)$ which holds for all $x, y \in M$ and $\alpha \in \Gamma$.

In [3], Bell and Kappe proved that if d is a derivation of a semiprime ring R which is either an endomorphism or an anti-endomorphism on R, then $d = 0$; whereas, the behavior of d is somewhat restricted in case of prime rings in the way that if d is a derivation of a prime ring R acting as a homomorphism or an anti-homomorphism on a non-zero right ideal U of R, then $d = 0$. Asma et. al. [1] extended this result of prime rings on square closed Lie ideals. Afterwards, the said result was extended to σ-prime rings by Oukhtite et. al. in [6].

In Γ-rings, Dey and Paul [4] proved that if D is a generalized derivation of a prime Γ-ring M with an associated derivation d of M which acts as a homomorphism and an anti-homomorphism on a non-zero ideal I of M, then $d = 0$ or M is commutative. Afterwards, Chakraborty and Paul [11] worked on k-derivation of a semiprime Γ-ring in the sense of Nobusawa [10] and proved that $d = 0$ where d is a k-derivation acting as a k-endomorphism and as an anti-k-endomorphism, the above mentioned results following [6] in classical rings are extended to those in gamma rings with derivation acting as a homomorphism and as an anti-homomorphism on σ-prime Γ-rings. In this paper we will prove that if d is Γ^*-derivation of a semiprime Γ-ring with involution which is either an endomorphism or anti-endomorphism, then $d = 0$.
2. Γ^*-Derivation Acting as an Endomorphism and as an Anti-Endomorphism of Γ-Ring M with Involution

To prove our main result we need the following lemmas.

Lemma 2.1. Let M be a semiprime Γ-ring satisfying assumption (A) and let a be an element in M. If $aa[x, y]_\beta = 0$ for all $x, y \in M$ and $\alpha, \beta \in \Gamma$, then there exists an ideal U of M such that $a \in U \subset Z(M)$ holds.

Proof. The lemma has been proven by Hoque and Paul[9].

Lemma 2.2. Let M be a semiprime Γ-ring with involution and let $d : M \to M$ be a nonzero Γ^*-derivation, then $d(x) \in Z(M)$ for all $x \in M$ and if $d(x) = [a, x]_\alpha$ for all $x \in M$ and $\alpha \in \Gamma$, then $d = 0$.

Proof. We have

$$d(xy) = d(xy^* + xad(y)) \quad (3)$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Replace y by $y\beta z$ in (3) we get

$$d(x(y\beta z)) = d(x)\alpha y^* + xad(y)\beta z^* + x\alpha y\beta d(z) \quad (4)$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. And

$$d((x\alpha y)\beta z) = d(x)\alpha y^* \beta z^* + xad(y)\beta z^* + x\alpha y\beta d(z) \quad (5)$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. If we comport (4) and (5), we get

$$d(x)\alpha [y^*, z^*]_\beta = 0 \quad (6)$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. By using Lemma 2.1, we get $d(x) \in Z(M)$ for all $x \in M$ and if $d(x) = [a, x]_\alpha$, then from relation (6) one can show that $[a, x]_\alpha \gamma M \gamma [a, x]_\alpha = 0$ for all $x \in M$ and $\alpha, \gamma \in \Gamma$. Since M is a semiprime Γ-ring with involution, we get $[a, x]_\alpha = 0$, hence $d = 0$.

Lemma 2.3. Let $d : M \to M$ be a Γ^*-derivation which act-endomorphism of Γ-ring M with involution and satisfying assumption (A), then

$$d(y)\alpha x \beta d(y) = y \alpha x \beta d(y) \quad (7)$$

$$d(x)\alpha y^* \beta d(x) = d(x)\alpha x^* \beta y^* \quad (8)$$
\[d(x)\alpha d(y) = d(x)\alpha y^* + x\alpha d(y) \quad (9) \]

for all \(x, y \in M \) and \(\alpha \in \Gamma \). Replace \(x \) by \(y\alpha x \) in (9) we get

\[d(y\alpha x)\beta d(y) = d(y\alpha x)\beta y^* + y\alpha x\beta d(y) \quad (10) \]

for all \(x, y \in M \) and \(\alpha, \beta \in \Gamma \). Since \(d \) is act-endomorphism of \(\Gamma \)-ring \(M \), then

\[d(y\alpha x)\beta d(y) = d(y)\beta d(x\alpha y) \]

Then from above relation we get

\[d(y\alpha x)\beta d(y) = d(y)\beta d(x\alpha y) \quad (11) \]

for all \(x, y \in M \) and \(\alpha, \beta \in \Gamma \). According to (10) and (11) we arrive at (7).

Now replace \(y \) by \(y\beta x \) in (9) we get

\[d(x)\alpha d(y\beta x) = d(x)\alpha x^*\beta y^* + x\alpha d(y\beta x) \quad (12) \]

for all \(x, y \in M \) and \(\alpha, \beta \in \Gamma \). Since \(d \) is act-endomorphism on \(M \), then

\[d(x)\alpha d(y\beta x) = d(x\beta y)\alpha d(x) \]

Therefore,

\[d(x)\alpha d(y\beta x) = d(x)\beta y^*\alpha d(x) + x\beta d(y)\alpha d(x) \quad (13) \]

for all \(x, y \in M \) and \(\alpha, \beta \in \Gamma \). By comparing (12) and (13) we arrive at (8).

Theorem 2.4. Let \(M \) be a semiprime \(\Gamma \)-ring with involution satisfying assumption (A) and let \(d : M \to M \) be a \(\Gamma^* \)-derivation, then

a- If \(d \) is act-endomorphism on \(M \), then \(d = 0 \) on \(M \).

b- If \(d \) is act anti-endomorphism on \(M \), then \(d = 0 \) on \(M \).

Proof. a- Putting \(d(y)\gamma x \) for \(x \) in (7) lemma 2.3 we get

\[d(y)\alpha d(y)\gamma x\beta d(y) = y\alpha d(y)\gamma x\beta d(y) \quad (14) \]

for all \(x, y \in M \) and \(\alpha, \beta, \gamma \in \Gamma \). Since \(d \) is act-endomorphism on \(M \) and \(d \) is a \(\Gamma^* \)-derivation, then we get

\[d(y)\alpha y^* \gamma x\beta d(y) + y\alpha d(y)\gamma x\beta d(y) = y\alpha d(y)\gamma x\beta d(y) \quad (15) \]
for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Hence
\[
d(y)\alpha y^* \gamma x \beta d(y) = 0
\] (16)
for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Right multiplication of (16) by y^* gives
\[
d(y)\alpha y^* \gamma x \beta d(y)\alpha y^* = 0
\] (17)
for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Since M is semiprime Γ-ring with involution we get
\[
d(y)\alpha y^* = 0
\]
for all $y \in M$ and $\alpha \in \Gamma$. By using Lemma(2.3) we get
\[
d(x)\alpha y^* \beta d(x) = 0
\]
for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. Then by semiprimness of Γ-ring M we obtain $d = 0$.

b- If d is act anti-endomorphism on M, then
\[
d(x\alpha y) = d(y)\alpha d(x)
\] (18)
for all $x, y \in M$ and $\alpha \in \Gamma$. By using Lemma(2.2) we get
\[
d(x\alpha y) = d(x)\alpha d(y)
\] (19)
Then from relation (19) we get d is act-endomorphism on M, then by the same way of (a) we get $d=0$ on M, this completes the proof of (b).

References

