ON θ-b-GENERALIZED CLOSED SETS IN TOPOLOGY

R. Balaji1, G. Shanmugam2, N. Rajesh3

1Department of Mathematics
Agni College of Technology
Chennai, 600130, TamilNadu, INDIA

2Department of Mathematics
Jeppiaar Engineering College
Chennai 600119, TamilNadu, INDIA

3Department of Mathematics
Rajah Serfoji Govt. College
Thanjavur, 613005, Tamilnadu, INDIA

Abstract: The aim of this paper is to introduce and study a new class of generalized closed sets called θ-b-generalized closed sets in topological space.

AMS Subject Classification: 54C10, 54D10
Key Words: b-open sets, θ-b-generalized closed sets, Λ_b-sets, θ-b-closure

1. Introduction and Preliminaries

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the variously modified forms of continuity, separation axioms etc. by utilizing generalized open sets. For a subset A of a topological space (X, τ), $\text{Cl}(A)$ and $\text{Int}(A)$ denote the closure of A and the interior of A, respectively. A set A is called b–open [1](=γ-open

Received: May 8, 2015

§Correspondence author
[4]) if \(A \subset \text{Int}(\text{Cl}(A)) \cup \text{Cl}(\text{Int}(A)) \). The complement of a \(b \)-open sets is called a \(b \)-closed set. The intersection of all \(b \)-closed sets of \((X, \tau)\) containing \(A \) is called the \(b \)-closure [1] of \(A \) and is denoted by \(b \text{Cl}(A) \). A set \(A \) is \(b \)-closed if and only if \(A = b \text{Cl}(A) \). The family of all \(b \)-open sets of \((X, \tau)\) is denoted by \(BO(X, \tau) \). For each \(x \in X \), the family of all \(b \)-open sets of \((X, \tau)\) containing a point \(x \) is denoted by \(BO(X, x) \). The \(b \)-interior of \(A \) is the union of all \(b \)-open sets contained in \(A \) and is denoted by \(b \text{Int}(A) \). A subset \(A \) is called \(b \)-regular [5] if it is both \(b \)-open and \(b \)-closed. The \(b \)-\(\theta \)-clouser [5], denoted by \(b \text{Cl}_{\theta}(A) \), is the set of all \(x \in X \) such that \(b\text{Cl}(U) \cap A \neq \emptyset \) for every \(U \in BO(X, x) \). A subset \(A \) is called \(b \)-\(\theta \)-closed [5] if \(A = b \text{Cl}_{\theta}(A) \). The set \(\{x \in X | b\text{Cl}(U) \subset A \} \) is called the \(b \)-\(\theta \)-interior [5] of \(A \) and is denoted by \(b\text{Int}_{\theta}(A) \). By [5], it is proved that, for a subset \(A \), \(b \text{Cl}_{\theta}(A) \) is the intersection of all \(b \)-\(\theta \)-closed sets containing \(A \). The aim of this paper is to introduce and study a new class of generalized closed sets called \(\theta \)- \(b \)-generalized closed sets in topological space.

2. On \(\theta \)-\(b \)-Generalized Closed Sets

Definition 1. A subset \(A \) of a topological space \((X, \tau)\) is called \(\theta \)-\(b \)-generalized closed (briefly \(\theta \)-\(bg \)-closed) if \(b \text{Cl}_{\theta}(A) \subset U \) whenever \(A \subset U \) and \(U \in BO(X, \tau) \).

The complement of a \(\theta \)-\(b \)-generalized closed set is called a \(\theta \)-\(b \)-generalized open set (briefly \(\theta \)-\(bg \)-open).

Lemma 2.1. Every \(b \)-\(\theta \)-closed set is \(\theta \)-\(bg \)-closed but not conversely.

Proof. Let \(A \subset X \) be \(b \)-\(\theta \)-closed. Then \(A = b \text{Cl}_{\theta}(A) \). Let \(A \subset U \) and \(U \in BO(X, \tau) \). It follows that \(b \text{Cl}_{\theta}(A) \subset U \). This means that \(A \) is \(\theta \)-\(bg \)-closed. \(\square \)

Example 2.2. Let \(X = \{a, b, c\} \) and \(\tau = \{\emptyset, \{a\}, X\} \). Then the set \(\{b, c\} \) is \(\theta \)-\(bg \)-closed but not \(b \)-\(\theta \)-closed in \((X, \tau)\).

Theorem 2.3. A set \(A \subset (X, \tau) \) is \(\theta \)-\(bg \)-open if and only if \(F \subset b\text{Int}_{\theta}(A) \) whenever \(F \) is \(b \)-closed in \(X \) and \(F \subset A \).

Proof. Let \(A \) be \(\theta \)-\(bg \)-open and \(F \subset A \), where \(F \) is \(b \)-closed. It is obvious that \(X \setminus A \) is contained in \(X \setminus F \). This implies that \(b \text{Cl}_{\theta}(X \setminus A) \subset X \setminus F \). Hence
ON θ-b-GENERALIZED CLOSED SETS...

$b \text{Cl}_{\theta}(X \setminus A) = X \setminus (b \text{Int}_{\theta}(A)) \subset X \setminus F$, that is, $F \subset b \text{Int}_{\theta}(A)$. Conversely, if F is a b-closed set with $F \subset b \text{Int}_{\theta}(A)$ whenever $F \subset A$, then it follows that $X \setminus A \subset X \setminus F$ and $X \setminus (b \text{Int}_{\theta}(A)) \subset X \setminus F$, that is, $b \text{Cl}_{\theta}(X \setminus A) \subset X \setminus F$. Therefore, $X \setminus A$ is θ-bg-closed and hence A is θ-bg-open.

Lemma 2.4. Let A be θ-bg-closed subset of (X, τ). Then: (1) $b \text{Cl}_{\theta}(A) \setminus A$ does not contain a nonempty b-closed set.

(2) $b \text{Cl}_{\theta}(A) \setminus A$ is θ-bg-open.

Proof. (1). Let F be a b-closed set such that $F \subset b \text{Cl}_{\theta}(A) \setminus A$. Since F^c is b-open and $A \subset X \setminus F$, $b \text{Cl}_{\theta}(A) \subset X \setminus F$, that is $F \subset X \setminus (b \text{Cl}_{\theta}(A))$. This implies that $F \subset X \setminus (b \text{Cl}_{\theta}(A)) \cap b \text{Cl}_{\theta}(A) = \emptyset$.

(2). If A is θ-bg-closed and F is a b-closed set such that $F \subset b \text{Cl}_{\theta}(A) \setminus A$, then by (1), F is empty and therefore $F \subset b \text{Int}_{\theta}(b \text{Cl}_{\theta}(A) \setminus A)$. By Theorem 2.3, $b \text{Cl}_{\theta}(A) \setminus A$ is θ-bg-open.

Definition 2. A topological space (X, τ) is called b-T_1 [2] if for distinct points $x, y \in X$, there exists a b-open set containing x but not y and a b-open set containing y but not x, or equivalently (X, τ) is b-T_1 if and only if every singleton is b-closed [2].

Theorem 2.5. A topological space (X, τ) is b-T_1 if and only if every θ-bg-closed set is b-θ-closed.

Proof. Let $A \subset X$ be θ-bg-closed and $x \in b \text{Cl}_{\theta}(A)$. Since X is b-T_1, $\{x\}$ is b-closed and thus by Lemma 2.4, $x \notin b \text{Cl}_{\theta}(A) \setminus A$. Since $x \in b \text{Cl}_{\theta}(A)$, then $x \in A$. This shows that $b \text{Cl}_{\theta}(A) \subset A$ or equivalently A is b-θ-closed. Conversely, let $x \in X$. Assume that $\{x\}$ is not b-closed. Then $X \setminus \{x\}$ is not b-open but is θ-bg-closed since the only b-open superset of $X \setminus \{x\}$ is X. By hypothesis, $X \setminus \{x\}$ is b-θ-closed and thus $\{x\}$ is b-θ-open. Since a singleton is b-θ-open if and only if it is b-regular, $\{x\}$ is b-regular.

Definition 3. A subset A of a topological space (X, τ) is called a Λ_b-set [2] if $A = A^{b\theta}$, where $A^{b\theta} = \cap \{U | A \subset U, U \in BO(X, \tau)\}$.

Definition 4. A subset A of a topological space (X, τ) is called a generalized Λ_b-set (briefly $g.\Lambda_b$-set)[2] if $A^{b\theta} \subset F$ whenever $A \subset F$ and F is a b-closed
Lemma 2.6. (1) For a subset A of a topological space \((X, \tau)\), we define \(b\ker_\theta(A)\) as follows \(b\ker_\theta(A) = \{x \in X | b\Cl_\theta(\{x\}) \cap A \neq \emptyset\}\). (2) A subset A of \((X, \tau)\) is called \(\theta\)-generalized \(\Lambda_b\)-set (briefly \(\theta-g.\Lambda_b\)-set) if \(b\ker_\theta(A) \subset F\), whenever \(A \subset F\) and \(F\) is a \(b\)-closed set of \((X, \tau)\).

Lemma 2.6. [5] For any subset A of a topological space \((X, \tau)\), \(b\Cl_\theta(A)\) is \(b-\theta\)-closed.

Lemma 2.7. If A is a \(\theta\)-bg-closed set of a topological space \((X, \tau)\) such that \(A \subset B \subset b\Cl_\theta(A)\), then B is also a \(\theta\)-bg-closed set of \((X, \tau)\).

Proof. Let \(U\) be a \(b\)-open set of \((X, \tau)\) such that \(B \subset U\). Then \(A \subset U\). Since A is \(\theta\)-bg-closed, \(b\Cl_\theta(A) \subset U\). By using Lemma 2.6, \(b\Cl_\theta(B) \subset b\Cl_\theta(b\Cl_\theta(A)) = b\Cl_\theta(A) \subset U\). Therefore, B is also a \(\theta\)-bg-closed set of \((X, \tau)\).

Proposition 2.8. Let \((X, \tau)\) be a topological space and \(A\) be a subset of \(X\). Then, \(b\ker_\theta(A) = \cap\{U | A \subset U, U \text{ is } b-\theta\text{-open}\}\) for any subset \(A \subset (X, \tau)\).

Proof. Let \(H = \cap\{U | A \subset U, U \text{ is } b-\theta\text{-open}\}\) and \(x \in H\). Suppose that \(x \notin b\ker_\theta(A)\) which means \(b\Cl_\theta(\{x\}) \cap A = \emptyset\). Hence \(x \notin X \setminus b\Cl_\theta(\{x\})\), where \(X \setminus b\Cl_\theta(\{x\})\) is \(b-\theta\)-open set containing \(A\) by Lemma 2.6. But this is impossible since \(x \in H\). Consequently \(x \in b\ker_\theta(A)\). If \(x \notin b\ker_\theta(A)\) and \(x \notin H\), then there exists a \(b-\theta\)-open set \(U\) containing \(A\) such that \(x \notin U\). Assume that \(y \in b\Cl_\theta(\{x\}) \cap A\). Thus \(y \in U\) and \(x \notin U\). But this is a contradiction and hence the claim.

Proposition 2.9. (1) For any set \(A \subset X\), \(A \subset A^{\Lambda_b} \subset b\ker_\theta(A) \subset b\Cl_\theta(A)\).

(2) Every \(b-\theta\)-closed set is a \(\Lambda_b\)-set.

(3) Every \(\theta\)-g.\(\Lambda_b\)-set is a \(g.\Lambda_b\)-set.

Proof. (1) Let \(A\) be a subset of \((X, \tau)\). It is shown in [2] that \(A \subset A^{\Lambda_b}\). Now we prove that \(A^{\Lambda_b} \subset b\ker_\theta(A)\). Suppose that \(x\) is not a point of \(b\ker_\theta(A)\). It follows that \(A \subset X \setminus b\Cl_\theta(\{x\}) = U\), say. Since \(b\Cl_\theta(\{x\})\) is \(b-\theta\)-closed by Lemma 2.6, so \(U\) is \(b-\theta\)-open. Hence \(U\) is \(b\)-open since \(U \subset b\Cl(U) \subset b\Cl_\theta(U)\).
Hence there exists a b-open set U containing A but not X, i.e. $x \notin A^b_{\theta}$. This shows that $A^b_{\theta} \subseteq bKer_{\theta}(A)$. proving $bKer_{\theta}(A) \subseteq bCl_{\theta}(A)$, let $x \in bKer_{\theta}(A)$. Suppose that $x \notin bCl_{\theta}(A)$. Then, there exists a b-open set U containing x such that $bCl(U) \cap A = \emptyset$. Since U is a b-open subset of X, it follows that $bCl_{\theta}(U) = bCl(U)$ [5]. Hence $bCl_{\theta}(U) \cap A = \emptyset$. This implies that $A \subset X \setminus bCl_{\theta}(U)$. Therefore $x \notin X \setminus bCl_{\theta}(U)$, where $X \setminus bCl_{\theta}(U)$ b-θ-open set containing A by Lemma 2.6. But this is impossible since $x \in bKer_{\theta}(A)$ by proposition 2.8. Consequently $x \in bCl_{\theta}(A)$.

(2). Let A be b-θ-closed set. Since $A^b_{\theta} \subseteq bCl_{\theta}(A)$ and $A = bCl_{\theta}(A)$, then $A^b_{\theta} = A$. Thus A is a Λ_{b}-set.

(3). Let $A \subset F$, where F is b-closed. Then we have $A^b_{\theta} \subseteq bKer_{\theta}(A) \subset F$. This implies that A is a $g.\Lambda_{b}$-set. \(\square\)

Definition 6. A topological space (X, τ) is called b-R_1 [3] if for $x, y \in X$ with $bCl(\{x\}) \neq bCl(\{y\})$, there exists disjoint b-open sets U and V such that $bCl(\{x\}) \subset U$ and $bCl(\{y\}) \subset V$, or equivalently (X, τ) is b-R_1 [3] if and only if for each $x \in X$, $bCl(\{x\}) = bCl_{\theta}(\{x\})$.

Theorem 2.10. Let (X, τ) be b-R_1. A subset A of (X, τ) is a $g.\Lambda_{b}$-set if and only if A is a θ-$g.\Lambda_{b}$-set.

Proof. Sufficiency. It is an immediate consequence of Proposition 2.9 (3).

Necessity. By the fact X is b-R_1 if and only if $bCl(\{x\}) = bCl_{\theta}(\{x\})$ for each $x \in X$, the proof follows from the observation that $A^b_{\theta} = bKer_{\theta}(A)$. \(\square\)

Definition 7. A subset A of a topological space (X, τ) is called a θ-Λ_{b}-set if $A = bKer_{\theta}(A)$.

Definition 8. A subset A of a topological space (X, τ) is called Λ_{b}-b-θ-closed if $A = L \cap S$, where L is a θ-Λ_{b}-set and S is b-θ-closed.

Lemma 2.11. For a subset A of a topological space (X, τ) the following conditions are equivalent:

1. A is Λ_{b}-b-θ-closed;
2. $A = L \cap bCl_{\theta}(A)$, where L is a θ-Λ_{b}-set;
3. $A = bKer_{\theta}(A)$, that is A is θ-Λ_{b}-set:
Proof. (1) ⇒ (2): Suppose that \(A = L \cap S \), where \(L \) is a \(\theta\)-\(\Lambda_b \)-set and \(S \) is \(b\)-\(\theta \)-closed. Then \(A \subset L \) and \(A \subset b\text{Cl}_\theta(A) \subset S \). Now, we have \(A \subset L \cap b\text{Cl}_\theta(A) \subset L \cap S = A \). This means that \(A = L \cap b\text{Cl}_\theta(A) \).

(2) ⇒ (3): Suppose that \(A = L \cap b\text{Cl}_\theta(A) \) where \(L \) is \(\theta\)-\(\Lambda_b \)-set. We have \(A \subset b\text{Ker}_\theta(A) \subset L \) and \(A \subset b\text{Cl}_\theta(A) \). So \(A = b\text{Ker}_\theta(A) \cap b\text{Cl}_\theta(A) \) and Hence \(A = b\text{Ker}_\theta(A) \) by Proposition 2.9.

(3) ⇒ (1): It is clear that \(b\text{Ker}_\theta(b\text{Ker}_\theta(A)) = b\text{Ker}_\theta(A) \) for any set \(A \). Therefore \(b\text{Ker}_\theta(A) \) is a \(\theta\)-\(\Lambda_b \)-set. Suppose that \(A = b\text{Ker}_\theta(A) \). By Proposition 2.9, \(A = b\text{Ker}_\theta(A) \cap b\text{Cl}_\theta(A) \). Clearly \(A \) is the intersection of a \(\theta\)-\(\Lambda_b \)-set and a \(b\)-\(\theta \)-closed set and hence the result. \(\square \)

Definition 9. A subset \(A \) of a topological space \((X, \tau)\) is called quasi \(b\)-\(\theta \)-closed (briefly qbt-closed) if \(b\text{Cl}_\theta(A) \subset U \) whenever \(A \subset U \) and \(U \) is \(b\)-\(\theta \)-open in \((X, \tau)\).

Lemma 2.12. A set \(A \) of a topological space \((X, \tau)\) is qbt-closed if and only if \(b\text{Cl}_\theta(A) \subset b\text{Ker}_\theta(A) \).

Proof. Necessity. Let \(x \in X \) such that \(x \notin b\text{Ker}_\theta(A) \). So there exists a \(b\)-\(\theta \)-open subset \(U \) such that \(A \subset U \) with \(x \notin U \). This means that \(x \notin b\text{Cl}_\theta(A) \) since \(A \) is qbt-closed.

Sufficiently. Obvious. \(\square \)

Theorem 2.13. For a subset \(A \) of a topological space \((X, \tau)\), the following are equivalent:

(1) \(A \) is \(b\)-\(\theta \)-closed;

(2) \(A \) is qbt-closed and \(\Lambda_b\)-\(b\)-\(\theta \)-closed.

Proof. (1) ⇒ (2): It is obvious that every \(b\)-\(\theta \)-closed set is both qbt-closed and \(\Lambda_b\)-\(b\)-\(\theta \)-closed.

(2) ⇒ (1): Since \(A \) is qbt-closed, then \(b\text{Cl}_\theta(A) \subset b\text{Ker}_\theta(A) \). Now \(A = b\text{Ker}_\theta(A) \cap b\text{Cl}_\theta(A) = b\text{Cl}_\theta(A) \). \(\square \)

Lemma 2.14. Let \((X, \tau)\) be a topological space and \(x, y \in X \). Then the following two statement are equivalent:

(1) \(y \in b\text{Ker}_\theta(\{x\}) \);
Hence $bKer Cl \in \{z\} \in y$ such that $bKer Cl Cl \in y$ and y is open set contains the x and x containing similar.

Lemma 2.15. The following statements are equivalent for any two points x and y in a topological space (X, τ):

1. $bKer Cl \{x\} \neq bKer Cl \{y\}$;
2. $bCl Cl \{x\} \neq bCl Cl \{y\}$.

Proof. (1) \Rightarrow (2): Let $bKer Cl \{x\} \neq bCl Cl \{y\}$. Then there exists a point z in X such that $z \in bKer Cl \{x\}$ and $z \notin bKer Cl \{y\}$. By $z \in bKer Cl \{x\}$, it follows that $\{x\} \cap bCl Cl \{z\} \neq \emptyset$. This implies $x \in bCl Cl \{z\}$. By $z \notin bKer Cl \{y\}$, we obtain $\{y\} \cap bCl Cl \{z\} = \emptyset$. Since $x \in bCl Cl \{z\}$, $bCl Cl \{x\} \subset bCl Cl \{z\}$ and $\{y\} \cap bCl Cl \{x\} = \emptyset$. Hence it follows that $bCl Cl \{x\} \neq bCl Cl \{y\}$. Now $bKer Cl \{x\} \neq bKer Cl \{y\}$ implies that $bCl Cl \{x\} \neq bCl Cl \{y\}$.

(2) \Rightarrow (1): Let $bCl Cl \{x\} \neq bCl Cl \{y\}$. Then there exists a point z in X such that $z \in bCl Cl \{x\}$ and $z \notin bCl Cl \{y\}$. This means that there exists a b-θ-open set containing z and therefore x but not y, that is, $y \notin bKer Cl \{x\}$. Hence $bKer Cl \{x\} \neq bKer Cl \{y\}$.

Definition 10. A topological space (X, τ) is a b-θ-R_0 space if every b-θ-open set contains the b-θ-closure of each of its singletons.

Example 2.16. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then (X, τ) is a b-θ-R_0 topological space.

Theorem 2.17. A topological space (X, τ) is b-θ-R_0 if and only if for x and y in X, $bCl Cl \{x\} \neq bCl Cl \{y\}$ implies $bCl Cl \{x\} \cap bCl Cl \{y\} = \emptyset$.

Proof. Suppose that (X, τ) is b-θ-R_0 and $x, y \in X$ such that $bCl Cl \{x\} \neq bCl Cl \{y\}$. Then, there exists $z \in bCl Cl \{x\}$ such that $z \notin bCl Cl \{y\}$ (or $z \in bCl Cl \{y\}$ such that $z \notin bCl Cl \{x\}$). There exists $V \in BO(X, \tau)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin bCl Cl \{y\}$. Thus $x \in X \setminus bCl Cl \{y\}$, which implies $bCl Cl \{x\} \subset X \setminus bCl Cl \{y\}$ and $bCl Cl \{x\} \cap bCl Cl \{y\} = \emptyset$. The proof for otherwise is similar. Conversely, Let V be b-θ-
open and let \(x \in V \). we will show that \(b \text{Cl}_\theta (\{x\}) \subset V \). Let \(y \notin V \) that is, \(y \in X \setminus V \). Then \(x \neq y \) and \(x \notin b \text{Cl}_\theta (\{y\}) \). This shows that \(b \text{Cl}_\theta (\{x\}) \neq b \text{Cl}_\theta (\{y\}) \). By assumption, \(b \text{Cl}_\theta (\{x\}) \cap b \text{Cl}_\theta (\{y\}) = \emptyset \). Hence \(y \notin b \text{Cl}_\theta (\{x\}) \). Therefore, \(b \text{Cl}_\theta (\{x\}) \subset V \). \(\square \)

Theorem 2.18. A topological space \((X, \tau)\) is \(b\theta-R_0\) if and only if for any points \(x \) and \(y \) in \(X \), \(b\text{Ker}_\theta (\{x\}) \neq b\text{Ker}_\theta (\{y\}) \) implies \(b\text{Ker}_\theta (\{x\}) \cap b\text{Ker}_\theta (\{y\}) = \emptyset \).

Proof. Suppose that \((X, \tau)\) is \(b\theta-R_0\) space. Thus by Lemma 2.15, for any points \(x \) and \(y \) in \(X \) if \(b\text{Ker}_\theta (\{x\}) \neq b\text{Ker}_\theta (\{y\}) \) then \(b\text{Cl}_\theta (\{x\}) \neq b\text{Cl}_\theta (\{y\}) \). Now we prove that \(b\text{Ker}_\theta (\{x\}) \cap b\text{Ker}_\theta (\{y\}) = \emptyset \). Assume that \(z \in b\text{Ker}_\theta (\{x\}) \cap b\text{Ker}_\theta (\{y\}) \). By \(z \in b\text{Ker}_\theta (\{x\}) \) and Lemma 2.14, it follows that \(x \in b\text{Cl}_\theta (\{z\}) \). Since \(x \in b\text{Cl}_\theta (\{x\}) \), by theorem 2.17 \(b\text{Cl}_\theta (\{x\}) = b\text{Cl}_\theta (\{z\}) \). Similarly, we have \(b\text{Cl}_\theta (\{y\}) = b\text{Cl}_\theta (\{z\}) = b\text{Cl}_\theta (\{x\}) \). This is a contradiction. Therefore, we have \(b\text{Ker}_\theta (\{x\}) \cap b\text{Ker}_\theta (\{y\}) = \emptyset \). Conversely, let \((X, \tau)\) be a topological space such that for any points \(x \) and \(y \) in \(X \), \(b\text{Ker}_\theta (\{x\}) \neq b\text{Ker}_\theta (\{y\}) \) implies \(b\text{Ker}_\theta (\{x\}) \cap b\text{Ker}_\theta (\{y\}) = \emptyset \). If \(b\text{Cl}_\theta (\{x\}) \neq b\text{Cl}_\theta (\{y\}) \), then by Lemma 2.15, \(b\text{Ker}_\theta (\{x\}) \neq b\text{Ker}_\theta (\{y\}) \). Hence \(b\text{Ker}_\theta (\{x\}) \cap b\text{Ker}_\theta (\{y\}) = \emptyset \) which implies \(b\text{Cl}_\theta (\{x\}) \cap b\text{Cl}_\theta (\{y\}) = \emptyset \). Because \(z \in b\text{Cl}_\theta (\{x\}) \) implies \(x \in b\text{Ker}_\theta (\{z\}) \) and therefore \(b\text{Ker}_\theta (\{x\}) \cap b\text{Ker}_\theta (\{z\}) \neq \emptyset \). By hypothesis, we have \(b\text{Ker}_\theta (\{x\}) = b\text{Ker}_\theta (\{z\}) \). Then \(z \in b\text{Cl}_\theta (\{x\}) \cap b\text{Cl}_\theta (\{y\}) \) implies that \(b\text{Ker}_\theta (\{x\}) = b\text{Ker}_\theta (\{z\}) = b\text{Ker}_\theta (\{y\}) \). This is a contradiction. Hence \(b\text{Cl}_\theta (\{x\}) \cap b\text{Cl}_\theta (\{y\}) = \emptyset \) and by Theorem 2.17 \((X, \tau)\) is \(b\theta-R_0\) space. \(\square \)

Theorem 2.19. For a topological space \((X, \tau)\), the following properties are equivalent:

1. \((X, \tau)\) is a \(b\theta-R_0\) space;
2. For any nonempty sets \(A \), \(G \in B\theta O(X) \) such that \(A \cap G \neq \emptyset \) there exists \(F \in B\theta O(X) \) such that \(A \cap F \neq \emptyset \) and \(F \subset G \);
3. Any \(G \in B\theta O(X) \) such that \(G = \bigcup \{ F \in B\theta C(X) | F \subset G \} \);
4. Any \(F \in B\theta C(X) \), \(F = \bigcap \{ G \in B\theta O(X) | F \subset G \} \);
5. For any \(x \in X \), \(b\text{Cl}_\theta (\{x\}) \subset b\text{Ker}_\theta (\{x\}) \).

Proof. (1) \(\Rightarrow\) (2): Let \(A \) be a nonempty set of \(X \) and \(G \in B\theta O(X) \) such that \(A \cap G \neq \emptyset \). There exists \(x \in A \cap G \). Since \(x \in G \in B\theta O(X) \), \(b\text{Cl}_\theta (\{x\}) \subset G \).
Set $F = b\text{Cl}_\theta\{x\}$, then $F \in B\theta C(X)$, $F \subset G$ and $A \cap F \neq \emptyset$.

(2) \Rightarrow (3): Let $G \in B\theta O(X)$, then $G \supset \bigcup\{F \in B\theta C(X) | F \subset G\}$. Let x be any point of G. There exists $F \in B\theta C(X)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \bigcup\{F \in B\theta C(X) | F \subset G\}$ and hence $G = \bigcup\{F \in B\theta C(X) | F \subset G\}$.

(3) \Rightarrow (4): This is obvious.

(4) \Rightarrow (5): Let x be any point of X and $y \notin b\text{Ker}_\theta\{x\}$. There exists $V \in B\theta O(X, x)$ $y \notin V$; hence $b\text{Cl}_\theta\{\{y\}\} \cap V = \emptyset$. By (4) $(\cap\{G \in B\theta O(X) | b\text{Cl}_\theta\{\{y\}\}\subset G\}) \cap V = \emptyset$ and there exists $G \in B\theta O(X)$ such that $x \notin G$ and $b\text{Cl}_\theta\{\{x\}\} \subset G$. Therefore, $b\text{Cl}_\theta\{\{x\}\} \cap G = \emptyset$ and $y \notin b\text{Cl}_\theta\{\{x\}\}$. Consequently, we obtain $b\text{Cl}_\theta\{\{x\}\} \subset b\text{Ker}_\theta\{\{x\}\}$.

(5) \Rightarrow (1): Let $G \subset B\theta O(X, x)$. Let $y \in b\text{Ker}_\theta\{\{x\}\}$, then $x \in b\text{Cl}_\theta\{\{x\}\}$ and $y \in G$. This implies that $b\text{Ker}_\theta\{\{x\}\} \subset G$. Therefore, we obtain $x \in b\text{Cl}_\theta\{\{x\}\} \subset b\text{Ker}_\theta\{\{x\}\} \subset G$. This shows that (X, τ) is a $b\theta$-R$_0$ space.

Corollary 2.20. For a topological space (X, τ), the following properties are equivalent:

1. (X, τ) is a $b\theta$-R$_0$ space;
2. $b\text{Cl}_\theta\{\{x\}\} = b\text{Ker}_\theta\{\{x\}\}$ for all $x \in X$.

Proof. (1) \Rightarrow (2): Suppose that (X, τ) is a $b\theta$-R$_0$ space. By Theorem 2.19, $b\text{Cl}_\theta\{\{x\}\} \subset b\text{Ker}_\theta\{\{x\}\}$ for each $x \in X$. Let $y \in b\text{Ker}_\theta\{\{x\}\}$, then $x \in b\text{Cl}_\theta\{\{y\}\}$ and by theorem 2.17 $b\text{Cl}_\theta\{\{x\}\} = b\text{Cl}_\theta\{\{y\}\}$. Therefore, $y \in b\text{Cl}_\theta\{\{x\}\}$ and hence $b\text{Ker}_\theta\{\{x\}\} \subset b\text{Cl}_\theta\{\{x\}\}$. This shows that $b\text{Cl}_\theta\{\{x\}\} = b\text{Ker}_\theta\{\{x\}\}$.

(2) \Rightarrow (1): This is obvious theorem 2.19.

Corollary 2.21. If for any point x of a $b\theta$-R$_0$ space (X, τ), $b\text{Cl}_\theta\{\{x\}\} \cap b\text{Ker}_\theta\{\{x\}\} = \{x\}$, then $b\text{Ker}_\theta\{\{x\}\} = \{x\}$.

Proof. The proof follows from Theorem 2.19 (5).

Theorem 2.22. For a topological space (X, τ), the following properties are equivalent:

1. (X, τ) is a $b\theta$-R$_0$ space;
2. $x \in b\text{Cl}_\theta\{\{y\}\}$ if and only if $y \in b\text{Cl}_\theta\{\{x\}\}$ for any points x and y in X.

Proof. (1) ⇒ (2): Assume that \((X, \tau)\) is \(b\theta\)-R0. Let \(x \in b\text{Cl}_\theta\{\{y\}\}\) and \(A \in B\theta O(X, y)\). Now by hypothesis, \(x \in A\). Therefore, every \(b\theta\)-open set containing \(y\) contains \(x\). Hence \(y \in b\text{Cl}_\theta\{\{x\}\}\).

(2) ⇒ (1): Let \(U \in B\theta O(X, x)\). If \(y \notin U\), then \(x \notin b\text{Cl}_\theta\{\{y\}\}\) and hence \(y \notin b\text{Cl}_\theta\{\{x\}\}\). This implies that \(b\text{Cl}_\theta\{\{x\}\} \subseteq U\). Hence \((X, \tau)\) is \(b\theta\)-R0.

Theorem 2.23. For a topological space \((X, \tau)\), the following properties are equivalent:

1. \((X, \tau)\) is a \(b\theta\)-R0 space;
2. If \(F\) is \(b\theta\)-closed subset of \(X\), then \(F = b\text{Ker}_\theta(F)\);
3. If \(F\) is \(b\theta\)-closed subset of \(X\) and \(x \in F\), then \(b\text{Ker}_\theta(\{x\}) \subseteq F\);
4. If \(x \in X\), then \(b\text{Ker}_\theta(\{x\}) \subseteq b\text{Cl}_\theta(\{x\})\).

Proof. (1) ⇒ (2): Let \(F\) be \(b\theta\)-closed subset of \(X\) and \(x \notin F\). Thus \(X \setminus F \in B\theta O(X, x)\). Since \((X, \tau)\) is \(b\theta\)-R0, \(b\text{Cl}_\theta(\{x\}) \subseteq X \setminus F\). Thus \(b\text{Cl}_\theta(\{x\}) \cap F = \emptyset\) and hence \(x \notin b\text{Ker}_\theta(F)\). Therefore, \(b\text{Ker}_\theta(F) = F\).

(2) ⇒ (3): In general, \(A \subseteq B\) implies \(b\text{Ker}_\theta(A) \subseteq b\text{Ker}_\theta(B)\). Therefore, it follows from (2) that \(b\text{Ker}_\theta(\{x\}) \subseteq b\text{Ker}_\theta(F) = F\).

(3) ⇒ (4): Since \(x \in b\text{Cl}_\theta(\{x\})\) and \(b\text{Cl}_\theta(\{x\})\) is \(b\theta\)-closed, by (3) \(b\text{Ker}_\theta(\{x\}) \subseteq b\text{Cl}_\theta(\{x\})\).

(4) ⇒ (1): We show implication by using Theorem 2.22. Let \(x \in b\text{Cl}_\theta(\{y\})\). Then \(y \in b\text{Ker}_\theta(\{x\})\). Since \(x \in b\text{Cl}_\theta(\{x\})\) and \(b\text{Cl}_\theta(\{x\})\) is \(b\theta\)-closed, by (4) we obtain \(y \in b\text{Ker}_\theta(\{x\}) \subseteq b\text{Cl}_\theta(\{x\})\). Therefore, \(x \in b\text{Cl}_\theta(\{x\})\) implies \(y \in b\text{Cl}_\theta(\{x\})\). The converse is obvious and \((X, \tau)\) is \(b\theta\)-R0.

Definition 11. A filterbase \(F\) is called \(b\theta\)-convergent to a point \(x\) in \(X\) if for any \(U \in B\theta O(X, x)\), there exists \(B \in F\) such that \(B\) is a subset of \(U\).

Lemma 2.24. Let \((X, \tau)\) be a topological space and let \(x\) and \(y\) be any two points in \(X\) such that every net in \(X\) \(b\theta\)-converging to \(y\) \(b\theta\)-converges to \(x\). Then \(x \in b\text{Cl}_\theta(\{y\})\).

Proof. Suppose that \(x_n = y\) for each \(n \in N\). Then \(\{x_n\}_{n \in N}\) is a net in \(b\text{Cl}_\theta(\{y\})\). Since \(\{x_n\}_{n \in N}\) \(b\theta\)-converges to \(y\), then \(\{x_n\}_{n \in N}\) \(b\theta\)-converges to \(x\) and this implies that \(x \in b\text{Cl}_\theta(\{y\})\).
Theorem 2.25. For a topological space \((X, \tau)\), the following statements are equivalent:

(1) \((X, \tau)\) is a \(b\theta\)-\(R_0\) space;

(2) If \(x, y \in X\), then \(y \in b\text{Cl}_0(\{x\})\) if and only if every net in \(X\) \(b\theta\)-converging to \(y\) \(b\theta\)-converges to \(x\).

Proof. (1) \(\Rightarrow\) (2): Let \(x, y \in X\) such that \(y \in b\text{Cl}_0(\{x\})\). Suppose that \(\{x_\alpha\}_{\alpha \in \mathcal{N}}\) be a net in \(X\) such that \(\{x_\alpha\}_{\alpha \in \mathcal{N}}\) \(b\theta\)-converges to \(y\). Since \(y \in b\text{Cl}_0(\{x\})\), \(b\text{Cl}_0(\{x\}) = b\text{Cl}_0(\{y\})\). Therefore \(x \in b\text{Cl}_0(\{y\})\). This means that \(\{x_\alpha\}_{\alpha \in \mathcal{N}}\) \(b\theta\)-converges to \(x\). Conversely, let \(x, y \in X\) such that every net in \(X\) \(b\theta\)-converging to \(y\) \(b\theta\)-converges to \(x\). Then \(x \in b\text{Cl}_0(\{y\})\). Hence \(y \in b\text{Cl}_0(\{x\})\).

(2) \(\Rightarrow\) (1): Assume that \(x\) and \(y\) are any two points of \(X\) such that \(b\text{Cl}_0(\{x\}) \cap b\text{Cl}_0(\{y\}) \neq \emptyset\). Let \(z \in b\text{Cl}_0(\{x\}) \cap b\text{Cl}_0(\{y\})\). So there exists a net \(\{x_\alpha\}_{\alpha \in \mathcal{N}}\) in \(b\text{Cl}_0(\{x\})\) such that \(\{x_\alpha\}_{\alpha \in \mathcal{N}}\) \(b\theta\)-converges to \(z\). Since \(z \in b\text{Cl}_0(\{y\})\), \(\{x_\alpha\}_{\alpha \in \mathcal{N}} \neq b\text{Cl}_0(\{y\})\). Similarly we can obtain \(x \in b\text{Cl}_0(\{y\})\). Therefore \(b\text{Cl}_0(\{x\}) = b\text{Cl}_0(\{y\})\) and hence \((X, \tau)\) is \(b\theta\)-\(R_0\).

3. On \(b\theta\)-\(R_1\) Spaces

Definition 12. A topological space \((X, \tau)\) is said to be \(b\theta\)-\(R_1\) if for \(x, y\) in \(X\) with \(b\text{Cl}_0(\{x\}) \neq b\text{Cl}_0(\{y\})\), there exist disjoint \(b\theta\)-open sets \(U\) and \(V\) such that \(b\text{Cl}_0(\{x\}) \subset U\) and \(b\text{Cl}_0(\{y\}) \subset V\).

Proposition 3.1. If \((X, \tau)\) is \(b\theta\)-\(R_1\), then it is \(b\theta\)-\(R_0\).

Proof. Let \(U \in \theta\text{B}(X, x)\). If \(y \notin U\), then since \(x \notin b\text{Cl}_0(\{y\})\), \(b\text{Cl}_0(\{x\}) \neq b\text{Cl}_0(\{y\})\). Hence there exists a \(b\theta\)-open \(V\) such that \(b\text{Cl}_0(\{y\}) \subset V\) and \(x \notin V\). Thus \(b\text{Cl}_0(\{x\}) \subset U\). Therefore \((X, \tau)\) is \(b\theta\)-\(R_0\).

Theorem 3.2. A topological space \((X, \tau)\) is \(b\theta\)-\(R_1\) if and only if for \(x, y \in X\), \(b\text{Ker}_0(\{x\}) \neq b\text{Ker}_0(\{y\})\), there exists disjoint \(b\theta\)-open sets \(U\) and \(V\) such that \(b\text{Cl}_0(\{x\}) \subset U\) and \(b\text{Cl}_0(\{y\}) \subset V\).
Proof. It follows from Lemma 2.15.

Definition 13. A topological space (X, τ) is said to be:

(1) b-θ-T_1 is for each pair of distinct points x and y of X, there exist b-θ-open sets U and V of X such that $x \in U$ and $y \notin U$, and $y \in V$ and $x \notin V$.

(2) b-θ-T_2 if for each pair of disjoint points x and y in X, there exist disjoint b-θ-open sets U and V in X such that $x \in U$ and $y \in V$.

Theorem 3.3. The following properties are equivalent:

(1) (X, τ) is b-θ-T_2,

(2) (X, τ) is b-θ-R_1 and b-θ-T_1,

(3) (X, τ) is b-θ-R_1 and b-θ-T_0.

Proof. (1) \Rightarrow (2): Since (X, τ) is b-θ-T_2, then it is b-θ-T_1. If $x, y \in X$ such that $b\text{Cl}_\theta(\{x\}) \neq b\text{Cl}_\theta(\{y\})$, then $x \neq y$ and there exists disjoint b-θ-open sets U and V such that $x \in U$ and $y \in V$ and $b\text{Cl}_\theta(\{x\}) = \{x\} \subset U$ and $b\text{Cl}_\theta(\{y\}) = \{y\} \subset V$. Hence (X, τ) is b-θ-R_1.

(2) \Rightarrow (3): Since (X, τ) is b-θ-T_1, then (X, τ) is b-θ-T_0.

(3) \Rightarrow (1): Since (X, τ) is b-θ-R_1, and b-θ-T_1, then (X, τ) is b-θ-R_0 and b-θ-T_0. Let $x, y \in X$ such that $x \neq y$. Since $b\text{Cl}_\theta(\{x\}) = \{x\} \neq \{y\} = b\text{Cl}_\theta(\{y\})$, then there exists disjoint b-θ-open sets U and V such that $x \in U$ and $y \in V$. Hence, (X, τ) is b-θ-T_2.

Theorem 3.4. The following properties are equivalent:

(1) (X, τ) is b-θ-R_1,

(2) for each $x, y \in X$ one of the following holds:

(a) If U is b-θ-open, then $x \in U$ if and only if $y \in U$.

(b) there exists disjoint b-θ-open sets U and V such that $x \in U$ and $y \in V$, and

(3) If $x, y \in X$ such that $b\text{Cl}_\theta(\{x\}) \notin b\text{Cl}_\theta(\{y\})$, then there exists b-θ-closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_2$, $y \in F_1$, $x \notin F_2$, and $X = F_1 \cup F_2$.

Proof. (1) \Rightarrow (2): Let $x, y \in X$. Then $b\text{Cl}_\theta(\{x\}) = b\text{Cl}_\theta(\{y\})$ or $b\text{Cl}_\theta(\{x\}) \neq b\text{Cl}_\theta(\{y\})$. If $b\text{Cl}_\theta(\{x\}) = b\text{Cl}_\theta(\{y\})$ and U is b-θ-open, then $x \in U$ implies
y \in b\mathrm{Cl}_\theta(\{x\}) \subset U \text{ and } y \in U \text{ implies } x \in b\mathrm{Cl}_\theta(\{y\}) \subset U. \text{ Thus consider the case that } b\mathrm{Cl}_\theta(\{x\}) \neq b\mathrm{Cl}_\theta(\{y\}). \text{ Then there exists disjoint } b\theta\text{-open sets } U \text{ and } V \text{ such that } x \in b\mathrm{Cl}_\theta(\{x\}) \subset U \text{ and } y \in b\mathrm{Cl}_\theta(\{y\}) \subset V.

\text{(2) } \Rightarrow \text{ (3): Let } x, y \in X \text{ such that } b\mathrm{Cl}_\theta(\{x\}) \neq b\mathrm{Cl}_\theta(\{y\}). \text{ Then } x \notin b\mathrm{Cl}_\theta(\{y\}) \text{ or } y \notin b\mathrm{Cl}_\theta(\{x\}), \text{ say } x \notin b\mathrm{Cl}_\theta(\{y\}). \text{ Then there exists a } b\theta\text{-open set } A \text{ such that } x \in A \text{ and } y \notin A, \text{ which implies there exists disjoint } b\theta\text{-open sets } U \text{ and } V \text{ such that } x \in U \text{ and } y \in V. \text{ Then } F_1 = X \setminus V \text{ and } F_2 = X \setminus U \text{ are } b\theta\text{-closed sets such that } x \in F_1, y \notin F_1, y \in F_2, x \notin F_2, X = F_1 \cup F_2.

\text{(3) } \Rightarrow \text{ (1): Let } x \text{ and } y \text{ be any points in } X \text{ with } b\mathrm{Cl}_\theta(\{x\}) \neq b\mathrm{Cl}_\theta(\{y\}). \text{ Then } b\mathrm{Cl}_\theta(\{x\}) \cap b\mathrm{Cl}_\theta(\{y\}) = \emptyset. \text{ In fact, if } z \in b\mathrm{Cl}_\theta(\{x\}) \cap b\mathrm{Cl}_\theta(\{y\}), \text{ then } b\mathrm{Cl}_\theta(\{z\}) \neq b\mathrm{Cl}_\theta(\{x\}) \text{ or } b\mathrm{Cl}_\theta(\{z\}) \neq b\mathrm{Cl}_\theta(\{y\}). \text{ In case, } b\mathrm{Cl}_\theta(\{z\}) \neq b\mathrm{Cl}_\theta(\{x\}), \text{ by (iii), there exists a } b\theta\text{-closed set } F \text{ such that } x \in F \text{ and } z \notin F. \text{ Then } z \in b\mathrm{Cl}_\theta(\{x\}) \subset F. \text{ This contradicts that } z \notin F. \text{ In case, } b\mathrm{Cl}_\theta(\{z\}) \neq b\mathrm{Cl}_\theta(\{y\}), \text{ similarly, this leads to the contradiction. Hence } b\mathrm{Cl}_\theta(\{x\}) \cap b\mathrm{Cl}_\theta(\{y\}) = \emptyset. \text{ Let } U \text{ be } b\theta\text{-open and let } x \in U. \text{ Then } b\mathrm{Cl}_\theta(\{x\}) \subset U, \text{ for suppose not. Let } y \in b\mathrm{Cl}_\theta(\{x\}) \cap (X \setminus U). \text{ Then } b\mathrm{Cl}_\theta(\{x\}) \neq b\mathrm{Cl}_\theta(\{y\}) \text{ and there exists } b\theta\text{-closed sets } F_1 \text{ and } F_2 \text{ such that } x \in F_1, y \notin F_1, y \in F_2, x \notin F_2, X = F_1 \cup F_2. \text{ Then } y \in X \setminus F_1, \text{ which is } b\theta\text{-open, and } x \notin X \setminus F_1 \text{ which is a contradiction. Hence } (X, \tau) \text{ is } b\theta\text{-R}_0. \text{ Let } a, b \in X \text{ such that } b\mathrm{Cl}_\theta(\{a\}) \neq b\mathrm{Cl}_\theta(\{b\}). \text{ Then there exists } b\theta\text{-closed sets } A_1 \text{ and } A_2 \text{ such that } a \in A_1, b \notin A_1, a \notin A_2, \text{ and } X = A_1 \cup A_2. \text{ Thus } a \in X \setminus A_2 \text{ and } b \in X \setminus A_1, \text{ which are } b\theta\text{-open, which implies } b\mathrm{Cl}_\theta(\{a\}) \subset A_1 \setminus A_2 \text{ and } b\mathrm{Cl}_\theta(\{b\}) \subset A_2 \setminus A_1. \text{ Hence } (X, \tau) \text{ is } b\theta\text{-R}_1.

\textbf{Theorem 3.5.} \text{ A topological space } (X, \tau) \text{ is } b\theta\text{-T}_2 \text{ if and only if for } x, y \in X \text{ such that } x \neq y, \text{ there exists } b\theta\text{-closed sets } F_1 \text{ and } F_2 \text{ such that } x \in F_1, y \notin F_1, y \in F_2, x \notin F_2, \text{ and } X = F_1 \cup F_2.

\text{Proof.} \text{ The straightforward proof is omitted. } \square

\textbf{Remark 3.6.} \text{ If } \{x_\lambda\}_{\lambda \in A} \text{ is a net in } (X, \tau), \beta\lim(\{x_\lambda\}_{\lambda \in A}) = \{x \in X : \{x_\lambda\}_{\lambda \in A} \text{ } b\theta\text{-converges to } x\}

\textbf{Theorem 3.7.} \text{ For a topological space } (X, \tau), \text{ the following properties are equivalent}

\begin{enumerate}
\item \text{} (X, \tau) \text{ is } b\theta\text{-R}_1;
\item \text{} for } x, y \in X, b\mathrm{Cl}_\theta(\{x\}) = b\mathrm{Cl}_\theta(\{y\}), \text{ whenever there exists a net } \{x_\lambda\}_{\lambda \in A} \text{ such that } x, y \in \beta\lim(\{x_\lambda\}_{\lambda \in A});
\end{enumerate}
(3) \((X, \tau)\) is \(b\theta\)-\(R_0\), and for every \(b\theta\)-convergent net \(\{x_\lambda\}_{\lambda \in A} \) in \(X\),
\[\beta \lim(\{x_\lambda\}_{\lambda \in A}) = b \text{Cl}_\theta(\{x\}) \] for some \(x \in X\).

Proof. (1) \(\Rightarrow\) (2): Let \(x, y \in X\), such that there exists a net \(\{x_\lambda\}_{\lambda \in A} \) in \(X\) such that \(x, y \in \beta \lim(\{x_\lambda\}_{\lambda \in A})\). Then (a) if \(U\) is \(b\theta\)-open, then \(x \in U\) if and only if \(y \in U\) or (b) there exists disjoint \(b\theta\)-open sets \(U\) and \(V\) such that \(x \in U\) and \(y \in V\). Since \(x, y \in \beta \lim(\{x_\lambda\}_{\lambda \in A})\), then (1) is satisfied, which implies
\[b \text{Cl}_\theta(\{x\}) = b \text{Cl}_\theta(\{y\}) \].

(2) \(\Rightarrow\) (3): Let \(U \in B\theta O(X, x)\). Let \(y \notin U\). For each \(n \in \mathbb{N}\) let \(x_n = x\). Then \(\{x_n\}_{n \in \mathbb{N}}\) \(b\theta\)-converges to \(x\) and since \(b \text{Cl}_\theta(\{x\}) \neq b \text{Cl}_\theta(\{y\})\), that \(y \in A\) and \(x \notin A\). Thus, \(y \notin b \text{Cl}_\theta(\{x\})\) and \(b \text{Cl}_\theta(\{y\}) \subset U\). Hence \((X, \tau)\) is \(b\theta\)-\(R_0\). Let \(\{x_\lambda\}_{\lambda \in A} \) be \(b\theta\)-convergent net in \(X\). Let \(x \in X\) such that \(\{x_\lambda\}_{\lambda \in A} \) \(b\theta\)-converges to \(y\). If \(y \notin b \text{Cl}_\theta(\{x\})\), then \(\{x_\lambda\}_{\lambda \in A} \) \(b\theta\)-converges to \(y\), which implies \(b \text{Cl}_\theta(\{x\}) \subset \beta \lim(\{x_\lambda\}_{\lambda \in A})\) and if \(y \in \beta \lim(\{x_\lambda\}_{\lambda \in A})\), then \(x, y \in \beta \lim(\{x_\lambda\}_{\lambda \in A})\), which implies \(y \in b \text{Cl}_\theta(\{y\}) = b \text{Cl}_\theta(\{x\})\). Hence \(\beta \lim(\{x_\lambda\}_{\lambda \in A}) = b \text{Cl}_\theta(\{x\})\).

(3) \(\Rightarrow\) (1): Assume that \((X, \tau)\) is not \(b\theta\)-\(R_1\). Then there exists \(x, y \in X\) such that \(b \text{Cl}_\theta(\{x\}) \neq b \text{Cl}_\theta(\{y\})\) and every \(b\theta\)-open set containing \(b \text{Cl}_\theta(\{x\})\) intersects every \(b\theta\)-open set containing \(b \text{Cl}_\theta(\{y\})\). Since \((X, \tau)\) is \(b\theta\)-\(R_0\), then every \(b\theta\)-open set containing \(x\) contains \(b \text{Cl}_\theta(\{x\})\) and every \(b\theta\)-open set containing \(y\) contains \(b \text{Cl}_\theta(\{y\})\), which implies that every \(b\theta\)-open set containing \(x\) intersects every \(b\theta\)-open set containing \(y\). Let \(D_x = \{U \subset X : U \in B\theta O(X, x)\}\). Let \(\geq_x\) be the binary relation on \(D_x\) defined by
\[U_1 \geq_x U_2 \text{ if and only if } U_1 \subset U_2. \]
Then, clearly \((D_x, \geq_x)\) is a directed set. Let \(D_y = \{U \subset X : U \in B\theta O(X, y)\}\) and \(\geq_y\) be binary relation on \(D_y\) defined by \(U_1 \geq_y U_2\) if and only if \(U_1 \subset U_2\). Then, \((D_y, \geq_y)\) is also a directed set. Let \(D = \{(U_1, U_2) : U_1 \in D_x \text{ and } U_2 \in D_y\}\) and let \(\geq\) be the binary relation on \(D\) defined by \((U_1, U_2) \geq (V_1, V_2)\) if and only if \(U_1 \geq_x V_1 \text{ and } U_2 \geq_y V_2\). Then, \((D, \geq)\) is directed set. For each \((U_1, U_2) \in D\), let \(x(U_1, U_2) \in (U_1, U_2)\). Then \(\{x(U_1, U_2)\} \subset D\) is a net in \(X\) that \(b\theta\)-converges to both \(x\) and \(y\). Thus, there exists \(z \in X\) such that
\[\beta \lim(\{x(U_1, U_2)\} \subset D) = b \text{Cl}_\theta(\{z\}) \], which implies \(x, y \in b \text{Cl}_\theta(\{z\})\). Since \(\{b \text{Cl}_\theta(\{w\}) : w \in X\}\) is a decomposition of \(X\), then \(b \text{Cl}_\theta(\{x\}) = b \text{Cl}_\theta(\{z\}) = b \text{Cl}_\theta(\{y\})\), which is a contradiction. Hence \((X, \tau)\) is \(b\theta\)-\(R_1\). \(\square\)

Theorem 3.8. A topological space \((X, \tau)\) is \(b\theta\)-\(T_2\) if and only if every \(b\theta\)-convergent net in \(X\) \(b\theta\)-converges to a unique point.
ON θ-b-GENERALIZED CLOSED SETS... 309

Proof. The proof follows from Theorem 3.7 and 3.3.

Theorem 3.9. For a topological space \((X, \tau)\), the following properties are equivalent

1. \((X, \tau)\) is \(b\)-\(\theta\)-\(R_1\),

2. for each pair \(x, y \in X\), \(b \text{Cl}_\theta(\{x\}) \neq b \text{Cl}_\theta(\{y\})\), there exists a \(b\)-\(\theta\)-regular set \(V\) such that \(y \notin V\);

3. for each pair \(x, y \in X\) \(b \text{Cl}_\theta(\{x\}) \neq b \text{Cl}_\theta(\{y\})\), there exists a \(b\)-\(\theta\)-continuous function \(f : (X, \tau) \to [0, 1]\) such that \(f(x) = 0\) and \(f(y) = 1\).

Proof. (1) \(\Rightarrow\) (2): Let \(x, y \in X\) such that \(b \text{Cl}_\theta(\{x\}) \notin b \text{Cl}_\theta(\{y\})\). Then there exists disjoint \(b\)-\(\theta\)-open sets \(U\) and \(W\) such that \(b \text{Cl}_\theta(\{x\}) \subset U\) and \(b \text{Cl}_\theta(\{y\}) \subset W\) and \(V = b \text{Cl}_\theta(\{U\})\) is \(b\)-\(\theta\)-regular such that \(x \in V\) and \(y \notin V\).

(2) \(\Rightarrow\) (3): Let \(x, y \in X\) such that \(b \text{Cl}_\theta(\{x\}) \neq b \text{Cl}_\theta(\{y\})\). Let \(V\) be a \(b\)-\(\theta\)-open, \(b\)-\(\theta\)-closed set of \(X\) such that \(x \in V\) and \(y \notin V\). Thus, the function \(f : (X, \tau) \to [0, 1]\) defined by \(f(z) = 0\) if \(z \in V\) and \(f(z) = 1\) if \(z \notin V\) satisfies the desired properties.

(3) \(\Rightarrow\) (1): Let \(x, y \in X\) such that \(b \text{Cl}_\theta(\{x\}) \neq b \text{Cl}_\theta(\{y\})\). Let \(f : (X, \tau) \to [0, 1]\) such that \(f\) is \(b\)-\(\theta\)-continuous, \(f(x) = 0\) and \(f(y) = 1\). Then \(U = f^{-1}([0, 0.5])\) and \(V = f^{-1}((0.5, 1])\) are disjoint such that \(b\)-\(\theta\)-open, \(b\)-\(\theta\)-closed set of \(X\) and \(b \text{Cl}_\theta(\{x\}) \subset U\) and \(b \text{Cl}_\theta(\{y\}) \subset V\).

Theorem 3.10. For a topological space \((X, \tau)\), the following properties are equivalent

1. \((X, \tau)\) is \(b\)-\(\theta\)-\(R_1\),

2. for each pair \(x, y \in X\), \(x \neq y\), there exists a \(b\)-\(\theta\)-open, \(b\)-\(\theta\)-closed set \(V\) such that \(y \notin V\);

3. for each pair \(x, y \in X\), \(x \neq y\), there exists a \(b\)-\(\theta\)-continuous function \(f : (X, \tau) \to [0, 1]\) such that \(f(x) = 0\) and \(f(y) = 1\).

Proof. The proof is similar to that of Theorem 3.9.

References

