EPIMORPHISM OF RINGS AND ABSOLUTELY FLAT MODULES

S. Mangayarcarassy
Department of Mathematics
Pondicherry Engineering College
Pondicherry, 605014, INDIA

Abstract: Let $R \subset S$ be a commutative ring extension. We prove that if $\phi : R \to S$ is an epimorphism of rings with ϕ injective homomorphism and S is R-projective, then an R-module M is R-injective and S is absolutely flat over R if and only if $\text{Hom}_R(S, M)$ is S-injective and S is an absolutely flat ring.

AMS Subject Classification: 13C11, 13D07, 13E05
Key Words: projective modules, injective modules, epimorphism of rings, absolutely flat modules

1. Introduction

Throughout this article, R denotes a commutative ring with identity and all R-modules are unitary. For standard terminology, the references are [2], [10] and [11].

A ring R is said to be an absolutely flat ring if every R-module is flat. The concept of absolutely flat modules was introduced and studied in [4]. An R-module M is said to be absolutely flat module if for every R-module N, $M \otimes_R N$ is R-flat. Many properties and characterizations of absolutely flat modules are proved in [5], [6], [7] and [8]. In [8] it is proved that if $\phi : R \to S$ is an epimorphism of rings and S a noetherian ring, then S is absolutely flat over R and self injective if and only if S is an absolutely flat ring and S is R-injective. In this article we prove that if $\phi : R \to S$ is an epimorphism of rings where ϕ is injective and S is R-projective then the R-module M is R-injective and S is
absolutely flat over R if and only if S is an absolutely flat ring and $\text{Hom}_R(S, M)$ is S-injective.

We need the following definition and proposition.

Definition 1. A ring homomorphism $\phi : R \to S$ is an epimorphism, if for any two ring homomorphism $f : S \to L$ and $g : S \to L$, for some ring L with $f \circ \phi = g \circ \phi$, we have $f = g$.

In that case we have the isomorphism $S \otimes_R S \cong S$ [9]. Also for any S—modules M and N, we have $M \otimes_R N \cong M \otimes_S N$. Hence for $N = S$, $S \otimes_R M \cong S \otimes_S M \cong M$.

Proposition 1. Let A be an R-module, B an (R, S)-module and C an S-module where R and S are rings. Then there is a natural isomorphism

$$\text{Hom}_S(B \otimes_R A, C) \cong \text{Hom}_R(A, \text{Hom}_S(B, C)).$$

Now we prove the main theorem.

Theorem 2. Let $\phi : R \to S$ be an epimorphism of rings where ϕ is injective and S, R-projective. Then for an R-module M the following are equivalent:

1. M is R-injective and S is absolutely flat over R
2. $\text{Hom}_R(S, M)$ is S-injective and S is an absolutely flat ring.

Proof: Let M be R-injective and S absolutely flat over R. Then for any S-module N, we show that N is S-flat. Since S is absolutely flat over R, $N \otimes_R S$ is R-flat. Then for every exact sequence of S-modules

$$0 \to L' \to L \to L'' \to 0,$$

we get the exact sequence

$$0 \to L' \otimes_R (N \otimes_R S) \to L \otimes_R (N \otimes_R S) \to L'' \otimes_R (N \otimes_R S) \to 0.$$

This implies the sequence

$$0 \to (L' \otimes_R S) \otimes_R N \to (L \otimes_R S) \otimes_R N \to (L'' \otimes_R S) \otimes_R N \to 0$$

is exact. Since ϕ is an epimorphism, for any S-module L', $L' \otimes_R S \cong L'$. Hence we have the exact sequence

$$0 \to L' \otimes_R N \to L \otimes_R N \to L'' \otimes_R N \to 0$$

and therefore the sequence
$0 \to (L' \otimes_S S) \otimes_R N \to (L \otimes_S S) \otimes_R N \to (L'' \otimes_S S) \otimes_R N \to 0$

is exact which implies the exactness of the sequence

$0 \to L' \otimes_S (N \otimes_R S) \to L \otimes_S (N \otimes_R S) \to L'' \otimes_S (N \otimes_R S) \to 0$.

That is the sequence

$0 \to L' \otimes_S N \to L \otimes_S N \to L'' \otimes_S N \to 0$

is exact and hence N is S-flat. So, S is an absolutely flat ring.

Next we prove that $\text{Hom}_R(S, M)$ is S-injective. Let

$0 \to L' \to L \to L'' \to 0$

be an exact sequence of S-modules. Now M being R-injective, the sequence

$0 \to \text{Hom}_R(L'', M) \to \text{Hom}_R(L, M) \to \text{Hom}_R(L', M) \to 0$

is exact. That is the sequence

$0 \to \text{Hom}_R(L'' \otimes_R S, M) \to \text{Hom}_R(L \otimes_R S, M) \to \text{Hom}_R(L' \otimes_R S, M) \to 0$

is exact.

Then by the isomorphism

$\text{Hom}_R(M, \text{Hom}_R(N, K)) \cong \text{Hom}_R(M \otimes_R N, K)$,

we get the exact sequence

$0 \to \text{Hom}_R(L'', \text{Hom}_R(S, M)) \to \text{Hom}_R(L, \text{Hom}_R(S, M))$

$\quad \to \text{Hom}_R(L', \text{Hom}_R(S, M)) \to 0.$

That is,

$0 \to \text{Hom}_R(L'', \text{Hom}_S(S, \text{Hom}_R(S, M)))$

$\to \text{Hom}_R(L, \text{Hom}_S(S, \text{Hom}_R(S, M)))$

$\to \text{Hom}_R(L', \text{Hom}_S(S, \text{Hom}_R(S, M))) \to 0$
is exact. By Proposition 1,

\[0 \to \text{Hom}_S(L'' \otimes_R S, \text{Hom}_R(S, M)) \to \text{Hom}_S(L \otimes_R S, \text{Hom}_R(S, M)) \]
\[\quad \to \text{Hom}_S(L' \otimes_R S, \text{Hom}_R(S, M)) \to 0 \]

is exact. Since \(\phi \) is an epimorphism of rings, \(S \otimes_R L \cong L \) for every \(S \)-module \(L \) and therefore we have the exact sequence

\[0 \to \text{Hom}_S(L'', \text{Hom}_R(S, M)) \to \text{Hom}_S(L, \text{Hom}_R(S, M)) \]
\[\quad \to \text{Hom}_S(L', \text{Hom}_R(S, M)) \to 0. \]

So we proved that \(\text{Hom}_R(S, M) \) is \(S \)-injective.

Next we assume \(\text{Hom}_R(S, M) \) is \(S \)-injective and \(S \) is an absolutely flat ring and we prove that \(M \) is \(R \)-injective and \(S \) is absolutely flat over \(R \). Consider exact sequence of \(R \)-modules

\[0 \to N' \to N \to N'' \to 0. \]

Since \(S \) is \(R \)-flat,

\[0 \to N' \otimes_R S \to N \otimes_R S \to N'' \otimes_R S \to 0 \]

is exact. Let \(L \) be any \(R \)-module. Now the \(S \)-module \(L \otimes_R S \) is \(S \)-flat. Hence the sequence

\[0 \to (N' \otimes_R S) \otimes_S (L \otimes_R S) \to (N \otimes_R S) \otimes_S (L \otimes_R S) \]
\[\quad \to (N'' \otimes_R S) \otimes_S (L \otimes_R S) \to 0 \]

is exact. That is

\[0 \to N' \otimes_R (L \otimes_R S) \to N \otimes_R (L \otimes_R S) \to N'' \otimes_R (L \otimes_R S) \to 0 \]

is exact. Hence \(L \otimes_R S \) is flat over \(R \). Since \(L \) is an arbitrary \(R \)-module, \(S \) is an absolutely flat \(R \)-module.

Since \(\text{Hom}_R(S, M) \) is \(S \)-injective, we get the exact sequence

\[0 \to \text{Hom}_S(N'' \otimes_R S, \text{Hom}_R(S, M)) \to \text{Hom}_S(N \otimes_R S, \text{Hom}_R(S, M)) \]
\[\quad \to \text{Hom}_S(N' \otimes_R S, \text{Hom}_R(S, M)) \to 0. \]

That is
$0 \to \text{Hom}_R(N'', \text{Hom}_R(S, M)) \to \text{Hom}_R(N, \text{Hom}_R(S, M))$

$\to \text{Hom}_R(N', \text{Hom}_R(S, M)) \to 0$

is exact. This implies that $\text{Hom}_R(S, M)$ is R-injective.

Since S is R-projective and $R \to S$ is a monomorphism, the sequence

$0 \to R \to S \to S/R \to 0$

splits [1]. Hence

$0 \to \text{Hom}_R(S/R, M) \to \text{Hom}_R(S, M) \to \text{Hom}_R(R, M) \to 0$

splits. That is $\text{Hom}_R(R, M) \cong M$ is a direct summand of $\text{Hom}_R(S, M)$ which is R-injective. Therefore M is R-injective. This completes the theorem.

References

