ON ONE-SIDED BASES OF A TERNARY SEMIGROUP

Boonyen Thongkam¹, Thawhat Changphas²

Department of Mathematics
Faculty of Science
Khon Kaen University
Khon Kaen, 40002, THAILAND

Abstract: In this paper, the notions of left bases and right bases of a ternary semigroup are introduced and the structure of a ternary semigroup containing right bases will be studied. For the structure of a ternary semigroup containing left bases can be considered similarly.

AMS Subject Classification: 20N15, 20N10
Key Words: ternary semigroup, left (right) ideal, left (right) base, right singular, maximality

1. Preliminaries

The notion of a ternary semigroup generalized the notion of a ternary group was defined as follows: a ternary semigroup (see, [7]) is a non-empty set T together with a ternary operation, written as \((a, b, c) \rightarrow [abc]\), satisfying the associative law, that is, for all \(a, b, c, u, v \in T\),

\[
[[abc]uv] = [ab[cuv]] = [a[bcu]]v = [abcu].
\]

This notion has been widely studied (see [1], [2], [3], [4], [6], [7], [8], [9], [10], [11], [12]). If \(A_1, A_2, A_3\) are non-empty subsets of a ternary semigroup \(T\), the set product \([A_1A_2A_3]\) of \(A_1, A_2, A_3\) is defined by:

\[
[A_1A_2A_3] = \{[a_1a_2a_3] \mid a_1 \in A_1, a_2 \in A_2, a_3 \in A_3\}.
\]
If $A_1 = \{a\}$, we write $[A_1 A_2 A_3]$ as $[a A_2 A_3]$, and similarly for $A_2 = \{a\}$ or $A_3 = \{a\}$. A non-empty subset A of T is called a ternary subsemigroup of T if $[AAA] \subseteq A$. That is, if $[a_1 a_2 a_3] \in A$ for all $a_1, a_2, a_3 \in A$.

The ideal theory of ternary semigroups was defined (see, [11], [7]) as follows: a non-empty subset A of a ternary semigroup T is called a left ideal (resp. right ideal) of T if $[T TA] \subseteq A$ (resp. $[ATT] \subseteq A$). A left ideal A if T is said to be proper if $A \subset T$. The symbol \subseteq stands for proper inclusion for sets.

It is known (see, [9], [11]) that the following hold for a non-empty subset A of a ternary semigroup T:

- $A_l = A \cup [TTA]$ is the left ideal generated by A of T;
- $A_r = A \cup [ATT]$ is the right ideal generated by A of T.

If $A = \{a\}$, we write A_l (resp. A_r) as $(a)_l$ (resp. $(a)_r$).

We introduce the quasi-ordering on a ternary semigroup T by: for any a, b in T,

$$a \leq_l b \text{ if and only if } (a)_l \subseteq (b)_l.$$

Tamura [13] introduced the notions of left bases and right bases of a semigroup. Fabrici [5] studied the structure of a semigroup containing one-sided bases. In this paper, we introduce the notions of one-sided bases, left bases and right bases, of a ternary semigroup and study the structure of a ternary semigroup containing right bases. For the structure of a ternary semigroup containing left bases can be considered dually.

2. One-Sided Bases

We define left and right bases of a ternary semigroup as follows.

Definition 1. A subset A of a ternary semigroup T is called a right base (resp. left base) of T if it satisfies the following conditions:

(i) $A_l = T$ (resp. $A_r = T$);

(ii) there exists no a proper subset B of A such that $B_l = T$ (resp. $B_r = T$).

We now provide some examples.

Example 2. Let $T = \{-i, 0, i\}$. Then T is a ternary semigroup under the multiplication over complex numbers (see, [3]). We have $\{i\}$ and $\{-i\}$ are both the left and right bases of T.

Example 3. Let $T = \{0, a, b, c, 1\}$. Define the ternary operation on T by, for all $a, b, c \in T$, $[abc] = a \ast (b \ast c)$ where \ast is the binary operation on T defined by

\[
\begin{array}{c|ccccc}
\ast & 0 & a & b & c & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & a & a \\
b & 0 & 0 & b & b & b \\
c & 0 & 0 & b & c & c \\
1 & 0 & a & b & c & 1
\end{array}
\]

Then T is a ternary semigroup [2]. We have $\{1\}$ is a right and a left base of T.

Example 4. Let T be a non-empty set such that $|T| \geq 2$. Then T is a ternary semigroup under the ternary operation which is defined by $[xyz] = x$ for all $x, y, z \in T$. This is called the left zero ternary semigroup [10]. Then, for all $a \in T$, $\{a\}$ is a right base of T.

Example 5. Let T be a non-empty set such that $|T| > 3$. Choose an element $0 \in T$ and define the ternary operation on T by, for any $x, y, z \in T$,

\[
[xyz] = \begin{cases}
 x & \text{if } x = y = z; \\
 0 & \text{otherwise.}
\end{cases}
\]

Then T is a ternary semigroup [10]. We have $T \setminus \{0\}$ is both the right and the left base of T.

Example 6. Let $T = \{0, 1, 2, 3, 4, 5\}$. Define the ternary operation on T by, for all $a, b, c \in T$, $[abc] = (a \ast b) \ast c$ where \ast is the binary operation on T defined by

\[
\begin{array}{c|ccccc}
\ast & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
2 & 0 & 1 & 2 & 3 & 1 & 1 \\
3 & 0 & 1 & 1 & 1 & 2 & 3 \\
4 & 0 & 1 & 4 & 5 & 1 & 1 \\
5 & 0 & 1 & 1 & 1 & 4 & 5
\end{array}
\]

Then T is a ternary semigroup [10]. We have $\{2, 3\}$, $\{2, 5\}$, $\{3, 4\}$, $\{4, 5\}$ are the right bases of T. And, $\{2, 4\}$, $\{2, 5\}$, $\{3, 4\}$, $\{3, 5\}$ are the left bases of T.

We now prove some elementary results.
Lemma 7. Let A be a right base of a ternary semigroup T. If $a, b \in A$ and $a \in [TTb]$, then $a = b$.

Proof. Let $a, b \in A$ be such that $a \in [TTb]$. Suppose that $a \neq b$. Let $B = A \setminus \{a\}$. Then $B \subset A$. Let $x \in A$. If $x \notin B$, then

$$x = a \in [TTb] \subset [TTB] \cup B.$$

Thus

$$A \subseteq [TTB] \cup B \subseteq B_1.$$

Hence $T = A_1 \subseteq B_1$. This is a contradiction. Thus $a = b$. \hfill \square

Lemma 8. A non-empty subset A of a ternary semigroup T is a right base of T if and only if A satisfies the following conditions:

(1) for any $x \in T$ there exists $a \in A$ such that $x \leq_1 a$;

(2) for any $a, b \in A$, if $a \neq b$, then neither $a \leq_1 b$ nor $b \leq_1 a$.

Proof. Assume that A is a right base of T. Let $x \in T$. Then $x \in A_1 = [TTA] \cup A$, that is, $x \in A$ or $x \in [TTA]$. If $x \in A$, then there exists $a = x \in A$ such that $x \leq_1 a$. If $x \in [TTA]$, then $x = [sta] \in (a)_1$ for some $s, t \in T, a \in A$. Thus $(x)_1 \subseteq (a)_1$. This shows that (1) holds. Let $a, b \in A$ be such that $a \neq b$. Suppose that $a \leq_1 b$. Then $(a)_1 \subseteq (b)_1$. Since $a \neq b$, we have $a \in (b)_1 \setminus \{b\}$. By Lemma 7, $a = b$. This is a contradiction. Similarly, $b \leq_1 a$ implies $a = b$. This is a contradiction. Therefore, (2) holds.

Conversely, assume that the conditions (1) and (2) hold. It follows from (1) that $T = A_1$. Suppose that $T = B_1$ for some a proper subset B of A. Let $a \in A \setminus B$. We have $a \in B_1$. By (1), there exists $b \in B$ such that $a \leq_1 b$. This contradicts to (2). Hence A is a right base of T. \hfill \square

3. Main Results

A ternary semigroup T is said to be right singular if, for any $x, y, z \in T$, $[xyz] = z$. An element a of T is called an selfpotent if $[aaa] = a$.

In general, a right base of a ternary semigroup need not be a ternary subsemigroup. The following theorem characterizes when a right base of a ternary semigroup is a ternary subsemigroup.

Theorem 9. Let A be a right base of a ternary semigroup T. Then A is a ternary subsemigroup of T if and only if A is right singular.
Proof. Assume that A is a ternary subsemigroup of T. Let $a, b, c \in A$. Thus $[abc] \in A$, and so $[abc] = d$ for some $d \in A$. Then $d \in [TTc]$. By Lemma 7, $d = c$. Therefore, A is right singular.

Conversely, if A is right singular, then, for $a, b, c \in A$, $[abc] = c \in A$. Hence A is a ternary subsemigroup of T.

By Theorem 9, we have the following.

Corollary 10. If a right base A of a ternary semigroup T is a ternary subsemigroup of T, then T contains at least one selfpotent.

The following theorem shows that for any two right bases of a ternary semigroup have the same cardinality.

Theorem 11. Any two right bases of a ternary semigroup T have the same cardinality.

Proof. Let A and B be right bases of a ternary semigroup T. Let $a \in A$. Since B is a right base of T, we have $a \leq_1 b$ for some $b \in B$. For $a \in A$, we choose and fix $b \in B$ such that $a \leq_1 b$ and define a mapping

$$f : A \to B \text{ by } f(a) = b \text{ for all } a \in A.$$

If $a_1, a_2 \in A$ such that $f(a_1) = f(a_2) = b$, then $a_1 \leq_1 b$ and $a_2 \leq_1 b$. Since A is a right base of T, we have $b \leq_1 a$ for some $a \in A$. Thus $a_1 \leq_1 a$, $a_2 \leq_1 a$, and $a_1, a_2, a \in A$. Thus $a_1 = a = a_2$ by Lemma 8. Hence f is one to one.

Now, let $b \in B$. Then there exists $a \in A$ such that $b \leq_1 a$. Similarly, there exists $b' \in B$ such that $a \leq_1 b'$. Then $b \leq_1 b'$. By Lemma 8, we have $b = b'$. Thus $a \leq_1 b' = b$. Let $f(a) = c$. Then $a \leq_1 c$ and $a \leq_1 b$. Since $c, b \in T$ and A is a right base of T, there exist $a, a' \in A$ such that $c \leq_1 a'$ and $b \leq_1 a'$. Then $a \leq_1 a'$ and $a \leq_1 a''$. By Lemma 8, $a = a' = a''$. Then $b \leq_1 a'' = a \leq_1 c$, and so $b = c$ by Lemma 8. Hence f is onto.

Lemma 12. Let A be a right base of a ternary semigroup T. Let $a \in A$. If $(a)_{|T} = (b)_{|T}$ for some $b \in T$ and $b \neq a$, then b is an element of a right base of T which is distinct from A.

Proof. Let $B = (A \setminus \{a\}) \cup \{b\}$. It is clear that $B \subseteq A$. To show that B is a right base of T, it suffices to show that B satisfies the conditions (1) and (2) of Lemma 8. Let $x \in T$. Since A is a right base of T, there exists $c \in A$ such that $x \leq_1 c$. If $c \neq a$, then $c \in B$. If $c = a$, then $(c)_{|T} = (a)_{|T}$. Thus $(c)_{|T} = (b)_{|T}$, and so $(x)_{|T} \subseteq (c)_{|T} = (b)_{|T}$.

It follows that \(x \leq b \) and \(b \in B \). It means that \(B \) satisfies the condition (1) of Lemma 8. Now, let \(b_1, b_2 \in B \) be such that \(b_1 \neq b_2 \). If \(b_1, b_2 \) are distinct from \(b \), then \(b_1, b_2 \in A \). Since \(A \) is a right base of \(T \), so neither \(b_1 \leq b_2 \) nor \(b_2 \leq b_1 \). Let \(b_1 = b \). If \(b_1 \leq b_2 \), then \(a \leq b_2 \) where \(a, b_2 \in A \). This is impossible. If \(b_2 \leq b_1 \), then \((b_2)_l \subseteq (b_1)_l = (a)_l \). Thus \(b_2 \leq a \) where \(a, b_2 \in A \). This is impossible. It means that \(B \) satisfies the condition (2) of Lemma 8. Therefore, \(B \) is a right base of \(T \).

This is a consequence of the lemma above.

Corollary 13. Let \(A \) be a right base of a ternary semigroup \(T \). Let \(a \in A \). If \((a)_l = (b)_l \) for some \(b \in T \) and \(b \neq a \), then \(T \) contains at least two right bases.

Theorem 14. Let \(A \) be the union of all right bases of a ternary semigroup \(T \). If \(L = T \setminus A \) is non-empty, then \(L \) is a left ideal of \(T \).

Proof. Let \(x, y \in T \) and \(a \in L = T \setminus A \). Suppose that \([xya] \notin L \). Then there exists \(b \in A \) such that \(b = [xya] \subseteq [T]a \). That is, \((b)_l \subseteq (a)_l \). Then \(b \leq a \). Since \(b \in A \), so \(b \in B \) for some a right base \(B \) of \(T \). Since \(B \) is a right base, there exists \(b_1 \in B \) such that \(a \leq b_1 \). Then \(b \leq a \leq b_1 \), and thus \(b \leq b_1 \). This contradicts to the condition (2) of Lemma 8. Hence \([xya] \in L \).

A proper left ideal \(M \) of a ternary semigroup \(T \) is said to be *maximal* if there is no a proper left ideal \(A \) of \(T \) such that \(M \subset A \).

Theorem 15. Let \(A \) be the union of all right bases of a ternary semigroup \(T \) such that \(A \neq \emptyset \). Then \(T \setminus A \) is a maximal proper left ideal of \(T \) if and only if \(A \neq T \) and \(A \subseteq (a)_l \) for all \(a \in A \).

Proof. Let \(L = T \setminus A \) be a maximal proper left ideal of a ternary semigroup \(T \). Then \(A \neq T \). Let \(a \in A \). Suppose that \(A \not\subseteq (a)_l \). Since \(A \not\subseteq (a)_l \), there exists \(x \in A \) such that \(x \notin (a)_l \). Thus \(x \notin T \setminus A \) and \(x \notin (a)_l \). This implies \((T \setminus A) \cup (a)_l \neq T \). Then \((T \setminus A) \cup (a)_l \neq T \) is a proper left ideal of \(T \) such that \((T \setminus A) \subseteq (T \setminus A) \cup (a)_l \). This contradicts to the maximality of \(T \setminus A \). Hence \(A \subseteq (a)_l \).

Conversely, let \(A \subseteq (a)_l \) for all \(a \in A \), and \(A \neq T \). We have to prove that \(T \setminus A \) is a maximal proper left ideal of \(T \). By Theorem 14, \(T \setminus A \) is a proper left ideal of \(T \). Let \(L' \) be a left ideal of \(T \) such that \(T \setminus A \subseteq L' \). Then \(L' \cap A \neq \emptyset \). Let \(a \in L' \cap A \). Then \(a \in L' \), and it follows that \((a)_l \subseteq L' \). Since \(A \subseteq (a)_l \), \(A \subseteq L' \). Consequently, \(A \subseteq L', T \setminus A \subseteq L' \). Therefore \(T = L' \).
Theorem 16. Let \(A \) be the union of all right base of a ternary semigroup \(T \) such that \(\emptyset \neq A \subset T \). Let \(M^* \) be a proper left ideal of \(T \) containing every proper left ideal of \(T \). The following statements are equivalent:

1. \(T \setminus A \) is a maximal left ideal of \(T \);
2. \(A \subseteq (a)_l \) for every \(a \in A \);
3. \(T \setminus A = M^* \);
4. every right base of \(T \) is a singleton set.

Proof. (1) \(\iff \) (2). This follows from Theorem 15.

(3) \(\iff \) (4). Assume that \(T \setminus A = M^* \). Then \(T \setminus A \) is a maximal left ideal of \(T \). Let \(a \in A \). By Theorem 15, we have \(A \subseteq (a)_l \). This implies \(T = (a)_l \). Hence \(\{a\} \) is a right base of \(T \). Let \(B \) be a right base of \(T \), and let \(a, b \in B \). Then \(B \subseteq A \), that is, \(a, b \in A \). Hence \(b \in T = (a)_l \). By Lemma 7, \(a = b \) (i.e., \(B \) is a singleton set).

Conversely, assume that every right base of \(T \) is a singleton set. Then \(T = (a)_l \) for all \(a \in A \). Let \(M \) be a left ideal of \(T \) such that \(M \) is not contained in \(T \setminus A \). Then there exists \(x \in A \cap M \). Since \(x \in M \), we have \(T = (x)_l \subseteq M \), and so \(T = M \).

(1) \(\iff \) (3). Assume that \(T \setminus A \) is a maximal left ideal of \(T \). Let \(M \) be a left ideal of \(T \) such that \(M \) is not contained in \(T \setminus A \). Then \(A \subseteq (x)_l \subseteq M \). Thus \(M = A \cup X \) for some \(X \subseteq T \setminus A \). Let \(y \in T \). Then there exists \(c \in A \) such that \(y \leq c \); hence \(y \in (y)_l \subseteq (c)_l \subseteq M \). Thus \(M = T \). Therefore, \(T \setminus A = M^* \).

The converse statement is obvious. \(\square \)

Theorem 17. Let \(A \) be the union of all right bases of a ternary semigroup \(T \). If \(\emptyset \neq A \neq T \) and \(T \setminus A \) is a maximal left ideal of \(T \), then every right base \(A \) of \(T \) from neither \([TTA] = T \) (i.e., \(A_l = [TTA] \)) or there is unique a right base \(A \) of \(T \) such that \(A \subseteq T \setminus [TTA] \).

Proof. Assume that \(T \setminus A \) is a maximal left ideal of \(T \) and \(A \) is a right base of \(T \). By Theorem 16, \(A = \{a\} \) for some \(a \in T \) and \(A \subseteq (x)_l \) for all \(x \in A \). If there exist \(x, y \in A \) such that \(x \in [TTx] \) and \(y \notin [TTy] \), then

\[T \setminus A \subseteq [TTy] \subset T \]

where \(T \setminus A \neq [TTy] \), because \(x \in [TTy] \). Hence \(T \setminus A \neq [TTy] \). This is contradicts to the maximality of \(T \setminus A \). Hence, there are two cases to consider:

Case 1: \(x \in [TTx] \) for all \(x \in A \). We have \([TTA] = T \). That is, \(A_l = [TTA] \).
Case 2: \(x \notin [TTx] \) for all \(x \in A \). We have \(A \subseteq T \setminus [TTA] \). Suppose that \(T \) contains at least two right bases, \(A_1 = \{a_1\}, A_2 = \{a_2\} \), such that \(a_1 \notin [TTa_1], a_2 \notin [TTa_2] \) and \(a_1, a_2 \in A \). Thus

\[
T \setminus A \subseteq T \setminus \{a_1\} = [TTa_1].
\]

Since \(a_2 \in [TTa_1], T \setminus A \neq [TTa_1] \). This contradicts to the maximality of \(T \setminus A \). Hence, there is unique a right base \(A \) of \(T \) such that \(A \subseteq T \setminus [TTA] \).

\[\square\]

References

