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Abstract: The category FIL of filter spaces being isomorphic to the category
of grill-determined nearness spaces has become significant in the later part of
the twentieth century. During that period, a substantial completion theory has
been developed using the equivalence classes of filters in a filter space. However,
that completion was quite general in nature, and did not allow the finest such
completion. As a result, a completion functor could not be defined on FIL. In
this paper, this issue is partially addressed by constructing a completion that
is finer than the existing completions. Also, a completion functor is defined on
a subcategory of FIL comprising all filter spaces as objects.
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1. Introduction

In 1990, Bently et al. [1] formalised the concept of filter spaces for being
isomorphic to Katetov’s [2] filter merotopic spaces. Since then these spaces
have been studied by several topologists (see [3], [4], [5], [6], [7]) in the context
of their applications to category theory and algebra . Kent and Rath [3] defined
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an equivalence relation on a filter space (X,C), which led to the construction of
its T2 Wyler completion. However, soon they realised that unlike the completion
of Cauchy spaces, there is no finest completion when there are infinite number
of equivalence classes (see Proposition 2.4 [3]). Attempts have been made in this
paper to construct a certain type of weaker completion, called quasi completion

of a filter space which may yield a finest such completion in a subcategory of
FIL which has all filter spaces as objects.

Also, the well-known completion theory for Cauchy spaces was extended
to obtain a completion without the T2-restriction on the space by the author
[9]. An s-map was introduced to form a special class of morphisms which led
to a completion functor on a subcategory of CHY (the category of Cauchy
spaces with Cauchy maps) with respect to a new class of morphisms. In this
paper, a modified form of s-maps is used to build a completion functor on a
subcategory of FIL (the category of filter spaces with Cauchy maps) without
the T2 restriction.

Reed [12] introduced a special type of completion for T2 Cauchy spaces,
namely completion in standard form, which was very interesting in the sense
that it led to a powerful result: any T2 Wyler completion is equivalent to one in
standard form. However, as pointed out via a counter example by the author
in an earlier paper [9, Example 3.2], this is not the case for all Cauchy spaces in
general, that is, it fails to preserve the equivalence of completions in standard
form, since it is not a categorical equivalence in the sense of Preuss [8]. Since
Cauchy spaces are special cases of filter spaces, Reed’s completion will also fail
to preserve the equivalence, for non-T2 filter spaces in general. This motivates
the introduction of quasi-stable completion.

2. Preliminaries

LetX be a nonempty set and F(X) be the set of filters onX. If F and G ∈ F (X)
and F ∩G 6= φ for all F ∈ F and G ∈ G, then F ∨G denotes the filter generated
by {F ∩ G : F ∈ F and G ∈ G}. If there exist F ∈ F and G ∈ G such that
F ∩G = φ, then we say that F ∨G fails to exist. For each x ∈ X, ẋ denotes the
ultrafilter generated by {x}. If C ⊂ F(X) satisfies the following conditions:

c1. ẋ ∈ C, for all x ∈ X,

c2. F ∈ C and G ≥ F imply that G ∈ C,

then the pair (X,C) is called a filter space and C is called a pre-Cauchy

structure on X. If C and D are two pre-Cauchy structures on X, and C ⊆ D
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then C is finer than D, written C ≥ D. Associated with each pre-Cauchy
structure C on a set X, there is a convergence structure qc, defined as

F
qc
→ x if and only if F ∩ ẋ ∈ C.

The two filters F and G ∈ F(X) are said to be C − linked [3], if there exist
a finite number of filters H1, H2,. . . , Hn ∈ C such that F∨H1, H1∨H2,. . . ,
Hn−1∨Hn all exist. In particular, if F and G ∈ C , we write F ∼c G iff F , G
are C-linked. A filter space is said to be a c-filter space (respectively, Cauchy
space), if F ∩ ẋ ∈ C whenever F ∼c ẋ (respectively, F ∩ G ∈ C whenever
F ∼c G). Note that ‘∼c’ defines an equivalence relation on C. For F ∈ C,
let [F ]c denote the equivalence class containing F . There is a pre-convergence

structure [4] pc associated with C in a natural way: F
pc
→ x iff F ∼c ẋ .

Note that pc ≤ qc [3], since F
qc
→ x implies F ∼c ẋ, but pc 6= qc in general, as

illustrated in the following example.

Example 1. Let X = R, the set of real numbers and

C = {ẋ | x ∈ X} ∪ {F | F ≥ G} ∪ {all free filters}.

Clearly, C is a pre-Cauchy structure on X. Consider the filter H = {R \ F |
F is a finite subset of R}. Since F is a free filter, it is in C. Observe that for
the filter G = [{[0, 1/n] | n ∈ N}], H ∨ G and G ∨ 0̇ exist, which imply that

H
pc
→ 0. However F ∩ 0̇ /∈ C.

Lemma 1. For a filter space (X,C), pc = qc if and only if it is a c-filter
space.

A filter space (X,C) is said to be quasi- T1 (respectively, quasi- T2) iff
ẋ ∩ ẏ ∈ C ⇒ x = y (respectively, F ∩ ẋ,F ∩ ẏ ∈ C ⇒ x = y ). Henceforth, the
term “quasi” associated with any property for a filter space will be abbreviated
to q-property, for example, quasi-T1 will be referred to as q-T1. The filter space
is q-regular iff clqcF ∈ C whenever F ∈ C and q-T3 iff it is q-T1 and q-regular.

Note that the properties such as T1, T2, T3 and regularity of a filter space
(X,C are stronger than the properties q-T1, q-T2, q-T3 and q-regularity, respec-
tively. It follows from Lemma 1 that these properties are equivalent only when
(X,C) is a c-filter space.

However, these properties shouldn’t be undermined, since the quasi-properties
of (X,C) guarantee the corresponding properties of the convergence space
(X, qc). For instance, (X,C) is q-T1 (respectively, q-T2, q-T3 and q-regular) im-
plies that (X, qc) is T1 (respectively, T2, T3 and regular). Moreover, if (X, qc) is
regular, and every filter in C qc-converges, then (X,C) is regular.
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One of the remarkable differences between these properties and the weaker
quasi-properties is that the T1 and T2 properties are equivalent [9] for a filter
space, whereas this is not true in general for q-T1 and q-T2. The following
example shows that there is a filter space which is q-T1, but not necessarily
q-T2.

Example 2. Let (X,C) be an infinite set and a, b ∈ X such that a 6= b.
Let

C = {ẋ | x ∈ X} ∪ {G | G ≥ H or H ∩ ȧ or H∩ ḃ},

where H is any filter on X. Clearly, (X,C) is a filter space. For any x, y in X,
ẋ ∩ ẏ ∈ C ⇒ ẋ ∩ ẏ is a fixed ultra-filter generated by a single element in X,
which means x = y. So, X is q-T1. However, it is not q-T2 since H ∩ ȧ and
H ∩ ḃ ∈ C, but a 6= b.

Note that q − T1 and q − T2 properties are equivalent for a c-filter space.

3. Quasi-Completion

Though the completion obtained by Kent and Rath [3] is the most general one,
one of its drawback is that it does not have the finest such completion. As a
result, a completion functor could not be defined on the category FIL of all
filter spaces. In this section, a different completion is constructed, which yields
such a functor on a subcategory of FIL. The T2 Wyler completion of a filter
space (X,C) that was constructed by Kent and Rath [3] had the property that
if (X,C) was a c-filter space (Respectively, Cauchy space), then its completion
was also c-filter space (respectively, Cauchy space). However, this is not the
case for a quasi-completion.

For two filter spaces (X,C) and (Y,D), a mapping f : (X,C) −→ (Y,D) is
called a Cauchy map, if F ∈ C implies f(F) ∈ D for all F ∈ C, and it is called
a Cauchy embedding if f : (X,C) −→ (f(X),Df(X)) is bijective and both f and
f−1 are Cauchy maps.

A filter space (X,C) is said to be quasi-complete (respectively, complete) iff
each F ∈ C qc-converges (respectively, pc-converges). In view of Example 1,
it follows that every quasi-complete filter space is complete, but not conversely.
A quasi-completion of a filter space (X,C) is a pair ((Y,D), ψ) consisting of a
quasi-complete filter space (Y,D) and a Cauchy embedding map ψ : (X,C) −→
(Y,D) satisfying clqDψ(X) = Y . A quasi-completion ((Y,D), ψ) is said to be a
quasi-P completion, if (Y,D) has the property P whenever (X,C) has the same
property. It is said to be q-proper, if images of any two equivalent filters in C
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qD-converge to the same point in Y .

Proposition 1. Any q-T2 quasi-completion of a q-T2 filter space is q-
proper.

We construct a quasi-completion of a filter space (X,C) as follows:

X∗

1 = X ∪ {[F ] | F ∈ C},F ≁c ẋ for any x ∈ X},

j : X −→ X∗

1 is the inclusion map,

C∗

1 = j(C) ∪ {A ∈ F(X∗

1 ) | there exists a filterF ∈ C such thatA ≥

j(F) ∩ ˙[F ]}.

Proposition 2. ((X∗

1 , C
∗

1 ), j) is a quasi-completion of (X,C).

Proof. Clearly (X∗

1 , C
∗

1 ) is a filter space and j is a Cauchy embedding. To
show that it is quasi-complete, let A ∈ C∗

1 . Then either A ≥ j(F), for some

F that is qc-convergent or A ≥ j(G) ∩ ˙[G], for some G non-qc-convergent. If

F
qc
→ x, then j(F)

qc∗
1→ j(x). On the other hand, if F is non-qc-convergent, then

j(F) ∩ ˙[F ] ∈ C∗

1 , which implies that A
qc1∗→ [F ]. Therefore, ((X∗

1 , C
∗

1 )) is quasi-

complete. Next, let [F ] ∈ X1 ∗ \j(X). This implies that j(F) ∩ ˙[F ] ∈ C∗

1 , that

is, j(F)
qc∗

1→ [F ]. Therefore, [F ] ∈ clqC∗

1

(j(X)). This proves that ((X∗

1 , C
∗

1 ), j) is

a quasi-completion of (X,C), and this completes the proof.

This completion will be referred to as quasi-Wyler completion. Note that
if (X,C) is a c-filter space (respectively, Cauchy space), then ((X∗

1 , C
∗

1 ), j) is a
c-filter space (respectively, Cauchy space). If we identify each x ∈ X with the
equivalence class [ẋ] of all filters which are pc-convergent to x, then the quasi-
Wyler completion coincides with ((X∗, C∗), j) in [3]. We will refer to the latter
completion as the T2 Wyler completion of (X,C). Unlike T2 completions of a
filter space, the quasi-completion ((X∗

1 , C
∗

1 ), j) is not a quasi-T2 completion, in
general, even if (X,C) is q − T2. The following proposition gives a condition
which guarantees that a q-T2 filter space has a quasi-T2 completion.

Proposition 3. A q-T2 filter space has a quasi-T2 completion if and only

if (X,C) is a c-filter space.

Proof. Let ((Y,K), φ) be a q-T2 completion of (X,C). Let F ∈ C and F ∼C

ẋ. From Proposition 1, it follows that φ(F)
qk→ φ(ẋ), that is, φ(F) ∩ φ(ẋ) ∈ K.

Since φ is an embedding, F ∩ ẋ ∈ C, which shows that (X,C) is a c-filter space.

Next, let (X,C) be a q-T2 c-filter space. Then, as shown in Proposition 2,
((X∗

1 , C
∗

1 ), j) is a quasi-completion of (X,C). Let ẏ1 ∩ ẏ2 ∈ C∗

1 . If y1, y2 ∈ X,
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then y1 = y2, since (X,C) is q-T2. If at least one of y1 or y2 is in X∗

1 \X, then
by the definition of C∗

1 , ẏ1 ∩ ẏ1 ∈ C∗

1 only when y1 = y2. This completes the
proof.

A quasi-completion ((Y,K), φ) is said to be in standard form if Y = X∗

1 and

φ = j, satisfying the condition j(F)
qc1∗→ [F ] for all non-qc-convergent filters in

C. A similar property was introduced by Reed [12] to establish that a T2 Cauchy
completion can be made equivalent to one in standard form. However, since
this is not the case for all Cauchy spaces in general (see Example 3.2 [9]), the
stable completions were introduced [9]. Since Cauchy spaces are special cases of
filter spaces, Reed’s result will also fail for non-T2 filter spaces in general. This
leads to the notion of quasi-stable completion for filter-spaces.

A quasi-completion ((Y,D), φ) of a filter space (X,C) is said to be quasi-

stable if for each non-qc-convergent filter F ∈ C, φ(F)∩ ˙[F ] ∈ D. This property
of a completion is stronger than the property of being stable introduced in
[3], since quasi-stable implies that it is stable. However, there exist stable
completion of some filter spaces which are not quasi-stable. Two quasi-stable
completions of a filter space (X,C) can be compared to each other in the
obvious way: A quasi-stable completion ((Y1,K1), ϕ1) is said to be finer than
another quasi-stable completion ((Y2,K2), ϕ2), if there is a continuous map
h : (Y1,K1) → (Y2,K2) such that h ◦ φ1 = φ2, and they are equivalent if each is
finer than the other. Note that the map h is a unique homeomorphism, when
the quasi-stable completions are equivalent.

Proposition 4. The quasi-Wyler completion is the finest quasi-stable

completion in standard form.

Proof. Let ((Y,K), φ) be a quasi-stable completion of the filter space (X,C)
and h : Y −→ X∗

1 be defined as

h(y) =

{

[F ] if y ∈ Y \ φ(X) and φ(F)
qk−→ y,

y if y = φ(x) for some x ∈ X.

To show that h is well-defined, let y1 = y2 ∈ Y . If y1 = y2 ∈ φ(X),

then clearly h(y1) = h(y2). If y1 = y2 ∈ Y \ φ(X), then φ(F1)
qk−→ y1 and

φ(F2)
qk−→ y2, for which G1 = φ−1(φ(F1) ∩ ẏ1) and G2 = φ−1(φ(F2) ∩ ẏ2) are in

C. This implies that F1∨G1, G1∨G2 and G2∨F2 exist, which yields [F1] = [F2].
Therefore, h(y1) = h(y2).

Next, let h(y1) = h(y2). If h(y1) = x1 and h(y2) = x2 for x1, x2 ∈ X,
then y1 = y2. On the other hand, if h(y1) = [F ] and h(y2) = [G] for some

F , G ∈ C, then F ∼c G, which leads to φ(F) ∼c φ(G). Therefore, φ(F)
qk−→ y1
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and φ(G)
qk−→ y2, which imply φ(F)

qk−→ y1, y2. But, since ((Y,K), φ) is a quasi-
stable completion of (X,C), it follows that y1 = y2. Hence, h is bijective and
hφ = j.

Let C ′ = {h(G) | G ∈ K} be the quotient structure on X∗

1 with respect to h.
Obviously, both h and h−1 are Cauchy maps, which makes the bijective maps j
and j−1 Cauchy maps. It is also routine to show that (X∗

1 , C
′) is quasi-complete

and clq
c′
j(X) = Y . Hence, ((X∗

1 , C
′), j) is a quasi-completion of (X,C). This

proves that ((Y,K), φ) ≃ ((X∗

1 , C
′), j). Also, for a non-qc-convergent filter

F ∈ C, φ(F)
qk−→ y implies j(F) = h ◦ φ(F)

q
c′−→ h(y) = [F ], which shows that

((X∗

1 , C
′), j) is in standard form. This completes the proof.

Note that the quasi-Wyler completion is the finest quasi-stable completion
in standard form, but it is not the finest stable completion in FIL. In fact,
there is no such finest one for a filter space [3], whenever X∗ \ j(X) is infinite.

4. Extension Theorem

Extension theorems for filter spaces [3], regular filter spaces [10], filter semi-
groups [11] and Cauchy spaces ( not necessarily T2) [9] have led to some in-
teresting reflective subcategories of the categories FIL and CHY with some
special type of morphisms called s-maps. In case of T2 filter spaces, an unique
extension of a Cauchy map f : (X,C) −→ (Y,D) to the corresponding com-
pletion space was possible only when the codomain was a c-filter space. Here,
an extension theorem is established without this restriction on the codomain,
which is a considerable departure from the previous results ([3], [4]).

A Cauchy map between two filter spaces f : (X,C) → (Y,D) is said to be
a quasi-s-map, if it satisfies the following condition:

F ∈ C qc-converges to at most one point in X implies that f(F) is D-linked
to at most one point in Y .

Note that a quasi-s map is an s-map [9]. There are several examples of
quasi-s-maps. Any Cauchy map is a quasi-s-map, if the codomain of the map
is a q-T2 filter space. The identity map on a filter space and the embedding map
ϕ for a stable completion are also quasi-s-maps. In particular, the mapping j
in the quasi-Wyler completion is a quasi-s-map. Note that it follows from the
definition of s-map that composition of two quasi-s-maps is a quasi-s-map. The
class of all filter spaces with the quasi-s-maps as morphisms forms a category,
which we call FIL′. We observe that every Cauchy map is not necessarily
a quasi-s-map. For example, any mapping from a nontrivial filter space or
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an incomplete filter space into an indiscrete filter space containing at least
two points is a Cauchy map, but not a quasi-s-map. So FIL′ is not a full
subcategory of FIL.

The following proposition shows that the quasi-Wyler completion ((X∗

1 , C
∗

1 ),
j) has a property similar to the universal property of the T2 completions [3]. A
significant departure from the previous result is that we don’t need to restrict
the codomain of the quasi-s-map to be a c-filter space [3].

Proposition 5. Let (X,C) and (Y,D) be two filter spaces with the

quasi-Wyler completions ((X∗

1 , C
∗

1 ), jX) and ((Y ∗

1 ,D
∗

1), jY ), respectively. If

f : (X,C) → (Y,D) is a quasi-s-map, then there is a unique extension f∗ :
(X∗

1 , C
∗

1 ) → (Y ∗

1 ,D
∗

1) which is also a quasi-s-map and f∗ ◦ jX = jY ◦ f .

Proof. Define f∗ : (X∗

1 , C
∗) → (Y ∗

1 ,D
∗) as follows

f∗(x) = f(x)

f∗([F ]) =

{

[f(F)] if f(F) not D-linked to ẏ for any y ∈ Y,

y if f(F)
qD−→ y for some y ∈ Y.

Note that f(F) is not D-linked to ẏ for any y ∈ Y implies that f(F) is qD-
non-convergent. The mapping f∗ is a well-defined map, because, if [F ] = [G],
then f(F) ∼D f(G). So either both f(F) and f(G) are not D-linked to any
element in Y , or otherwise. In the first case, f∗([F ]) = f∗([G]). Otherwise, if
f(F) ∼D ẏ1 and f(G) ∼D ẏ2, then f(F) ∼D ẏ1, ẏ2. This is a contradiction,
since F is not C-linked to ẋ for any x ∈ X implies F is qc-non-convergent and
f is a quasi-s-map. So in either case f∗([F ]) = f∗([G]). Also, it can be easily
verified that f∗ ◦ jX = jY ◦ f .

Next we show that f∗ is a quasi-s-map. Let A ∈ C∗. If A ≥ jX(F), then
f∗(A) ≥ f∗ ◦ jX(F) = jY ◦ f(F) ∈ D∗. If A ≥ jX(F) ∩ [F ], where F is not
C-linked to any x ∈ X, then f∗(A) ≥ (jY ◦ f(F)) ∩ f∗([F ]). If f(F) is qD-
non-convergent in Y , then (jY ◦ f(F)) ∩ ˙[f(F)] ∈ D∗. If f(F) qD-converges to
y ∈ Y , then, f(F) ∩ ẏ ∈ D, so it follows that (jY ◦ f(F)) ∩ ẏ ∈ D∗. Therefore,
f∗ is a Cauchy map. To show that it is a quasi-s-map, it suffices to show that
if A ∈ C∗ qC∗-converges to only one point, then f∗(A) qD∗-converges to only
one point in Y ∗. If A ≥ jX(F), then jY ◦ f(F) = f∗ ◦ jX(F) is D∗-linked to
only one point in Y ∗, which implies it qD∗-converges to only one point, since
jY and f are quasi-s-maps. If A ≥ jX(F) ∩ ˙[F ], then F is not C-linked to
any point in X, implies F is qc-non-convergent. Hence, it follows from f being
a quasi-s-map that f(F) is D-linked to at most one point in Y . Therefore,
f∗(jX(F)∩ ˙[F ]) = (f∗◦jX(F))∩ ˙f∗([F ]) = (jY ◦f(F ))∩ ˙[f(F)] or (jY ◦f(F))∩ ẏ
according as f(F) is not D-linked to any point (hence qD non-convergent) or
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f(F) qD-converges to y ∈ Y . But in either case f∗(A) converges to only one
point in Y ∗.

Finally, we show that f∗ is an unique extension. Let f : (X∗, C∗) →
(Y ∗,D∗) be another quasi-s-map such that f ◦ jX = jY ◦ f . It is obvious that
f ◦ jX(x) = f∗ ◦ jX(x) for all x ∈ X. So, let [F ] ∈ X∗ \ jX(X). Since F ∈ C is
not C-linked to any point in X, jX(F)∩ ˙[F ]. Since f∗, f are also Cauchy maps,
f∗◦jX (F) = f ◦jX (F) = jY ◦f(F) qD∗-converges to f∗([F ]), f([F ]). Therefore
jY ◦f(F) is D∗-linked to both f∗([F ]) and f([F ]). However, F is not C-linked,
which implies it is also qc-non-convergent, and f , jY are quasi-s-maps imply
that jY ◦ f(F) can be D∗-linked to at most one point in Y ∗. Hence f∗ = f .
This completes the proof.

The unique mapping f∗ in Proposition 5 is called the quasi-s-extension of f .

Remark (I) If f : (X,C) → (Y,K) is a quasi-s-map, where (Y,K) is a
quasi-complete filter space, then there exists a unique quasi-s-extension f∗ :
(X∗, C∗) → (Y,K) such that f∗ ◦ JX = f .

(II) If (X,C) is a q-T2 filter space, then its T2 quasi-Wyler completion also
has the extension property. Recall that if the codomain of an s-map is a q-T2
space, then the s-map is simply a Cauchy map. If f : (X,C) → (Y,K) is a
Cauchy map, where (Y,K) is a complete T2 c-filter space [3] (or a complete T3
filter space [10]), then there exists a unique Cauchy extension f∗ : (X∗, C∗) →
(Y,K) such that f∗ ◦ JX = f .

Note that a composition of quasi-s-maps is a quasi-s-map and the identity
map is a quasi-s-map. So the class of all filter spaces with quasi-s-maps as
morphisms form a subcategory of FIL. We denote this category by FIL′. Since
it comprises quasi-s-maps as morphisms, it is not a full subcategory of FIL.
Let FIL′∗ be the subcategory of FIL′ consisting of the quasi-complete objects
of FIL′. On the category FIL′, we can define a functor Wq : FIL′ → FIL′∗

by Wq(X,C) = (X∗

1 , C
∗

1 ) for all objects, and Wq(f) = f∗ for all morphisms
in FIL′. Using the property of s-maps, it is a routine matter to show that
Wq is a covariant functor on FIL′. The functor Wq is called the quasi-Wyler

completion functor.
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