International Journal of Pure and Applied Mathematics Volume 104 No. 3 2015, 461-470

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) **url:** http://www.ijpam.eu **doi:** http://dx.doi.org/10.12732/ijpam.v104i3.13



# QUASI-COMPLETION OF FILTER SPACES

Nandita Rath

School of Mathematics and Statistics University of Western Australia Crawley, W.A. 6009, AUSTRALIA

Abstract: The category FIL of filter spaces being isomorphic to the category of grill-determined nearness spaces has become significant in the later part of the twentieth century. During that period, a substantial completion theory has been developed using the equivalence classes of filters in a filter space. However, that completion was quite general in nature, and did not allow the finest such completion. As a result, a completion functor could not be defined on FIL. In this paper, this issue is partially addressed by constructing a completion that is finer than the existing completions. Also, a completion functor is defined on a subcategory of FIL comprising all filter spaces as objects.

## AMS Subject Classification: 54D35, 54A20, 54C20

**Key Words:** filter space, Cauchy map, convergence structure, *s*-map, stable completion, completion in standard form

### 1. Introduction

In 1990, Bently et al. [1] formalised the concept of filter spaces for being isomorphic to Katetov's [2] filter merotopic spaces. Since then these spaces have been studied by several topologists (see [3], [4], [5], [6], [7]) in the context of their applications to category theory and algebra. Kent and Rath [3] defined

Received: August 16, 2015

© 2015 Academic Publications, Ltd. url: www.acadpubl.eu

an equivalence relation on a filter space (X, C), which led to the construction of its  $T_2$  Wyler completion. However, soon they realised that unlike the completion of Cauchy spaces, there is no finest completion when there are infinite number of equivalence classes (see Proposition 2.4 [3]). Attempts have been made in this paper to construct a certain type of weaker completion, called *quasi completion* of a filter space which may yield a finest such completion in a subcategory of *FIL* which has all filter spaces as objects.

Also, the well-known completion theory for Cauchy spaces was extended to obtain a completion without the  $T_2$ -restriction on the space by the author [9]. An s-map was introduced to form a special class of morphisms which led to a completion functor on a subcategory of CHY (the category of Cauchy spaces with Cauchy maps) with respect to a new class of morphisms. In this paper, a modified form of s-maps is used to build a completion functor on a subcategory of FIL (the category of filter spaces with Cauchy maps) without the  $T_2$  restriction.

Reed [12] introduced a special type of completion for  $T_2$  Cauchy spaces, namely completion in standard form, which was very interesting in the sense that it led to a powerful result: any  $T_2$  Wyler completion is equivalent to one in standard form. However, as pointed out via a counter example by the author in an earlier paper [9, Example 3.2], this is not the case for all Cauchy spaces in general, that is, it fails to preserve the equivalence of completions in standard form, since it is not a categorical equivalence in the sense of Preuss [8]. Since Cauchy spaces are special cases of filter spaces, Reed's completion will also fail to preserve the equivalence, for non- $T_2$  filter spaces in general. This motivates the introduction of quasi-stable completion.

#### 2. Preliminaries

Let X be a nonempty set and  $\mathbf{F}(X)$  be the set of filters on X. If  $\mathcal{F}$  and  $\mathcal{G} \in F(X)$ and  $F \cap G \neq \phi$  for all  $F \in \mathcal{F}$  and  $G \in \mathcal{G}$ , then  $\mathcal{F} \lor \mathcal{G}$  denotes the filter generated by  $\{F \cap G : F \in \mathcal{F} \text{ and } G \in \mathcal{G}\}$ . If there exist  $F \in \mathcal{F}$  and  $G \in \mathcal{G}$  such that  $F \cap G = \phi$ , then we say that  $\mathcal{F} \lor \mathcal{G}$  fails to exist. For each  $x \in X$ ,  $\dot{x}$  denotes the ultrafilter generated by  $\{x\}$ . If  $C \subset \mathbf{F}(X)$  satisfies the following conditions:

- $c_1$ ,  $\dot{x} \in C$ , for all  $x \in X$ ,
- c<sub>2.</sub>  $\mathcal{F} \in C$  and  $\mathcal{G} \geq \mathcal{F}$  imply that  $\mathcal{G} \in C$ ,

then the pair (X, C) is called a *filter space* and C is called a *pre-Cauchy* structure on X. If C and D are two pre-Cauchy structures on X, and  $C \subseteq D$ 

then C is finer than D, written  $C \ge D$ . Associated with each pre-Cauchy structure C on a set X, there is a convergence structure  $q_c$ , defined as

 $\mathcal{F} \xrightarrow{q_c} x$  if and only if  $\mathcal{F} \cap \dot{x} \in C$ .

The two filters  $\mathcal{F}$  and  $\mathcal{G} \in \mathbf{F}(X)$  are said to be C - linked [3], if there exist a finite number of filters  $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_n \in C$  such that  $\mathcal{F} \lor \mathcal{H}_1, \mathcal{H}_1 \lor \mathcal{H}_2, \ldots, \mathcal{H}_{n-1} \lor \mathcal{H}_n$  all exist. In particular, if  $\mathcal{F}$  and  $\mathcal{G} \in C$ , we write  $\mathcal{F} \sim_c \mathcal{G}$  iff  $\mathcal{F}, \mathcal{G}$ are C-linked. A filter space is said to be a c-filter space (respectively, Cauchy space), if  $\mathcal{F} \cap \dot{x} \in C$  whenever  $\mathcal{F} \sim_c \dot{x}$  (respectively,  $\mathcal{F} \cap \mathcal{G} \in C$  whenever  $\mathcal{F} \sim_c \mathcal{G}$ ). Note that ' $\sim_c$ ' defines an equivalence relation on C. For  $\mathcal{F} \in C$ , let  $[\mathcal{F}]_c$  denote the equivalence class containing  $\mathcal{F}$ . There is a pre-convergence structure [4]  $p_c$  associated with C in a natural way:  $\mathcal{F} \xrightarrow{p_c} x$  iff  $\mathcal{F} \sim_c \dot{x}$ . Note that  $p_c \leq q_c$  [3], since  $\mathcal{F} \xrightarrow{q_c} x$  implies  $\mathcal{F} \sim_c \dot{x}$ , but  $p_c \neq q_c$  in general, as illustrated in the following example.

**Example 1.** Let X = R, the set of real numbers and

 $C = \{ \dot{x} \mid x \in X \} \cup \{ \mathcal{F} \mid \mathcal{F} \ge \mathcal{G} \} \cup \{ \text{all free filters} \}.$ 

Clearly, *C* is a pre-Cauchy structure on *X*. Consider the filter  $\mathcal{H} = \{R \setminus F \mid F \text{ is a finite subset of } R\}$ . Since  $\mathcal{F}$  is a free filter, it is in *C*. Observe that for the filter  $\mathcal{G} = [\{[0, 1/n] \mid n \in N\}], \mathcal{H} \lor \mathcal{G} \text{ and } \mathcal{G} \lor \dot{0} \text{ exist, which imply that } \mathcal{H} \xrightarrow{p_c} 0$ . However  $\mathcal{F} \cap \dot{0} \notin C$ .

**Lemma 1.** For a filter space (X, C),  $p_c = q_c$  if and only if it is a *c*-filter space.

A filter space (X, C) is said to be *quasi-*  $T_1$  (respectively, *quasi-*  $T_2$ ) iff  $\dot{x} \cap \dot{y} \in C \Rightarrow x = y$  (respectively,  $\mathcal{F} \cap \dot{x}, \mathcal{F} \cap \dot{y} \in C \Rightarrow x = y$ ). Henceforth, the term "quasi" associated with any property for a filter space will be abbreviated to *q*-property, for example, quasi- $T_1$  will be referred to as q- $T_1$ . The filter space is *q*-regular iff  $cl_{q_c}\mathcal{F} \in C$  whenever  $\mathcal{F} \in C$  and q- $T_3$  iff it is q- $T_1$  and q-regular.

Note that the properties such as  $T_1$ ,  $T_2$ ,  $T_3$  and regularity of a filter space  $(X, C \text{ are stronger than the properties } q-T_1, q-T_2, q-T_3 \text{ and } q$ -regularity, respectively. It follows from Lemma 1 that these properties are equivalent only when (X, C) is a *c*-filter space.

However, these properties shouldn't be undermined, since the quasi-properties of (X, C) guarantee the corresponding properties of the convergence space  $(X, q_c)$ . For instance, (X, C) is q- $T_1$  (respectively, q- $T_2$ , q- $T_3$  and q-regular) implies that  $(X, q_c)$  is  $T_1$  (respectively,  $T_2, T_3$  and regular). Moreover, if  $(X, q_c)$  is regular, and every filter in  $C q_c$ -converges, then (X, C) is regular. 464

One of the remarkable differences between these properties and the weaker quasi-properties is that the  $T_1$  and  $T_2$  properties are equivalent [9] for a filter space, whereas this is not true in general for q- $T_1$  and q- $T_2$ . The following example shows that there is a filter space which is q- $T_1$ , but not necessarily q- $T_2$ .

**Example 2.** Let (X, C) be an infinite set and  $a, b \in X$  such that  $a \neq b$ . Let

$$C = \{ \dot{x} \mid x \in X \} \cup \{ \mathcal{G} \mid \mathcal{G} \ge \mathcal{H} \text{ or } \mathcal{H} \cap \dot{a} \text{ or } \mathcal{H} \cap \dot{b} \},\$$

where  $\mathcal{H}$  is any filter on X. Clearly, (X, C) is a filter space. For any x, y in X,  $\dot{x} \cap \dot{y} \in C \Rightarrow \dot{x} \cap \dot{y}$  is a fixed ultra-filter generated by a single element in X, which means x = y. So, X is q- $T_1$ . However, it is not q- $T_2$  since  $\mathcal{H} \cap \dot{a}$  and  $\mathcal{H} \cap \dot{b} \in C$ , but  $a \neq b$ .

Note that  $q - T_1$  and  $q - T_2$  properties are equivalent for a *c*-filter space.

### 3. Quasi-Completion

Though the completion obtained by Kent and Rath [3] is the most general one, one of its drawback is that it does not have the finest such completion. As a result, a completion functor could not be defined on the category FIL of all filter spaces. In this section, a different completion is constructed, which yields such a functor on a subcategory of FIL. The  $T_2$  Wyler completion of a filter space (X, C) that was constructed by Kent and Rath [3] had the property that if (X, C) was a *c*-filter space (Respectively, Cauchy space), then its completion was also *c*-filter space (respectively, Cauchy space). However, this is not the case for a quasi-completion.

For two filter spaces (X, C) and (Y, D), a mapping  $f : (X, C) \longrightarrow (Y, D)$  is called a *Cauchy map*, if  $\mathcal{F} \in C$  implies  $f(\mathcal{F}) \in D$  for all  $\mathcal{F} \in C$ , and it is called a *Cauchy embedding* if  $f : (X, C) \longrightarrow (f(X), D_{f(X)})$  is bijective and both f and  $f^{-1}$  are Cauchy maps.

A filter space (X, C) is said to be *quasi-complete* (respectively, complete) iff each  $\mathcal{F} \in C$   $q_c$ -converges (respectively,  $p_c$ -converges). In view of Example 1, it follows that every quasi-complete filter space is complete, but not conversely. A *quasi-completion* of a filter space (X, C) is a pair  $((Y, D), \psi)$  consisting of a quasi-complete filter space (Y, D) and a Cauchy embedding map  $\psi : (X, C) \longrightarrow$ (Y, D) satisfying  $cl_{q_D}\psi(X) = Y$ . A quasi-completion  $((Y, D), \psi)$  is said to be a *quasi-P completion*, if (Y, D) has the property  $\mathcal{P}$  whenever (X, C) has the same property. It is said to be *q-proper*, if images of any two equivalent filters in C  $q_D$ -converge to the same point in Y.

**Proposition 1.** Any q- $T_2$  quasi-completion of a q- $T_2$  filter space is q-proper.

We construct a quasi-completion of a filter space (X, C) as follows:

$$X_1^* = X \cup \{ [\mathcal{F}] \mid \mathcal{F} \in C \}, \mathcal{F} \not\sim_c \dot{x} \text{ for any } x \in X \},$$

 $j: X \longrightarrow X_1^*$  is the inclusion map,

 $C_1^* = j(C) \cup \{ \mathcal{A} \in \mathbf{F}(X_1^*) \mid \text{ there exists a filter } \mathcal{F} \in C \text{ such that } \mathcal{A} \geq j(\mathcal{F}) \cap [\dot{\mathcal{F}}] \}.$ 

**Proposition 2.**  $((X_1^*, C_1^*), j)$  is a quasi-completion of (X, C).

Proof. Clearly  $(X_1^*, C_1^*)$  is a filter space and j is a Cauchy embedding. To show that it is quasi-complete, let  $\mathcal{A} \in C_1^*$ . Then either  $\mathcal{A} \geq j(\mathcal{F})$ , for some  $\mathcal{F}$  that is  $q_c$ -convergent or  $\mathcal{A} \geq j(\mathcal{G}) \cap [\dot{\mathcal{G}}]$ , for some  $\mathcal{G}$  non- $q_c$ -convergent. If  $\mathcal{F} \xrightarrow{q_c} x$ , then  $j(\mathcal{F}) \xrightarrow{q_{c_1^*}} j(x)$ . On the other hand, if  $\mathcal{F}$  is non- $q_c$ -convergent, then  $j(\mathcal{F}) \cap [\dot{\mathcal{F}}] \in C_1^*$ , which implies that  $\mathcal{A} \xrightarrow{q_{c_1^*}} [\mathcal{F}]$ . Therefore,  $((X_1^*, C_1^*))$  is quasicomplete. Next, let  $[\mathcal{F}] \in X_1 * \backslash j(X)$ . This implies that  $j(\mathcal{F}) \cap [\dot{\mathcal{F}}] \in C_1^*$ , that is,  $j(\mathcal{F}) \xrightarrow{q_{c_1^*}} [\mathcal{F}]$ . Therefore,  $[\mathcal{F}] \in cl_{q_{C_1^*}}(j(X))$ . This proves that  $((X_1^*, C_1^*), j)$  is a quasi-completion of (X, C), and this completes the proof.

This completion will be referred to as quasi-Wyler completion. Note that if (X, C) is a c-filter space (respectively, Cauchy space), then  $((X_1^*, C_1^*), j)$  is a c-filter space (respectively, Cauchy space). If we identify each  $x \in X$  with the equivalence class  $[\dot{x}]$  of all filters which are  $p_c$ -convergent to x, then the quasi-Wyler completion coincides with  $((X^*, C^*), j)$  in [3]. We will refer to the latter completion as the  $T_2$  Wyler completion of (X, C). Unlike  $T_2$  completions of a filter space, the quasi-completion  $((X_1^*, C_1^*), j)$  is not a quasi- $T_2$  completion, in general, even if (X, C) is  $q - T_2$ . The following proposition gives a condition which guarantees that a q- $T_2$  filter space has a quasi- $T_2$  completion.

**Proposition 3.** A q- $T_2$  filter space has a quasi- $T_2$  completion if and only if (X, C) is a c-filter space.

Proof. Let  $((Y, K), \phi)$  be a q- $T_2$  completion of (X, C). Let  $\mathcal{F} \in C$  and  $\mathcal{F} \sim_C \dot{x}$ .  $\dot{x}$ . From Proposition 1, it follows that  $\phi(\mathcal{F}) \xrightarrow{q_k} \phi(\dot{x})$ , that is,  $\phi(\mathcal{F}) \cap \phi(\dot{x}) \in K$ . Since  $\phi$  is an embedding,  $\mathcal{F} \cap \dot{x} \in C$ , which shows that (X, C) is a *c*-filter space.

Next, let (X, C) be a q- $T_2$  c-filter space. Then, as shown in Proposition 2,  $((X_1^*, C_1^*), j)$  is a quasi-completion of (X, C). Let  $\dot{y_1} \cap \dot{y_2} \in C_1^*$ . If  $y_1, y_2 \in X$ ,

then  $y_1 = y_2$ , since (X, C) is q- $T_2$ . If at least one of  $y_1$  or  $y_2$  is in  $X_1^* \setminus X$ , then by the definition of  $C_1^*$ ,  $\dot{y_1} \cap \dot{y_1} \in C_1^*$  only when  $y_1 = y_2$ . This completes the proof.

A quasi-completion  $((Y, K), \phi)$  is said to be in standard form if  $Y = X_1^*$  and  $\phi = j$ , satisfying the condition  $j(\mathcal{F}) \xrightarrow{q_{c_1^*}} [\mathcal{F}]$  for all non- $q_c$ -convergent filters in C. A similar property was introduced by Reed [12] to establish that a  $T_2$  Cauchy completion can be made equivalent to one in standard form. However, since this is not the case for all Cauchy spaces in general (see Example 3.2 [9]), the stable completions were introduced [9]. Since Cauchy spaces are special cases of filter spaces, Reed's result will also fail for non- $T_2$  filter spaces in general. This leads to the notion of quasi-stable completion for filter-spaces.

A quasi-completion  $((Y, D), \phi)$  of a filter space (X, C) is said to be quasistable if for each non- $q_c$ -convergent filter  $\mathcal{F} \in C$ ,  $\phi(\mathcal{F}) \cap [\dot{\mathcal{F}}] \in D$ . This property of a completion is stronger than the property of being stable introduced in [3], since quasi-stable implies that it is stable. However, there exist stable completion of some filter spaces which are not quasi-stable. Two quasi-stable completions of a filter space (X, C) can be compared to each other in the obvious way: A quasi-stable completion  $((Y_1, K_1), \varphi_1)$  is said to be *finer* than another quasi-stable completion  $((Y_2, K_2), \varphi_2)$ , if there is a continuous map  $h: (Y_1, K_1) \to (Y_2, K_2)$  such that  $h \circ \phi_1 = \phi_2$ , and they are *equivalent* if each is finer than the other. Note that the map h is a unique homeomorphism, when the quasi-stable completions are equivalent.

**Proposition 4.** The quasi-Wyler completion is the finest quasi-stable completion in standard form.

*Proof.* Let  $((Y, K), \phi)$  be a quasi-stable completion of the filter space (X, C) and  $h: Y \longrightarrow X_1^*$  be defined as

$$h(y) = \begin{cases} [\mathcal{F}] & \text{if } y \in Y \setminus \phi(X) \text{ and } \phi(\mathcal{F}) \xrightarrow{q_k} y, \\ y & \text{if } y = \phi(x) \text{ for some } x \in X. \end{cases}$$

To show that h is well-defined, let  $y_1 = y_2 \in Y$ . If  $y_1 = y_2 \in \phi(X)$ , then clearly  $h(y_1) = h(y_2)$ . If  $y_1 = y_2 \in Y \setminus \phi(X)$ , then  $\phi(\mathcal{F}_1) \xrightarrow{q_k} y_1$  and  $\phi(\mathcal{F}_2) \xrightarrow{q_k} y_2$ , for which  $\mathcal{G}_1 = \phi^{-1}(\phi(\mathcal{F}_1) \cap \dot{y}_1)$  and  $\mathcal{G}_2 = \phi^{-1}(\phi(\mathcal{F}_2) \cap \dot{y}_2)$  are in C. This implies that  $\mathcal{F}_1 \vee \mathcal{G}_1$ ,  $\mathcal{G}_1 \vee \mathcal{G}_2$  and  $\mathcal{G}_2 \vee \mathcal{F}_2$  exist, which yields  $[\mathcal{F}_1] = [\mathcal{F}_2]$ . Therefore,  $h(y_1) = h(y_2)$ .

Next, let  $h(y_1) = h(y_2)$ . If  $h(y_1) = x_1$  and  $h(y_2) = x_2$  for  $x_1, x_2 \in X$ , then  $y_1 = y_2$ . On the other hand, if  $h(y_1) = [\mathcal{F}]$  and  $h(y_2) = [\mathcal{G}]$  for some  $\mathcal{F}, \mathcal{G} \in C$ , then  $\mathcal{F} \sim_c \mathcal{G}$ , which leads to  $\phi(\mathcal{F}) \sim_c \phi(\mathcal{G})$ . Therefore,  $\phi(\mathcal{F}) \xrightarrow{q_k} y_1$  and  $\phi(\mathcal{G}) \xrightarrow{q_k} y_2$ , which imply  $\phi(\mathcal{F}) \xrightarrow{q_k} y_1$ ,  $y_2$ . But, since  $((Y, K), \phi)$  is a quasistable completion of (X, C), it follows that  $y_1 = y_2$ . Hence, h is bijective and  $h\phi = j$ .

Let  $C' = \{h(\mathcal{G}) \mid \mathcal{G} \in K\}$  be the quotient structure on  $X_1^*$  with respect to h. Obviously, both h and  $h^{-1}$  are Cauchy maps, which makes the bijective maps j and  $j^{-1}$  Cauchy maps. It is also routine to show that  $(X_1^*, C')$  is quasi-complete and  $cl_{q_{c'}}j(X) = Y$ . Hence,  $((X_1^*, C'), j)$  is a quasi-completion of (X, C). This proves that  $((Y, K), \phi) \simeq ((X_1^*, C'), j)$ . Also, for a non- $q_c$ -convergent filter  $\mathcal{F} \in C, \phi(\mathcal{F}) \xrightarrow{q_k} y$  implies  $j(\mathcal{F}) = h \circ \phi(\mathcal{F}) \xrightarrow{q_{c'}} h(y) = [\mathcal{F}]$ , which shows that  $((X_1^*, C'), j)$  is in standard form. This completes the proof.

Note that the quasi-Wyler completion is the finest quasi-stable completion in standard form, but it is not the finest stable completion in *FIL*. In fact, there is no such finest one for a filter space [3], whenever  $X^* \setminus j(X)$  is infinite.

#### 4. Extension Theorem

Extension theorems for filter spaces [3], regular filter spaces [10], filter semigroups [11] and Cauchy spaces (not necessarily  $T_2$ ) [9] have led to some interesting reflective subcategories of the categories FIL and CHY with some special type of morphisms called *s*-maps. In case of  $T_2$  filter spaces, an unique extension of a Cauchy map  $f : (X, C) \longrightarrow (Y, D)$  to the corresponding completion space was possible only when the codomain was a *c*-filter space. Here, an extension theorem is established without this restriction on the codomain, which is a considerable departure from the previous results ([3], [4]).

A Cauchy map between two filter spaces  $f : (X, C) \to (Y, D)$  is said to be a *quasi-s-map*, if it satisfies the following condition:

 $\mathcal{F} \in C$   $q_c$ -converges to at most one point in X implies that  $f(\mathcal{F})$  is D-linked to at most one point in Y.

Note that a quasi-s map is an s-map [9]. There are several examples of quasi-s-maps. Any Cauchy map is a quasi-s-map, if the codomain of the map is a q- $T_2$  filter space. The identity map on a filter space and the embedding map  $\varphi$  for a stable completion are also quasi-s-maps. In particular, the mapping j in the quasi-Wyler completion is a quasi-s-map. Note that it follows from the definition of s-map that composition of two quasi-s-maps is a quasi-s-map. The class of all filter spaces with the quasi-s-maps as morphisms forms a category, which we call FIL'. We observe that every Cauchy map is not necessarily a quasi-s-map. For example, any mapping from a nontrivial filter space or

an incomplete filter space into an indiscrete filter space containing at least two points is a Cauchy map, but not a quasi-s-map. So FIL' is not a full subcategory of FIL.

The following proposition shows that the quasi-Wyler completion  $((X_1^*, C_1^*), j)$  has a property similar to the universal property of the  $T_2$  completions [3]. A significant departure from the previous result is that we don't need to restrict the codomain of the quasi-s-map to be a c-filter space [3].

**Proposition 5.** Let (X, C) and (Y, D) be two filter spaces with the quasi-Wyler completions  $((X_1^*, C_1^*), j_X)$  and  $((Y_1^*, D_1^*), j_Y)$ , respectively. If  $f: (X, C) \to (Y, D)$  is a quasi-s-map, then there is a unique extension  $f^*: (X_1^*, C_1^*) \to (Y_1^*, D_1^*)$  which is also a quasi-s-map and  $f^* \circ j_X = j_Y \circ f$ .

Proof. Define  $f^*: (X_1^*, C^*) \to (Y_1^*, D^*)$  as follows

$$f^*(x) = f(x)$$

$$f^*([\mathcal{F}]) = \begin{cases} [f(\mathcal{F})] & \text{if } f(\mathcal{F}) \text{ not } D\text{-linked to } \dot{y} \text{ for any } y \in Y, \\ y & \text{if } f(\mathcal{F}) \xrightarrow{q_D} y \text{ for some } y \in Y. \end{cases}$$

Note that  $f(\mathcal{F})$  is not *D*-linked to  $\dot{y}$  for any  $y \in Y$  implies that  $f(\mathcal{F})$  is  $q_D$ non-convergent. The mapping  $f^*$  is a well-defined map, because, if  $[\mathcal{F}] = [\mathcal{G}]$ , then  $f(\mathcal{F}) \sim_D f(\mathcal{G})$ . So either both  $f(\mathcal{F})$  and  $f(\mathcal{G})$  are not *D*-linked to any element in *Y*, or otherwise. In the first case,  $f^*([\mathcal{F}]) = f^*([\mathcal{G}])$ . Otherwise, if  $f(\mathcal{F}) \sim_D \dot{y}_1$  and  $f(\mathcal{G}) \sim_D \dot{y}_2$ , then  $f(\mathcal{F}) \sim_D \dot{y}_1$ ,  $\dot{y}_2$ . This is a contradiction, since  $\mathcal{F}$  is not C-linked to  $\dot{x}$  for any  $x \in X$  implies  $\mathcal{F}$  is  $q_c$ -non-convergent and f is a quasi-s-map. So in either case  $f^*([\mathcal{F}]) = f^*([\mathcal{G}])$ . Also, it can be easily verified that  $f^* \circ j_X = j_Y \circ f$ .

Next we show that  $f^*$  is a quasi-s-map. Let  $\mathcal{A} \in C^*$ . If  $\mathcal{A} \geq j_X(\mathcal{F})$ , then  $f^*(\mathcal{A}) \geq f^* \circ j_X(\mathcal{F}) = j_Y \circ f(\mathcal{F}) \in D^*$ . If  $\mathcal{A} \geq j_X(\mathcal{F}) \cap [\mathcal{F}]$ , where  $\mathcal{F}$  is not C-linked to any  $x \in X$ , then  $f^*(\mathcal{A}) \geq (j_Y \circ f(\mathcal{F})) \cap f^*([\mathcal{F}])$ . If  $f(\mathcal{F})$  is  $q_D$ -non-convergent in Y, then  $(j_Y \circ f(\mathcal{F})) \cap [f(\mathcal{F})] \in D^*$ . If  $f(\mathcal{F}) q_D$ -converges to  $y \in Y$ , then,  $f(\mathcal{F}) \cap \dot{y} \in D$ , so it follows that  $(j_Y \circ f(\mathcal{F})) \cap \dot{y} \in D^*$ . Therefore,  $f^*$  is a Cauchy map. To show that it is a quasi-s-map, it suffices to show that if  $\mathcal{A} \in C^* q_{C^*}$ -converges to only one point, then  $f^*(\mathcal{A}) q_{D^*}$ -converges to only one point in  $Y^*$ . If  $\mathcal{A} \geq j_X(\mathcal{F})$ , then  $j_Y \circ f(\mathcal{F}) = f^* \circ j_X(\mathcal{F})$  is  $D^*$ -linked to only one point in  $Y^*$ , which implies it  $q_{D^*}$ -converges to only one point, since  $j_Y$  and f are quasi-s-maps. If  $\mathcal{A} \geq j_X(\mathcal{F}) \cap [\dot{\mathcal{F}}]$ , then  $\mathcal{F}$  is not C-linked to any point in X, implies  $\mathcal{F}$  is  $q_c$ -non-convergent. Hence, it follows from f being a quasi-s-map that  $f(\mathcal{F})$  is D-linked to at most one point in Y. Therefore,  $f^*(j_X(\mathcal{F}) \cap [\dot{\mathcal{F}}]) = (f^* \circ j_X(\mathcal{F})) \cap f^*([\dot{\mathcal{F}}]) = (j_Y \circ f(\mathcal{F})) \cap [f(\dot{\mathcal{F}})]$  or  $(j_Y \circ f(\mathcal{F})) \cap \dot{y}$  according as  $f(\mathcal{F})$  is not D-linked to any point (hence  $q_D$  non-convergent) or

 $f(\mathcal{F}) q_D$ -converges to  $y \in Y$ . But in either case  $f^*(\mathcal{A})$  converges to only one point in  $Y^*$ .

Finally, we show that  $f^*$  is an unique extension. Let  $\overline{f} : (X^*, C^*) \to (Y^*, D^*)$  be another quasi-s-map such that  $\overline{f} \circ j_X = j_Y \circ f$ . It is obvious that  $\overline{f} \circ j_X(x) = f^* \circ j_X(x)$  for all  $x \in X$ . So, let  $[\mathcal{F}] \in X^* \setminus j_X(X)$ . Since  $\mathcal{F} \in C$  is not C-linked to any point in  $X, j_X(\mathcal{F}) \cap [\dot{\mathcal{F}}]$ . Since  $f^*, \overline{f}$  are also Cauchy maps,  $f^* \circ j_X(\mathcal{F}) = \overline{f} \circ j_X(\mathcal{F}) = j_Y \circ f(\mathcal{F}) q_{D^*}$ -converges to  $f^*([\mathcal{F}]), \overline{f}([\mathcal{F}])$ . Therefore  $j_Y \circ f(\mathcal{F})$  is  $D^*$ -linked to both  $f^*([\mathcal{F}])$  and  $\overline{f}([\mathcal{F}])$ . However,  $\mathcal{F}$  is not C-linked, which implies it is also  $q_c$ -non-convergent, and  $f, j_Y$  are quasi-s-maps imply that  $j_Y \circ f(\mathcal{F})$  can be  $D^*$ -linked to at most one point in  $Y^*$ . Hence  $f^* = \overline{f}$ . This completes the proof.

The unique mapping  $f^*$  in Proposition 5 is called the *quasi-s-extension of f*.

**Remark** (I) If  $f : (X, C) \to (Y, K)$  is a quasi-*s*-map, where (Y, K) is a quasi-complete filter space, then there exists a unique quasi-*s*-extension  $f^* : (X^*, C^*) \to (Y, K)$  such that  $f^* \circ J_X = f$ .

(II) If (X, C) is a q- $T_2$  filter space, then its  $T_2$  quasi-Wyler completion also has the extension property. Recall that if the codomain of an *s*-map is a q- $T_2$ space, then the *s*-map is simply a Cauchy map. If  $f : (X, C) \to (Y, K)$  is a Cauchy map, where (Y, K) is a complete  $T_2$  *c*-filter space [3] (or a complete  $T_3$ filter space [10]), then there exists a unique Cauchy extension  $f^* : (X^*, C^*) \to$ (Y, K) such that  $f^* \circ J_X = f$ .

Note that a composition of quasi-s-maps is a quasi-s-map and the identity map is a quasi-s-map. So the class of all filter spaces with quasi-s-maps as morphisms form a subcategory of FIL. We denote this category by FIL'. Since it comprises quasi-s-maps as morphisms, it is not a full subcategory of FIL. Let  $FIL'^*$  be the subcategory of FIL' consisting of the quasi-complete objects of FIL'. On the category FIL', we can define a functor  $W_q : FIL' \to FIL'^*$ by  $W_q(X,C) = (X_1^*, C_1^*)$  for all objects, and  $W_q(f) = f^*$  for all morphisms in FIL'. Using the property of s-maps, it is a routine matter to show that  $W_q$  is a covariant functor on FIL'. The functor  $W_q$  is called the quasi-Wyler completion functor.

### References

 H.L. Bently, H. Herrlich, E. Lowen-Colebunders, Convergence, J. Pure Appl. Algebra, 68 (1990), 27-45; doi: 10.1016/0022-4049(90)90130-A.

- [2] M. Katetov, On continuity structures and spaces of mappings, Comment. Math. Carolinae, 6 (1965), 257-278; https://eudml.org/doc/16128.
- [3] D.C. Kent, N. Rath, Filter spaces, Applied Categorical Structures, 1 (1993), 297-309; doi: 10.1007/BF00873992.
- [4] D.C. Kent, N. Rath, On completions of filter spaces 767, Annals of the New York Academy of Sciences (1995), 97-107; doi: 10.1111/j.1749-6632.1995.tb55898.x.
- [5] G. Minkler, J. Minkler, G. Richardson, Extensions for filter spaces, Acta. Math. Hungar., 82, No. 4 (1999), 301-310; doi: 10.1023/A:1006688224938.
- G. Preuss, Semiuniform convergence spaces and filter spaces, (Beyond Toplogy, Contemporary mathematics Series- 486, AMS Publ., 2009, Eds: F. Maynard and E. Pearl) 333-374.
- [7] G. Preuss, Improvement of Cauchy spaces, Q&A in General Topology, 9 (1991), 159-166.
- [8] G. Preuss, *Theory of Topological Structures*, D. Reidel Publ. Co., Dordrecht (1988).
- [9] N. Rath, Completion of a Cauchy space without the  $T_2$  restriction on the space, *Int. J. Math. Math. Sci.*, **24**, No. 3 (2000), 163-172, **doi:** 10.1155/S0161171200003331.
- [10] N. Rath, Regular filter spaces, Topics in Applied Theoretical Mathematics and Computer Science, WSES Press (2001) 249-254; http://www.wseas.us/e-library/conferences/cairns2001/papers/610.pdf.
- [11] N. Rath, Completions of filter semigroups, Acta. Math. Hungar., 107, No-s: 1-2 (2005), 45-54; http://link.springer.com/article/10.1007/s10474-005-0176-0.
- [12] E.E. Reed, Completions of uniform convergence spaces, Math. Ann., 194 (1971), 83-108; doi: 10.1007/BF01362537.