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Abstract: In this paper we introduce a generalization of the class of m-partial
isometries operators recently studied in [24]. A bounded linear operator 7" on a
Hilbert space H is called an m- partial isometry of order ¢ for a positive integers
m and q, if

T4 (T*me _ (T) T*mflefl + <T;l> T*m72Tm72 et (_1)mI> =0.
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1. Introduction and Preliminaries Results

Let H denotes on a complex a separable infinite dimensional Hilbert space and
B(H) the algebra of bounded linear operators on H into itself. For T € B(H), T*
denotes the adjoint of T', R(T') and N (T') denote the range and the null-space
of T, respectively, I = Iy being the identity operator.
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One of the most important subclasses, of the algebra of all bounded linear
operators acting on a Hilbert space, the class of partial isometries operators.
The operator theory of partial isometries has been studied by several authors
(12], [18)).

An operator T' € B(H) is said to be self-adjoint if 7% = T, isometry if
T*T = I and partial isometry if TT*T = T. In recent years this classes has
been generalized, in some sense, to the larger sets of operators so-called m-self-
adjoint,m-isometry and m-partial isometry.

An operator T' € B(H) is called m-self- adjoint for some integer m > 1 if

> (—1)’“(?)7’*’@“ =0 (1.1)

0<k<m

and it is called m-isometry for some integer m > 1 if

Y (-t (;’Z) prm—kpm—k _ g (1.2)

0<k<m

where (') be the binomial coefficient. In [19],J.W.Helton initiated the study of
operator T which satisfy the identity (1.1) and in [1], J. Agler and M.Stankus
studied operator T" which satisfy (1.2). The development of the theory of m-
self-adjoint operators( and the related classes of m-isometries was motivated
largely by striking connections with differential equations.

A simple manipulation proves that (1.2) is equivalent to

> ()i tal? (1)

0<k<m

for all z € H. Evidently, an 1-self-adjoint operator (resp. a 1-isometric operator)
is m-self-adjoint (resp. m-isometric) for all integers m > 1. Indeed the class
of m-self-adjoint operators (resp. m-isometric operators) is a generalization of
the class of self-adjoint operators ( resp. isometric operators ). Major work
on m-isometries has been done in a long paper consisting of three parts by
Agler and Stankus ([1, 2, 3]) and have since then attracted the attention of
several other authors (see for example [6], [7], [8], [10], [11], [13], [14], [23]). More
recently a generalization of these operators to Banach spaces has been studied
in the paper of Botelho [9], Sid Ahmed [22] , Bayart [4], Bermudez et al. [5],
Hoffmann et al. [20] and P.P. Duggal [15]. The equation (1.3) was used to define
m-isometries on a Banach space by Sid Ahmed [22] and by Botelho [9]. Bayart
[4] has replaced the exponent 2 in (1.3) by an p € [1,00) and was introduced
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the following definition: a bounded linear operator 1" : X — X, on a Banach
spaces X is an (m, p)-isometry (m > 1 integer, p > 1 real) if

> ot (f)irtar =0 @ex) (1.4

0<k<m

Hoffman et al. [20] considered the above definition with p > 0 real and studied
the role of the second parameter p and also discussed the case p = cc.

In [24], the authors considered an extension of the notion of partial isome-
tries to m-partial isometries. We say that T" € B(H) is an m-partial isometry
if T" satisfies

m

TA7, =T (~1)* (7:) prm—kpm—k _ g, (1.5)
k=0

where Ar ,, is obtained formally from the binomial expansion of Ar ,, =

(T*T — I)™ by understanding (T*T)™ % = T*m=kTm=k The case when m =

1 is the partial isometries class. The class of m-partial isometries properly

contains class of m-isometries.

Agler and Stankus proved that if 7" is an m-isometry, then Az ,,—1 > 0
(Proposition 1.5, [1]).

In the present paper we will give a generalization of m-partial isometries
and m-isometries to (m, ¢)-partial isometries on Hilbert spaces. More precisely
we will study the bounded linear operators 7" on a complex Hilbert space H
that satisfy the identity

7 (T*me— (T) T*mle1+—....+(—1)mI> = 0. (1.6)
We will define an operator satisfying (1.6) to be an m-partial isometry of order
q on H. The case when ¢ = m = 1, represent the partial isometries class. If T'
is injective and it verifies (1.6) is called an m-isometry that is deeply studied
by J. Agler and M. Stankus in [1]. If ¢ = 1 ,(m,1)-partial isometry becomes
m-partial isometry.

The contents of the paper are the following. In Section 1 we set up notation
and terminology. Furthermore, we collect some facts about m-isometries. In
Section 2, we will study some properties of (m, g)-partial isometries operators.
Exactly we will give conditions under which:

e an operator 7" is (m, g)-partial isometry.

e (m,q)-partial isometry operator it becomes m-partial isometry.
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e (m,q)-partial isometry operator it becomes partial isometry.

e (m,q)-partial isometry operator it becomes (m + 1, ¢)-partial isometry.

the product and sum of two (m, ¢)-partial isometries operators are (m, q)-
partial isometry.

e a power of (m,q)-partial isometry is an (m, q)-partial isometry.

(m, q)-partial isometry operator has the single valued extension property.

In order to answer these questions we will briefly review some basic facts
about m-isometries.

Definition 1.1. A subspace M of H is called
1. invariant for T' or T-invariant if T(M) C M.

2. a reducing subspace for T if both M and M are T—invariant or equiv-
alently if M is invariant for both T" and T*.

Theorem 1.1. ([1]) Let T' € B(H) be an m-isometry for some m > 1.
Then

T = Y aME(T) (1.7)
0<k<m—1
where ) L
oD = 3 (-0 ()
0<5<k
and
0, if n=0
n® ={ 0ifn>0 and k>n

(Z)k' if n>0 and k<n.
Proposition 1.1.  ([4, Theorem 2.2]) and [22, Proposition 2.3]). An
(m,p)-isometry T' € B(X) is an (m + 1, p)-isometry.

Theorem 1.2.  ([20], Proposition 2.1 ) Let T € B(X) be an (m,p)-
isometry such that for all x € X there exists a real number C(z) > 0 such
that

IT"(z)]| < C(z) Vn € N.

Then T' is an isometry.
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2. m-Partial Isometries of Order ¢

Definition 2.1. An operator T' € B(H) is said to be an (m,q)-partial
isometry or m-partial isometry of order q if and only if T satisfies the identity

7 (T*me - (T) Trmelrmel (—1)’”]) = 0. (2.1)

In particular, if T is a (2, q)-partial isometry or a (3, q)-partial isometry, then
it must satisfy the operator equation

TY(T*T? - 2T*T +1) =0 (2.2)

or
TI(TT? = 3T**T* + 3T*T — 1) =0 (2.3)
Remark 2.1. 1. (1,1)-partial isometry operator is an partial isometry.

2. (m,1)-partial isometry operator is an m-partial isometry.
3. (1, g)-partial isometry is an partial isometry of order ¢ i.e., T9T*T = T1.
4. Every m-partial isometry is an (m, ¢)-partial isometry.

5. Every (m,q)-partial isometry is an (m, g + 1)-partial isometry.

The following example shows that there exists an operator which is (m, q)-
partial isometry but not (m, 1)-partial isometry.

0 01
Example 2.1. Let T=| 0 0 0 , € B(C?. A simple computation
0 00

shows that 7" is a (2, 2)-partial isometry but not a (2, 1)-partial isometry.

Example 2.2. We now consider [ 24, Theorem 4.3]. Let us fix an or-
thonormal basis (en)n>1 of H. For a sequence of complex numbers (wn)
the associated weighted operator on H with

n>1’

Te, = wpens1 forall n > 1.

Ii is well know that 7" is bounded operator if and only if the weighted sequence
(wn)n>1 is bounded.We assume that 7" is bounded weighted shift operator.
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Since Te,, = wpeni1 for all n > 1, we see that T*e, = ( H wj)enJrk.

n<j<k+n—1
Consequently
0, if n<k
T*ken - .
( H w_j)en_k ifn>k+1.
n—k<j<n-—1
Therefore

T*Tke, = ( H |w;|?) en.

n<j<k+n-—1

T is a (m, q)-partial isometry if and only if for any integer n > 1

C I wp(come 2 e ()T k) =0

n<j<q+n—1 1<k<m n<j<k+n-—1

Remark 2.2. If T € B(H) such that N (7) is a reducing subspace for T
then
T*+TH(N(T9) c N(TH*, k=1,2,..,..

The following theorem characterizes some (m, q)-partial isometries opera-
tors

Theorem 2.1. Let T € B(H) such that N (T) is a reducing subspace for
T. Then the following properties are equivalent.

(1) T is an (m, q)-partial isometry.
(2)
> =y (”;) | Tk T2 = 0, for all x € H.

0<k<m

Proof. First , assume that T is an (m, ¢)-partial isometry. We have that
for all x € H

Ty (—1)k(TZ)T*kaka*qx =0
0<k<m
m

)T*m_kTm_kT*qCC, .CC> —0

(
— ¥ ()it o
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Conversely assume that Z (=™ (ZL) [T FT*92||2 = 0, for all x € H. It
0<k<m
follows that

> (it —o
0<k<m

— (T¢ -1 ’“(m> TRk 2y =0, Vo e H
( Og;m( ) i )

= T7 Y (-1)f (7:) kMR — 0V z e H.
0<k<m

We deduce that

¢y (—1)k(m> TRk = 0 on R(T*0) = N(T9)*.

k
0<k<m
As N(T1) is a reducing subspace, we have
T7 (-1)’“(72)T*kamk =0 on N(TY)
0<k<m

and hence,

iy (—1)’“(2)1’*%’@%’“ = 0.

0<k<m

0

Corollary 2.1. Let T € B(H) such that N'(TY) is a reducing subspace for
T, then the following properties are equivalent

1. T is an (m, q)-partial isometry.
2. T|n(rays is an m-isometry.

In the following theorem we show that by imposing certain conditions on
(m, g)-partial isometry operator it becomes m-partial isometry.

Theorem 2.2. IfT is an (m, q)-partial isometry such that N'(T) = N (T?)
then T' is an m-partial isometry.
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Proof. By the assumption we have that N (T') = N(T™) for all positive
integer n. Hence

Tq< 3 (—1)’“<7Z>T*kamk> —0.

0<k<m

implies

T(ngzzgm(_l)k (”;) T*m’me’f> = 0.

O

Proposition 2.1. If T is an (m,q)-partial isometry such that T* is an
partial isometry for k = 1,2,3,...m—1 then T™ is a partial isometry for m > q.

Proof. Since T is an (m, q)-partial isometry we have

T Y (—1)’“(7Z>T*kamk =0

0<k<m

Multiplying the above equation from the left by 7™ we get

T4 <TmT*me—|— Z (_1)k <m>TmT*m—kTm—k> —0.
k
1<k<m

Since T* is a partial isometry for k = 1,...,m — 1 we deduce that

79 ( pmprmm —R (")) =o.
(e & o)) =
1<k<m
Thus,
T (TmT*me — Tm) =0
or equivalently
<T*meT*m — T*m> T =0

Hence,
TT*™T™ —T™ =0 on R(T*) = N(T?)" .
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On the other hand, since m > ¢,
T"T*™T™ —T™ =0 on N(T9).
O

Proposition 2.2. Let T € B(H) be an (m, q)-partial isometry such that
T* is a partial isometry for k = 2,3,...,m. Then T™t1 = T IT*T je., T is
an (1, m + q)-partial isometry.

Proof. Using the fact that T" is an (m, ¢)-partial isometry, we get

Tq( Y (—1)k(T;>T*m_kTm_k> = 0.

0<k<m

Multiplying the above equation from the left by 7™ we get the identity

T(I( Z (_1)k (TIZ> TmT*m—kTm—k + (_1)m—1meT*T + (_1)me>
0<k<m—2
=0.

By the assumption we get

Tq< 3 (—1)’“(7;1)7”” + (=)™ LT TT + (—1)me> = 0.

0<k<m—2
A calculation shows that T™9(I — T*T) = 0. Hence, the desired result. O

In the following corollary we show that by imposing certain conditions on
(m, q)-partial isometry operator it becomes partial isometry.

Corollary 2.2. Let T € B(H) be an (m, q)-partial isometry such that T*
is a partial isometry for k = 2,3,....,m. If N(T) = N'(T?), then T is an partial
isometry:.

Proof. Tt is a consequence of Proposition 2.2 and the fact that N (T) =
N(T™) for all positive integer n. O

Theorem 2.3. Let T' € B(H) be an (m,q)-partial isometry such that
N(T?) is a reducing subspace for T. Assume that there exists a constant
M > 0 satisfying

|T" [ prray || < M, ¥ €N,

then T is a (1, q)- partial isometry.
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Proof. If T'is an (m, g)-partial isometry, then T'|\(pq)r is an m-isometry,
and by Theorem 1.2 applied to the operator T'|;(rqyr we have that [y (pays
is an isometry. In particular Corollary 2.1 gives TIT*T = T1. O

The following example shows that a (m, ¢)-partial isometry operator need
not be a (m + 1, ¢)-partial isometry and vice versa.

0 0 1
Example 2.3. Let T' = 0 0 0 ,eB(C
1 1
vz v J
0 0 0
and S=1| ¢ 1+_2\/5 0 } € B(C3) then a direct computation shows that
0 1 0

e T is a (1, qg)-partial isometry but is not a (2,1)-partial isometry.
e Sis a (2,q)-partial isometry but is not a (1, 1)-partial isometry.

It is well know that every m-self-adjoint( resp. m-isometry) operator is
(m + 1)-self-adjoint (resp.(m + 1)-isometry) operator.

In the following theorem we show that by imposing certain conditions on
(m, q)-partial isometry operator it becomes (m + 1, ¢)-partial isometry.

Theorem 2.4. Let T' € B(H) be an (m,q)-partial isometry such that
N(T?) is a reducing subspace for T. Then T is an (m + n, q)-partial isometry
forn=1,2,....

Proof. Two proofs for this theorem will be given.

The First Proof. Since T is an (m, q)-partial isometry and T(N(T9)*) C
N(T9)* it follows that 7'/ N(TayL 18 an m-isometry. By Proposition 1.1 applied
to the operator T’/ y;(rayr we obtain that T'/y-pays is an (m + n)-isometry and
hence T' is an (m + n, ¢)-partial isometry.

The second Proof. The standard formula (mljl) = (’Z}) + (le) for binomial
coefficients gives that

1
Z (_1)k (m]:_ )HTerlkT*qu2

0<k<m+1

= (—1)’“((2) + (ka 1)) Tk 2

0<k<m+1

NS U (e v A DRV G e S

0<k<m 0<k<m
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O

The following example shows that Theorem 2.4 is not necessarily true if
N(T) is not reducing subspace for T

1
e
% € B(C?). We not that

0 0
Example 2.4. ([24]) Let T = | 0 0
10

0
N(T) is not reducing for 7" and 7' is a l-partial isometry but 7 is not a 2-
partial isometry.

010
Example 2.5. The operator T = | 0 0 1 , € B(C?) is a 1-partial
1 00
a

isometry and a 2-partial isometry and N (T') is a reducing subspace for T

Proposition 2.3. Let T € B(H) be an (m, q)-partial isometry. Then T
(m + 1, q)-partial isometry if and if T' is an m-isometry on R(TT*?).

Proof. First assume that 7" is an (m, ¢)-partial isometry and an (m.+1, q)-
partial isometry we have by (2.1)

T4 -1 k(T *m—kom—k _ ]
> )<k>T T 0 (2.4)
0<k<m
and .
+ _ _
K -1 k(™ sm+1—kpm+1—k _ )
> (-1 ( L >T T 0 (2.5)
0<k<m+1

Combining (2.4) and (2.5) we obtain
0<k<m
Thus implies that
TqT*( > (bF (Z) T*m‘kTm‘k> TT* =0,
0<k<m
the above inequality means that we can write

> (—1)’“(?) |T™FTT* 2| = 0, forall z € H

0<k<m
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and hence the desired result.
Conversely assume that 7" is an (m, q)-partial isometry and an m-isometry
on R(TT*?). We have that

¢ N (~nymh <TZ)T*'“T’“ =0 (2.6)

0<k<m

and

3 (-ymh (TZ) TR = (2.7)

0<k<m

The equation (2.7) implies

¢ Y (~nymh <m)T*k+1Tk+1 =0 (2.8)

k
0<k<m

or equivalently

T Y (—1)mk<km )T*ka_o. (2.9)

1<k<m+1

Combining (2.6) and (2.9), we obtain

Tq((—l)ml+ 3 (—1)’“—’“((7]:) + (k'rf 1)>T*ka - T*m+1Tm+1) ~0.

1<k<m

The binomial coefficient identity (') + (") = (m,;H) for k=1,2,...m gives

1
7y (—1)m+1"“(m; )T*ka:O.
0<k<m+1

This completes the proof. ]

In [22, Theorem 2.2], it is proved that if 7" and S commuting bounded
linear operators on a Banach space X such that T is a 2-isometry and S is an
m-isometry, then ST is an (m + 1)-isometry. This result was improved in [6,
Theorem 3.3: if 'S = ST, T is an (m, q)-isometry and S is an (n, ¢)-isometry,
then ST is an (m +n — 1, ¢)-isometry.

It is natural to ask whether the product and sum of two (m,q)-partial
isometries operators are (m, q)-partial isometry. In general they need not be.
The following Theorems give an affirmative answer under some conditions.
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Theorem 2.5. Let T, S € B(H) are (m, q)-partial isometries. The follow-
ing properties hold:

1. If ST =TS and R(S) € N(T) or R(T) € N(S), then TS is an (m,q)-
partial isometry.

2. IfST =TS =8*"T=TS"=0, then T + S is an (m, q)-partial isometry.
Proof. The proof follows from the Definition 2.1. O

Proposition 2.4. Let T,S € B(H) such that T is an (m, q)-partial isom-
etry and S is an (n, q)-partial isometry . The following properties hold:

1. If ST =TS and R(S) C N(T) or R(T) C N(S), then T'S is an (m+n, q)-
partial isometry.

2. IfST =T8S =S*T=TS5* =0, N(T) is a reducing subspace for T and
N(S) is a reducing subspace for S, then T 4+ S is an (m + n, q)-partial
isometry.

Proof. 1. Clear.
2. Since T is it follows that

sy 3 (T @ st )

0<k<n+m

— +n
= (T8)? _qyntm—k (™ prkk oy gek gk
s ¥ - ("5 sy
= 0 (by Theorem 2.4).

O

The following example shows that the product of (m,q)-partial isometries
is not necessarily an (m, g)-partial isometry.

010 0 0 1
Example 2.6. LetT=| 0 0 0 ; and S = 0 1 0 ;| acting
101 %5 7 0}
2 V2

on C3. It easy to see that 7" and S are 1-partial isometries but 7'S is not a
1-partial isometry.

The following example shows that the sum of (m,q)-partial isometries is
not necessarily an (m, ¢)-partial isometry.
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o O

Example 2.7. Let T =

o O O
o O =
O = O

0
0 acting on
0 )

)"

0
0
1
partial isometries but T'

+ .5 is not a

\/p—l

C3. Tt easy to see that T' and S are (2,2)-
(2,2)-partial isometry.

We will use the following remark in the proof of Theorem 2.6.

Remark 2.3. 1. The following characterization of 3-isometry operator
follows from the identity (1.7). An operator 7' € B(H) is a 3-isometry if
and only if there exist operators By (1T*,T) and By(T™*,T) such that for
all natural numbers n,

T"T" = I +nBy(T*,T) + n*Bo(T*,T), (2.10)

where

Bi(T*,T) = = (= T**T* + 4T*T — 31

N —

and )
By(T*,T) = 5(T*2T2 —2I"T +1).

2. From the identity (1.7) the following characterization of 2-isometry holds.
For an T € B(#H),then T is an 2-isometry if and only if

T*TF = k7T — (k— 1)1, k=1,2,....

Theorem 2.6. Let T' € B(H) be an (m, q)-partial isometry and let S €
B(H) for which TS = ST and T'S* = S*T. The following properties hold:

1. if S is an isometry, then T'S is an (m, q)-partial isometry.

2. if N(T9) is a reducing subspace for T and S is an 2-isometry,then T'S is
an (m+1,q)-partial isometry.

3. if N(T) is a reducing subspace for T and S is an 3- isometry, then T'S
is an (m + 2, q)-partial isometry.

Proof. 1. Let x € H, we have

sy ¥ () skt

0<k<m

— (TS)Q Z (_1)k(Z)T*m—kTm—k(S*m—kSm—kx)

0<k<m
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DY (-1)’6(?)1’%’%’6(5%)

0<k<m
=0

2. From part 2. of Remark 2.4 and Theorem 2.4, it follows that

(TS)q k(m+1> TS *m—+1— k(TS)erl k
0<k<m+1
= (TS)Q k; m+1 T*m+1 kTm+1 k(S*m+1 ksm+1 k)
0<k<m+1 k
1
= (T9)1 k<ml-: )T*erl krpm1— k((’m—i-l—k)S*S)
0<k<m+1
+1 _ 7
—(TS\? k m T*m+1 kTm+1 k gAY
o 0<k:<m+1 < k > (m=&)
m + - - .
= (TS)? Z k:( . >T Fl—kpmt+l— kk([ S S)
0<k<m+1

_ Q979 vk [TV pem—km—k (7 o
= ST )" (-1) <k>T T k(1 - 5*9)
0<k<m

= 0.

3. Since S is a 3-isometry and T'S = ST [ T'S* = S§*T, we have from equation
(2.10) and Theorem 2.4 that

s S o (M) sy kst

0<k<m+2

m + 2 *Mm42— m+2— sm+2—k gm—+2—
—  S§9T4Y Z (_1)k< L > (T) +2 k(T) +2 k(S +2 kS +2 k)
0<k<m+2

— SqTq{ > (—1)’“(”‘;2)@)*’””’“(T)m+“1+

0<k<m+2

o (m+2> T)m 42k (Tym 2k (1 4 2 — k) By (S%, 8) +

0<k<m+2

T <m+2> )2k m+2—k(m+2—k)2B2(S*,S)}

0<k<m+2
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— §aT9 Z (_1)k <m;_ 2) k_(T)*erka(T)erkaAm(S*’ S)
1<k<m+2

I
m—+2

+ 8974 Z (_1)kz (m;— 2) k_2(T)*m+2—k(T)m+2—k: (BQ(S*, S))
k=1

J

where

Ap(S*,S) = < — B(S*,8) + (—2(m + 2))B2(S™, S))

I=8T" > (-1)f(m+2) (’Z +11) (T) ™ 2=k (mym 2=k 4, (5%, S)
1<k<m+2 N

— (m + Q)SQTQ Z (_1)kr <m2_ 1> (T)*m—l—l—k:(T)m-i-l—k
0<k<m+1

( — B1(5%,9)+(—2(m + 2)) B2 (5%, S)>

J =S471 Z (_1)k: (m + 2> k2(T)*m+2—k(T)m+2—k: (BQ(S*, S))

1<k<m+2 k
m—+2

msrrt S0t (M) k) R (s )
k=1

=517 >~ (—1)F (m,j 2>k(k — 1)(T) ™R ()™ 2R (By(S7, 9))
1<k<m+2
m+2
=(m +2)(m +1)S7T7 Y " (—1)F (k

k=2

m

B 2) (T)*m—l—Q—k:(T)m-i-Q—k (32(5*’ S))

m

=(m +2)(m + 1)S7T7 " (_1)k(k

0<k<m

) (T)*m—k(T)m—k (BQ(S*, S))
=0.

Hence I + J = 0. Thus 7'S is a (m + 2, ¢)-partial isometry.
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The following corollary is an immediate consequence of Theorem 2.6.

Corollary 2.3. Let T € B(H) be an (m,q)-partial isometry and let
S € B(H) for which T'S = ST and T'S* = S*T. the following properties hold:

1. if S is an isometry, then T'S™ is an (m, q)-partial isometry for all positive
integer n.

2. if N(T?) is a reducing subspace for T and S is an 2-isometry,then T'S™ is
an (m+-1,q)-partial isometry for all positive integer n.

3. if N(T?) is a reducing subspace for T and S is an 3- isometry, then T'S™
is an (m + 2, q)-partial isometry for all positive integer n.

It is clear that if T" is an isometry, then T is also an isometry. Saddi and Sid
Ahmed in [24, Theorem 2.1] prove that any power of a (2, 1)-partial isometry
if it has a nontrivial reducing sub space N(T) is again a (2, 1)-partial isometry.
In [16] it was showed that any power of a (m,1)-partial isometry if it has a
nontrivial reducing subspace N (T) is again a (m, 1)-partial isometry. Now we
generalize it to (m, ¢)-partial. As the proof is very similar to [24, Theorem 2.1]
and ( [16], Theorem 2.17) , we omit it.

Theorem 2.7. Let T' € B(H) be an (m,q)-partial isometry such that
N(T?) is a reducing subspace for T. Then any power of T is also an (m,q)-
partial isometry.

Lemma 2.1. ([21]) Let n > 1 be an integer, and let T' € B(H) an operator
such that r(T) < 1. Then the following equality hold

> (3ot eam

0<k<n

= (P (- ar) (S V() )Tt (- ar)

0<k<n

holds for every conformal automorphism ¢, of the unit disc of the form ¢, (z) =
z—
for all z € D and o € D.

1—-az

Let Aut(DD) be the group of all conformal mapping from D onto itself ( also
called disk automorphisms of D). It is well known that Aut(ID) coincides with
the set of all Mobius transformations of I onto itself:

Aut(D) = {Apq : [N =1, € D}.
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We can now conclude that the conformal automorphisms operate on the class
of m-isometries.

Corollary 2.4. IfT € B(H) is an m-isometry, then so is p(T) for every
¢ € Aut(D).

Proof. 1t is a consequence of the above lemma. O
Put
STq = T‘DkqATq7 m_qu
-1 —1-k m—1—k
T —pR(™ ek (e T
(> e e
0<k<m—1

Proposition 2.5. Let T' € B(H) be an (m, q)-partial isometry such that
N(T7) is a reducing subspace for T, then Sta > 0 i.e.; (Spax, ) >0 Vi € H.

Proof. For x € H, we have (Staz, x) = (Ara, 119, T9z). According to

Corollary 2.1 ,Proposition 1.1 and ([1] Proposition 1.5) we have AT"\N(TQ)Lv el >
0. Since T reduces N'(T9) then Tx € N'(T7)* and

(Srazx ,z) = (Ara, 1 T2, T92) > 0.
Hence the result. U

Definition 2.2. An operator T is said to have the single valued extension
properties if, for every open subset U of C,an analytic function f : U — H
satisfies (T'— X\)f(A\) =0 YA €U, then f(\) =0 V X eU.

Theorem 2.8. ([11]) An m-isometric operator T" has the single valued
extension property.

In the following theorem, we extend this result to some (m, q)-partial isome-
tries.

Theorem 2.9. Let T' € B(H) be an (m,q)-partial isometry such that
N(T?) is a reducing subspace for T. Then T has the single valued extension
properties.

Proof. Assume that T' is (m,q)-partial isometry for some positive integer
m. Let A\ € C and let U be any open neighborhood of A in C. Assume that f
is an analytic H-valued function defined on U such that

(T—X)f(A)=0 onU. (2.11)
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Let f(A) = fi(A) ® f2(\) € N(T9) ® N (T9)*, then we have
(TN fN) =0 (T—=Nfi(A)+ (T =) f2(A\) =0 onU.

We deduce that (T'— X\)T9fa(A) =0 onU.
Since T is an m-isometry on A/ (T%)* and hence has the single valued extension
property (Theorem 2.8) , then T%fs(A) = 0 and f2(A) = 0. Consequently

(T = N =0 = (T~ Nfi(\) =0.

Thus (T — \)f1(A\) = 0 implies that A%f;(\) = 0 and f(\) = 0 if A # 0.
Since f1(A\) =0 if A # 0 and f; is analytic, f; = 0. O

Theorem 2.10. The class of (m,q)-partial isometries is closed subset of
B(H) equipped with the uniform operator (norm) topology.

Proof. To see that the class of (m.q)-partial isometries is closed, we prove
that any strong limit 7" € B(H) of a sequence (T},) in the class of (m, ¢)]-partial
isometry also belongs to the class of (m, ¢)-partial isometries , i.e., we let (T},)
be a sequence of operators in the class of (m.q) -partial isometries converging
to T € B(H) in norm:

|Tpx — Tx|| — 0 as p — oo, for each x € H.
Hence it follows that
[Tpx =T || = (T, = T) || < (T, = T)"ll=ll = T, = Tll|=|| — 0,

whence (7};) converges strongly to 7.

Since the product of operators is sequentially continuous in the strong topol-
ogy (see [17], p.62), one concludes that TgT;ka converge strongly to TIT*FT*.
Hence the limiting case of (2.1) shows that 7" belongs to the class of (m,q)-
partial isometries, completing the proof. ]
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