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Abstract: In this paper we introduce a generalization of the class of m-partial
isometries operators recently studied in [24]. A bounded linear operator T on a
Hilbert space H is called an m- partial isometry of order q for a positive integers
m and q, if

T q

(

T ∗mTm −

(
m

1

)

T ∗m−1Tm−1 +

(
m

2

)

T ∗m−2Tm−2 − · · ·+ (−1)mI

)

= 0.
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1. Introduction and Preliminaries Results

Let H denotes on a complex a separable infinite dimensional Hilbert space and
B(H) the algebra of bounded linear operators onH into itself. For T ∈ B(H), T ∗

denotes the adjoint of T , R(T ) and N (T ) denote the range and the null-space
of T , respectively, I = IH being the identity operator.
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One of the most important subclasses, of the algebra of all bounded linear
operators acting on a Hilbert space, the class of partial isometries operators.
The operator theory of partial isometries has been studied by several authors
([12], [18]).

An operator T ∈ B(H) is said to be self-adjoint if T ∗ = T, isometry if
T ∗T = I and partial isometry if TT ∗T = T. In recent years this classes has
been generalized, in some sense, to the larger sets of operators so-called m-self-
adjoint,m-isometry and m-partial isometry.

An operator T ∈ B(H) is called m-self- adjoint for some integer m ≥ 1 if

∑

0≤k≤m

(−1)k
(
m

k

)

T ∗kTm−k = 0 (1.1)

and it is called m-isometry for some integer m ≥ 1 if

∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k = 0, (1.2)

where
(
m
k

)
be the binomial coefficient. In [19],J.W.Helton initiated the study of

operator T which satisfy the identity (1.1) and in [1], J. Agler and M.Stankus
studied operator T which satisfy (1.2). The development of the theory of m-
self-adjoint operators( and the related classes of m-isometries was motivated
largely by striking connections with differential equations.

A simple manipulation proves that (1.2) is equivalent to

∑

0≤k≤m

(−1)k
(
m

k

)

‖Tm−kx‖2 (1.3)

for all x ∈ H. Evidently, an 1-self-adjoint operator (resp. a 1-isometric operator)
is m-self-adjoint (resp. m-isometric) for all integers m ≥ 1. Indeed the class
of m-self-adjoint operators (resp. m-isometric operators) is a generalization of
the class of self-adjoint operators ( resp. isometric operators ). Major work
on m-isometries has been done in a long paper consisting of three parts by
Agler and Stankus ([1, 2, 3]) and have since then attracted the attention of
several other authors (see for example [6], [7], [8], [10], [11], [13], [14], [23]). More
recently a generalization of these operators to Banach spaces has been studied
in the paper of Botelho [9], Sid Ahmed [22] , Bayart [4], Bermudez et al. [5],
Hoffmann et al. [20] and P.P. Duggal [15]. The equation (1.3) was used to define
m-isometries on a Banach space by Sid Ahmed [22] and by Botelho [9]. Bayart
[4] has replaced the exponent 2 in (1.3) by an p ∈ [1,∞) and was introduced
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the following definition: a bounded linear operator T : X −→ X, on a Banach
spaces X is an (m, p)-isometry (m ≥ 1 integer, p ≥ 1 real) if

∑

0≤k≤m

(−1)k
(
m

k

)

‖Tm−kx‖p = 0 (x ∈ X). (1.4)

Hoffman et al. [20] considered the above definition with p > 0 real and studied
the role of the second parameter p and also discussed the case p = ∞.

In [24], the authors considered an extension of the notion of partial isome-
tries to m-partial isometries. We say that T ∈ B(H) is an m-partial isometry
if T satisfies

T∆T, m = T
m∑

k=0

(−1)k
(
m

k

)

T ∗m−kTm−k = 0, (1.5)

where ∆T, m is obtained formally from the binomial expansion of ∆T, m =

(T ∗T − I)m by understanding (T ∗T )m−k = T ∗m−kTm−k. The case when m =
1 is the partial isometries class. The class of m-partial isometries properly
contains class of m-isometries.

Agler and Stankus proved that if T is an m-isometry, then ∆T, m−1 ≥ 0
(Proposition 1.5, [1]).

In the present paper we will give a generalization of m-partial isometries
and m-isometries to (m, q)-partial isometries on Hilbert spaces. More precisely
we will study the bounded linear operators T on a complex Hilbert space H
that satisfy the identity

T q

(

T ∗mTm−

(
m

1

)

T ∗m−1Tm−1+−....+(−1)mI

)

= 0. (1.6)

We will define an operator satisfying (1.6) to be an m-partial isometry of order
q on H. The case when q = m = 1, represent the partial isometries class. If T
is injective and it verifies (1.6) is called an m-isometry that is deeply studied
by J. Agler and M. Stankus in [1]. If q = 1 ,(m, 1)-partial isometry becomes
m-partial isometry.

The contents of the paper are the following. In Section 1 we set up notation
and terminology. Furthermore, we collect some facts about m-isometries. In
Section 2, we will study some properties of (m, q)-partial isometries operators.
Exactly we will give conditions under which:

• an operator T is (m, q)-partial isometry.

• (m, q)-partial isometry operator it becomes m-partial isometry.
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• (m, q)-partial isometry operator it becomes partial isometry.

• (m, q)-partial isometry operator it becomes (m+ 1, q)-partial isometry.

• the product and sum of two (m, q)-partial isometries operators are (m, q)-
partial isometry.

• a power of (m, q)-partial isometry is an (m, q)-partial isometry.

• (m, q)-partial isometry operator has the single valued extension property.

In order to answer these questions we will briefly review some basic facts
about m-isometries.

Definition 1.1. A subspace M of H is called

1. invariant for T or T -invariant if T (M) ⊂ M.

2. a reducing subspace for T if both M and M⊥ are T−invariant or equiv-
alently if M is invariant for both T and T ∗.

Theorem 1.1. ([1]) Let T ∈ B(H) be an m-isometry for some m ≥ 1.
Then

T ∗nT n =
∑

0≤k≤m−1

n(k)βk(T ) (1.7)

where

βk(T ) =
1

k!

∑

0≤j≤k

(−1)k−j

(
k

j

)

T ∗jT j

and

n(k) =







0, if n = 0

0 if n > 0 and k > n

(
n
k

)
k! if n > 0 and k ≤ n.

Proposition 1.1. ([4, Theorem 2.2]) and [22, Proposition 2.3]). An
(m, p)-isometry T ∈ B(X) is an (m+ 1, p)-isometry.

Theorem 1.2. ([20], Proposition 2.1 ) Let T ∈ B(X) be an (m, p)-
isometry such that for all x ∈ X there exists a real number C(x) > 0 such
that

‖T n(x)‖ ≤ C(x) ∀n ∈ N.

Then T is an isometry.
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2. m-Partial Isometries of Order q

Definition 2.1. An operator T ∈ B(H) is said to be an (m, q)-partial
isometry or m-partial isometry of order q if and only if T satisfies the identity

T q

(

T ∗mTm −

(
m

1

)

T ∗m−1Tm−1 + ...− ....+ (−1)mI

)

= 0. (2.1)

In particular, if T is a (2, q)-partial isometry or a (3, q)-partial isometry, then
it must satisfy the operator equation

T q
(
T ∗2T 2 − 2T ∗T + I

)
= 0 (2.2)

or

T q
(
T ∗3T 3 − 3T ∗2T 2 + 3T ∗T − I

)
= 0 (2.3)

Remark 2.1. 1. (1, 1)-partial isometry operator is an partial isometry.

2. (m, 1)-partial isometry operator is an m-partial isometry.

3. (1, q)-partial isometry is an partial isometry of order q i.e., T qT ∗T = T q.

4. Every m-partial isometry is an (m, q)-partial isometry.

5. Every (m, q)-partial isometry is an (m, q + 1)-partial isometry.

The following example shows that there exists an operator which is (m, q)-
partial isometry but not (m, 1)-partial isometry.

Example 2.1. Let T =





0 0 1
0 0 0
0 0 0



 ∈ B(C3). A simple computation

shows that T is a (2, 2)-partial isometry but not a (2, 1)-partial isometry.

Example 2.2. We now consider [ 24, Theorem 4.3]. Let us fix an or-
thonormal basis

(
en
)

n≥1
of H. For a sequence of complex numbers

(
ωn

)

n≥1
,

the associated weighted operator on H with

Ten = ωnen+1 for all n ≥ 1.

Ii is well know that T is bounded operator if and only if the weighted sequence
(
ωn

)

n≥1
is bounded.We assume that T is bounded weighted shift operator.
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Since Ten = ωnen+1 for all n ≥ 1, we see that T ken =
( ∏

n≤j≤k+n−1

ωj

)
en+k.

Consequently

T ∗ken =







0, if n ≤ k

( ∏

n−k≤j≤n−1

ωj

)
en−k if n > k + 1.

Therefore
T ∗kT ken =

( ∏

n≤j≤k+n−1

|ωj |
2
)
en.

T is a (m, q)-partial isometry if and only if for any integer n ≥ 1

( ∏

n≤j≤q+n−1

ωj

)
(

(−1)m +
∑

1≤k≤m

(−1)m−k

(
m

k

)
( ∏

n≤j≤k+n−1

|ωj |
2
)
)

= 0

Remark 2.2. If T ∈ B(H) such that N (T q) is a reducing subspace for T ,
then

T ∗kT k
(
N (T q)⊥

)
⊂ N (T q)⊥, k = 1, 2, ..., ..

The following theorem characterizes some (m, q)-partial isometries opera-
tors

Theorem 2.1. Let T ∈ B(H) such that N (T q) is a reducing subspace for
T . Then the following properties are equivalent.

(1) T is an (m, q)-partial isometry.

(2)
∑

0≤k≤m

(−1)m
(
m

k

)

‖Tm−kT ∗qx‖2 = 0, for all x ∈ H.

Proof. First , assume that T is an (m, q)-partial isometry. We have that
for all x ∈ H

T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−kT ∗qx = 0

=⇒ 〈T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−kT ∗qx, x〉 = 0

=⇒
∑

0≤k≤m

(−1)k
(
m

k

)

‖Tm−kT ∗qx‖2 = 0.



GENERALIZATION OF m-PARTIAL ISOMETRIES... 605

Conversely assume that
∑

0≤k≤m

(−1)m
(
m

k

)

‖Tm−kT ∗qx‖2 = 0, for all x ∈ H. It

follows that

∑

0≤k≤m

(−1)k
(
m

k

)

‖Tm−kT ∗qx‖2 = 0

=⇒ 〈T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−kT ∗qx, x〉 = 0, ∀ x ∈ H

=⇒ T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−kT ∗qx = 0,∀ x ∈ H.

We deduce that

T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k = 0 on R(T ∗q) = N (T q)⊥.

As N (T q) is a reducing subspace, we have

T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k = 0 on N (T q)

and hence,

T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k = 0.

Corollary 2.1. Let T ∈ B(H) such that N (T q) is a reducing subspace for
T , then the following properties are equivalent

1. T is an (m, q)-partial isometry.

2. T |N (T q)⊥ is an m-isometry.

In the following theorem we show that by imposing certain conditions on
(m, q)-partial isometry operator it becomes m-partial isometry.

Theorem 2.2. If T is an (m, q)-partial isometry such that N (T ) = N (T 2)
then T is an m-partial isometry.
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Proof. By the assumption we have that N (T ) = N (T n) for all positive
integer n. Hence

T q

(
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k

)

= 0.

implies

T

(
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k

)

= 0.

Proposition 2.1. If T is an (m, q)-partial isometry such that T k is an
partial isometry for k = 1, 2, 3, ...m−1 then Tm is a partial isometry for m ≥ q.

Proof. Since T is an (m, q)-partial isometry we have

T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k = 0

Multiplying the above equation from the left by Tm we get

T q

(

TmT ∗mTm +
∑

1≤k≤m

(−1)k
(
m

k

)

TmT ∗m−kTm−k

)

= 0.

Since T k is a partial isometry for k = 1, ...,m − 1 we deduce that

T q

(

TmT ∗mTm +
∑

1≤k≤m

(−1)k
(
m

k

)

Tm

)

= 0.

Thus,

T q

(

TmT ∗mTm − Tm

)

= 0

or equivalently
(

T ∗mTmT ∗m − T ∗m
)

T ∗q = 0

Hence,
TmT ∗mTm − Tm = 0 on R(T ∗q) = N (T q)⊥.
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On the other hand, since m ≥ q,

TmT ∗mTm − Tm = 0 on N (T q).

Proposition 2.2. Let T ∈ B(H) be an (m, q)-partial isometry such that
T k is a partial isometry for k = 2, 3, ...,m. Then Tm+q = Tm+qT ∗T i.e., T is
an (1,m+ q)-partial isometry.

Proof. Using the fact that T is an (m, q)-partial isometry, we get

T q

(
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k

)

= 0.

Multiplying the above equation from the left by Tm we get the identity

T q

(
∑

0≤k≤m−2

(−1)k
(
m

k

)

TmT ∗m−kTm−k + (−1)m−1mTmT ∗T + (−1)mTm

)

= 0.

By the assumption we get

T q

(
∑

0≤k≤m−2

(−1)k
(
m

k

)

Tm + (−1)m−1mTmT ∗T + (−1)mTm

)

= 0.

A calculation shows that Tm+q(I − T ∗T ) = 0. Hence, the desired result.

In the following corollary we show that by imposing certain conditions on
(m, q)-partial isometry operator it becomes partial isometry.

Corollary 2.2. Let T ∈ B(H) be an (m, q)-partial isometry such that T k

is a partial isometry for k = 2, 3, ...,m. If N (T ) = N (T 2), then T is an partial
isometry.

Proof. It is a consequence of Proposition 2.2 and the fact that N (T ) =
N (T n) for all positive integer n.

Theorem 2.3. Let T ∈ B(H) be an (m, q)-partial isometry such that
N (T q) is a reducing subspace for T . Assume that there exists a constant
M > 0 satisfying

‖T n|N (T q)⊥‖ ≤ M, ∀ n ∈ N,

then T is a (1, q)- partial isometry.
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Proof. If T is an (m, q)-partial isometry, then T |N (T q)⊥ is an m-isometry,
and by Theorem 1.2 applied to the operator T |N (T q)⊥ we have that T |N (T q)⊥

is an isometry. In particular Corollary 2.1 gives T qT ∗T = T q.

The following example shows that a (m, q)-partial isometry operator need
not be a (m+ 1, q)-partial isometry and vice versa.

Example 2.3. Let T =





0 0 1
0 0 0
1√
2

1√
2

0



 ∈ B(C3)

and S =






0 0 0

0

√

1+
√
5

2 0

0 1 0




 ∈ B(C3) then a direct computation shows that

• T is a (1, q)-partial isometry but is not a (2,1)-partial isometry.

• S is a (2, q)-partial isometry but is not a (1, 1)-partial isometry.

It is well know that every m-self-adjoint( resp. m-isometry) operator is
(m+ 1)-self-adjoint (resp.(m+ 1)-isometry) operator.

In the following theorem we show that by imposing certain conditions on
(m, q)-partial isometry operator it becomes (m+ 1, q)-partial isometry.

Theorem 2.4. Let T ∈ B(H) be an (m, q)-partial isometry such that
N (T q) is a reducing subspace for T . Then T is an (m+ n, q)-partial isometry
for n = 1, 2, ....

Proof. Two proofs for this theorem will be given.
The First Proof. Since T is an (m, q)-partial isometry and T (N (T q)⊥) ⊂

N (T q)⊥ it follows that T/N (T q)⊥ is an m-isometry. By Proposition 1.1 applied
to the operator T/N (T q)⊥ we obtain that T/N (T q)⊥ is an (m+ n)-isometry and
hence T is an (m+ n, q)-partial isometry.

The second Proof. The standard formula
(
m+1
k

)
=
(
m
k

)
+
(

m
k−1

)
for binomial

coefficients gives that

∑

0≤k≤m+1

(−1)k
(
m+ 1

k

)

‖Tm+1−kT ∗qx‖2

=
∑

0≤k≤m+1

(−1)k
((

m

k

)

+

(
m

k − 1

))

‖Tm+1−kT ∗qx‖2

=
∑

0≤k≤m

(−1)k
(
m

k

)

‖Tm−kTT ∗qx‖2 −
∑

0≤k≤m

(−1)k
(
m

k

)

‖Tm−kT ∗qx‖2



GENERALIZATION OF m-PARTIAL ISOMETRIES... 609

= 0.

The following example shows that Theorem 2.4 is not necessarily true if
N (T ) is not reducing subspace for T .

Example 2.4. ([24]) Let T =






0 0 1√
2

0 0 1√
2

1 0 0




 ∈ B(C3). We not that

N (T ) is not reducing for T and T is a 1-partial isometry but T is not a 2-
partial isometry.

Example 2.5. The operator T =





0 1 0
0 0 1
1 0 0



 ∈ B(C3) is a 1-partial

isometry and a 2-partial isometry and N (T ) is a reducing subspace for T .

Proposition 2.3. Let T ∈ B(H) be an (m, q)-partial isometry. Then T
(m+ 1, q)-partial isometry if and if T is an m-isometry on R(TT ∗q).

Proof. First assume that T is an (m, q)-partial isometry and an (m.+1, q)-
partial isometry we have by (2.1)

T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k = 0 (2.4)

and

T q
∑

0≤k≤m+1

(−1)k
(
m+ 1

k

)

T ∗m+1−kTm+1−k = 0 (2.5)

Combining (2.4) and (2.5) we obtain

T qT ∗
(
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k

)

T = 0.

Thus implies that

T qT ∗
(
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k

)

TT ∗q = 0.

the above inequality means that we can write

∑

0≤k≤m

(−1)k
(
m

k

)

‖Tm−kTT ∗qx‖2 = 0, for all x ∈ H
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and hence the desired result.
Conversely assume that T is an (m, q)-partial isometry and an m-isometry

on R(TT ∗q). We have that

T q
∑

0≤k≤m

(−1)m−k

(
m

k

)

T ∗kT k = 0 (2.6)

and
∑

0≤k≤m

(−1)m−k

(
m

k

)

T ∗kT kTT ∗q = 0 (2.7)

The equation (2.7) implies

T q
∑

0≤k≤m

(−1)m−k

(
m

k

)

T ∗k+1T k+1 = 0 (2.8)

or equivalently

T q
∑

1≤k≤m+1

(−1)m−k

(
m

k − 1

)

T ∗kT k = 0. (2.9)

Combining (2.6) and (2.9), we obtain

T q

(

(−1)mI +
∑

1≤k≤m

(−1)m−k

((
m

k

)

+

(
m

k − 1

))

T ∗kT k − T ∗m+1Tm+1

)

= 0.

The binomial coefficient identity
(
m
k

)
+
(

m
k−1

)
=
(
m+1
k

)
for k = 1, 2, ...m gives

T q
∑

0≤k≤m+1

(−1)m+1−k

(
m+ 1

k

)

T ∗kT k = 0.

This completes the proof.

In [22, Theorem 2.2], it is proved that if T and S commuting bounded
linear operators on a Banach space X such that T is a 2-isometry and S is an
m-isometry, then ST is an (m + 1)-isometry. This result was improved in [6,
Theorem 3.3]: if TS = ST, T is an (m, q)-isometry and S is an (n, q)-isometry,
then ST is an (m+ n− 1, q)-isometry.

It is natural to ask whether the product and sum of two (m, q)-partial
isometries operators are (m, q)-partial isometry. In general they need not be.
The following Theorems give an affirmative answer under some conditions.
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Theorem 2.5. Let T, S ∈ B(H) are (m, q)-partial isometries. The follow-
ing properties hold:

1. If ST = TS and R(S) ⊂ N (T ) or R(T ) ⊂ N (S), then TS is an (m, q)-
partial isometry.

2. If ST = TS = S∗T = TS∗ = 0, then T + S is an (m, q)-partial isometry.

Proof. The proof follows from the Definition 2.1.

Proposition 2.4. Let T, S ∈ B(H) such that T is an (m, q)-partial isom-
etry and S is an (n, q)-partial isometry . The following properties hold:

1. If ST = TS andR(S) ⊂ N (T ) or R(T ) ⊂ N (S), then TS is an (m+n, q)-
partial isometry.

2. If ST = TS = S∗T = TS∗ = 0 , N (T ) is a reducing subspace for T and
N (S) is a reducing subspace for S, then T + S is an (m + n, q)-partial
isometry.

Proof. 1. Clear.

2. Since T is it follows that

(TS)q
∑

0≤k≤n+m

(−1)n+m−k

(
m+ n

k

)

(T + S)∗k(T + S)k

= (TS)q
∑

0≤k≤n+m

(−1)n+m−k

(
m+ n

k

)
(
T ∗kT k + S∗kSk

)

= 0 (by Theorem 2.4).

The following example shows that the product of (m, q)-partial isometries
is not necessarily an (m, q)-partial isometry.

Example 2.6. Let T =





0 1 0
0 0 0
1 0 1



 and S =





0 0 1
0 1 0
1√
2

1√
2

0



 acting

on C
3. It easy to see that T and S are 1-partial isometries but TS is not a

1-partial isometry.

The following example shows that the sum of (m, q)-partial isometries is
not necessarily an (m, q)-partial isometry.
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Example 2.7. Let T =





0 0 0
0 0 0
0 0 1



 and S =





1 0 0
0 1 0
0 0 1



 acting on

C
3. It easy to see that T and S are (2, 2)-partial isometries but T + S is not a

(2, 2)-partial isometry.

We will use the following remark in the proof of Theorem 2.6.

Remark 2.3. 1. The following characterization of 3-isometry operator
follows from the identity (1.7). An operator T ∈ B(H) is a 3-isometry if
and only if there exist operators B1(T

∗, T ) and B2(T
∗, T ) such that for

all natural numbers n,

T ∗nT n = I + nB1(T
∗, T ) + n2B2(T

∗, T ), (2.10)

where

B1(T
∗, T ) =

1

2

(
− T ∗2T 2 + 4T ∗T − 3I

)

and

B2(T
∗, T ) =

1

2

(
T ∗2T 2 − 2T ∗T + I

)
.

2. From the identity (1.7) the following characterization of 2-isometry holds.
For an T ∈ B(H),then T is an 2-isometry if and only if

T ∗kT k = kT ∗T − (k − 1)I, k = 1, 2, ....

Theorem 2.6. Let T ∈ B(H) be an (m, q)-partial isometry and let S ∈
B(H) for which TS = ST and TS∗ = S∗T . The following properties hold:

1. if S is an isometry, then TS is an (m, q)-partial isometry.

2. if N (T q) is a reducing subspace for T and S is an 2-isometry,then TS is
an (m+1,q)-partial isometry.

3. if N (T q) is a reducing subspace for T and S is an 3- isometry, then TS
is an (m+ 2, q)-partial isometry.

Proof. 1. Let x ∈ H, we have

(TS)q
∑

0≤k≤m

(−1)k
(
m

k

)

(TS)∗m−k(TS)m−k(x)

= (TS)q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k(S∗m−kSm−kx)
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= T q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k(Sqx)

= 0

2. From part 2. of Remark 2.4 and Theorem 2.4, it follows that

(TS)q
∑

0≤k≤m+1

(−1)k
(
m+ 1

k

)

(TS)∗m+1−k(TS)m+1−k

= (TS)q
∑

0≤k≤m+1

(−1)k
(
m+ 1

k

)

T ∗m+1−kTm+1−k(S∗m+1−kSm+1−k)

= (TS)q
∑

0≤k≤m+1

(−1)k
(
m+ 1

k

)

T ∗m+1−kTm+1−k
(
(m+ 1− k)S∗S

)

−(TS)q
∑

0≤k≤m+1

(−1)k
(
m+ 1

k

)

T ∗m+1−kTm+1−k(m− k)I

= (TS)q
∑

0≤k≤m+1

(−1)k
(
m+ 1

k

)

T ∗m+1−kTm+1−kk
(
I − S∗S

)

= SqT q
∑

0≤k≤m

(−1)k
(
m

k

)

T ∗m−kTm−k
(
I − S∗S

)

= 0.

3. Since S is a 3-isometry and TS = ST ,TS∗ = S∗T , we have from equation
(2.10) and Theorem 2.4 that

(ST )q
∑

0≤k≤m+2

(−1)k
(
m+ 2

k

)

(ST )∗m+2−k(ST )m+2−k

= SqT q
∑

0≤k≤m+2

(−1)k
(
m+ 2

k

)

(T )∗m+2−k(T )m+2−k
(
S∗m+2−kSm+2−k

)

= SqT q

{
∑

0≤k≤m+2

(−1)k
(
m+ 2

k

)

(T )∗m+2−k(T )m+2−kI +

∑

0≤k≤m+2

(−1)k
(
m+ 2

k

)

(T )∗m+2−k(T )m+2−k(m+ 2− k)B1(S
∗, S) +

∑

0≤k≤m+2

(−1)k
(
m+ 2

k

)

(T )∗m+2−k(T )m+2−k(m+ 2− k)2B2(S
∗, S)

}
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= SqT q
∑

1≤k≤m+2

(−1)k
(
m+ 2

k

)

k(T )∗m+2−k(T )m+2−kAm(S∗, S)

︸ ︷︷ ︸

I

+ SqT q

m+2∑

k=1

(−1)k
(
m+ 2

k

)

k2(T )∗m+2−k(T )m+2−k
(
B2(S

∗, S)
)

︸ ︷︷ ︸

J

where

Am(S∗, S) =
(

−B1(S
∗, S) + (−2(m+ 2))B2(S

∗, S)
)

I = SqT q
∑

1≤k≤m+2

(−1)k(m+ 2)

(
m+ 1

k − 1

)

(T )∗m+2−k(T )m+2−kAm(S∗, S)

=− (m+ 2)SqT q
∑

0≤k≤m+1

(−1)k
(
m+ 1

k

)

(T )∗m+1−k(T )m+1−k

(

−B1(S
∗, S)+(−2(m + 2))B2(S

∗, S)
)

=0.

J =SqT q
∑

1≤k≤m+2

(−1)k
(
m+ 2

k

)

k2(T )∗m+2−k(T )m+2−k
(
B2(S

∗, S)
)

=SqT q

m+2∑

k=1

(−1)k
(
m+ 2

k

)

(k(k − 1) + k)(T )∗m+2−k(T )m+2−k
(
B2(S

∗, S)
)

=SqT q
∑

1≤k≤m+2

(−1)k
(
m+ 2

k

)

k(k − 1)(T )∗m+2−k(T )m+2−k
(
B2(S

∗, S)
)

=(m+ 2)(m+ 1)SqT q

m+2∑

k=2

(−1)k
(

m

k − 2

)

(T )∗m+2−k(T )m+2−k
(
B2(S

∗, S)
)

=(m+ 2)(m+ 1)SqT q
∑

0≤k≤m

(−1)k
(
m

k

)

(T )∗m−k(T )m−k
(
B2(S

∗, S)
)

=0.

Hence I + J = 0. Thus TS is a (m+ 2, q)-partial isometry.
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The following corollary is an immediate consequence of Theorem 2.6.

Corollary 2.3. Let T ∈ B(H) be an (m, q)-partial isometry and let
S ∈ B(H) for which TS = ST and TS∗ = S∗T . the following properties hold:

1. if S is an isometry, then TSn is an (m, q)-partial isometry for all positive
integer n.

2. if N (T q) is a reducing subspace for T and S is an 2-isometry,then TSn is
an (m+1,q)-partial isometry for all positive integer n.

3. if N (T q) is a reducing subspace for T and S is an 3- isometry, then TSn

is an (m+ 2, q)-partial isometry for all positive integer n.

It is clear that if T is an isometry, then T r is also an isometry. Saddi and Sid
Ahmed in [24, Theorem 2.1] prove that any power of a (2, 1)-partial isometry
if it has a nontrivial reducing sub space N (T ) is again a (2, 1)-partial isometry.
In [16] it was showed that any power of a (m, 1)-partial isometry if it has a
nontrivial reducing subspace N (T ) is again a (m, 1)-partial isometry. Now we
generalize it to (m, q)-partial. As the proof is very similar to [24, Theorem 2.1]
and ( [16], Theorem 2.17) , we omit it.

Theorem 2.7. Let T ∈ B(H) be an (m, q)-partial isometry such that
N (T q) is a reducing subspace for T . Then any power of T is also an (m, q)-
partial isometry.

Lemma 2.1. ([21]) Let n ≥ 1 be an integer, and let T ∈ B(H) an operator
such that r(T ) ≤ 1. Then the following equality hold

∑

0≤k≤n

(
n

k

)

ϕα(T )
∗kϕα(T )

k

= (1− |α|2)n
(
I − αT ∗)−n(

∑

0≤k≤n

(−1)k
(
n

k

)

T ∗kT k

)
(
I − αT

)−n

holds for every conformal automorphism ϕα of the unit disc of the form ϕα(z) =
z − α

1− αz
for all z ∈ D and α ∈ D.

Let Aut(D) be the group of all conformal mapping from D onto itself ( also
called disk automorphisms of D). It is well known that Aut(D) coincides with
the set of all Möbius transformations of D onto itself:

Aut(D) = {λϕα : |λ| = 1, α ∈ D}.
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We can now conclude that the conformal automorphisms operate on the class
of m-isometries.

Corollary 2.4. If T ∈ B(H) is an m-isometry, then so is ϕ(T ) for every
ϕ ∈ Aut(D).

Proof. It is a consequence of the above lemma.

Put

ST q := T ∗q∆T q, m−1T
q

= T ∗q
(

∑

0≤k≤m−1

(−1)k
(
m− 1

k

)
(
T ∗q)m−1−k(

T q
)m−1−k

)

T q

Proposition 2.5. Let T ∈ B(H) be an (m, q)-partial isometry such that
N (T q) is a reducing subspace for T , then ST q ≥ 0 i.e.; 〈ST qx, x〉 ≥ 0 ∀ x ∈ H.

Proof. For x ∈ H, we have 〈ST qx, x〉 = 〈∆T q, m−1T
qx, T qx〉. According to

Corollary 2.1 ,Proposition 1.1 and ([1] Proposition 1.5) we have ∆T q|
N (Tq)⊥

, m−1 ≥

0. Since T reduces N (T q) then Tx ∈ N (T q)⊥ and

〈ST qx , x〉 = 〈∆T q, m−1T
qx, T qx〉 ≥ 0.

Hence the result.

Definition 2.2. An operator T is said to have the single valued extension
properties if, for every open subset U of C,an analytic function f : U −→ H
satisfies (T − λ)f(λ) = 0 ∀ λ ∈ U , then f(λ) = 0 ∀ λ ∈ U .

Theorem 2.8. ([11]) An m-isometric operator T has the single valued
extension property.

In the following theorem, we extend this result to some (m, q)-partial isome-
tries.

Theorem 2.9. Let T ∈ B(H) be an (m, q)-partial isometry such that
N (T q) is a reducing subspace for T . Then T has the single valued extension
properties.

Proof. Assume that T is (m, q)-partial isometry for some positive integer
m. Let λ ∈ C and let U be any open neighborhood of λ in C. Assume that f
is an analytic H-valued function defined on U such that

(
T − λ

)
f(λ) ≡ 0 on U . (2.11)
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Let f(λ) = f1(λ)⊕ f2(λ) ∈ N (T q)⊕N (T q)⊥, then we have

(
T − λ

)
f(λ) ≡ 0 ⇐⇒ (T − λ)f1(λ) + (T − λ)f2(λ) ≡ 0 on U .

We deduce that (T − λ)T qf2(λ) = 0 on U .
Since T is an m-isometry on N (T q)⊥ and hence has the single valued extension
property (Theorem 2.8) , then T qf2(λ) ≡ 0 and f2(λ) ≡ 0. Consequently

(T − λ)f(λ) = 0 ⇐⇒ (T − λ)f1(λ) = 0.

Thus (T − λ)f1(λ) = 0 implies that λqf1(λ) = 0 and f1(λ) = 0 if λ 6= 0.
Since f1(λ) = 0 if λ 6= 0 and f1 is analytic, f1 ≡ 0.

Theorem 2.10. The class of (m, q)-partial isometries is closed subset of
B(H) equipped with the uniform operator (norm) topology.

Proof. To see that the class of (m.q)-partial isometries is closed, we prove
that any strong limit T ∈ B(H) of a sequence (Tp) in the class of (m, q)]-partial
isometry also belongs to the class of (m, q)-partial isometries , i.e., we let (Tp)
be a sequence of operators in the class of (m.q) -partial isometries converging
to T ∈ B(H) in norm:

‖Tpx− Tx‖ −→ 0 as p −→ ∞, for each x ∈ H.

Hence it follows that

‖T ∗
p x− T ∗x‖ = ‖(Tp − T )∗x‖ ≤ ‖(Tp − T )∗‖‖x‖ = ‖Tp − T‖‖x‖ −→ 0,

whence (T ∗
p ) converges strongly to T ∗.

Since the product of operators is sequentially continuous in the strong topol-
ogy (see [17], p.62), one concludes that T q

pT ∗k
p T k

p converge strongly to T qT ∗kT k.
Hence the limiting case of (2.1) shows that T belongs to the class of (m, q)-
partial isometries, completing the proof.
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are m-isometries, Integral Equations Operator Theory 68 (2010), No. 3,
301- 312.

[9] F.Botelho, On the existence of n-isometries on lp- spaces. Acta Sci. Math.
(Szeged) 76 (2010), No. 1-2, 183-192.

[10] F.Botelho and J. Jamison, Isometric properties of elementary operators,
Linear Algebra Appl. 432 (2010), 357-365.
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