bI-OPEN SETS IN IDEAL BITOPOLOGICAL SPACES

Diganta Jyoti Sarma
Central Institute of Technology, Kokrajhar
BTAD, ASSAM-783370, INDIA

Abstract: The aim of this article is to introduce and study the concept of bI-open sets with respect to an ideal in bitopological spaces and to investigate some properties. Moreover, the concept of bI-continuous functions have also been introduced.

AMS Subject Classification: 54A10, 54C08, 54C10, 54D15
Key Words: bitopological spaces, (i, j)-b-open sets, (i, j)-bI-closed sets, (i, j)-bI-open sets

1. Introduction

The concept of bitopological spaces (X, τ_1, τ_2), equipped with topologies τ_1 and τ_2 was introduced by Kelly [10]. The concept of ideals has been applied and studied by Kuratowski [11], Vaidyanath-asamy [15], Jankovic and Hamlett [9] and many others. An ideal I on a non-empty set X is a collection of subsets of X satisfying (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. If I is an ideal on X, then (X, τ_1, τ_2, I) is said to be an ideal bitopological space. Andrijevic [5] introduced the notion of b-open sets in topological spaces. Further, Al-Hawary and Al-Omari [4] extended this notion to bitopological spaces. In 2007, Caksu Guler and Aslim [6] has introduced the notion of bI-open sets and bI-continuous functions in topological spaces. After
that Akdag [3], Ekici [7] and many others studied some more properties of these concepts and obtained several characterizations.

In this paper, we introduced bI-open sets and bI-continuous functions in ideal bitopological spaces and established several properties.

2. Preliminaries

Throughout this paper, (X, τ_1, τ_2) denotes a bitopological space on which no separation axioms are assumed and (X, τ_1, τ_2, I) be an ideal bitopological space. $i\text{-}int(A)$ and $j\text{-}cl(A)$ denotes the i-interior and j-closure of A with respect to the topology τ_i and τ_j respectively, where $i, j \in \{1, 2\}, i \neq j$.

Let (X, τ, I) be an ideal topological space. If $P(X)$ is the set of all subsets of X, then the operator $()^*: P(X) \rightarrow P(X)$ is called the local function ([11]) of A with respect to the topology τ and ideal I defined by $A^*(\tau, I) = \{ x \in X : B \cap A \notin I, \text{for every } B \in \tau(x) \}$, where $A \subset X$ and $\tau(x) = \{ B \in \tau : x \in B \}$. Simply we can write A^* instead of $A^*(\tau, I)$ in case there is no chance for confusion. A Kuratowski closure operator for $\tau^*(I)$ which is finer than τ is defined by $cl^*(A) = A \cup A^*$. $i\text{-}int^*(A)$ denotes the interior of A in $\tau_i^*(I)$ and $i\text{-}int^*(A_j^*)$ denotes the interior of A_j^* with respect to the topology τ_i, where $A_j^* = \{ x \in X : B \cap A \notin I, \text{for every } B \in \tau_j(x) \}$.

The following definitions are due to Al-Hawary and Al-Omari [4].

Definition 2.1. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-b-open if $A \subset i\text{-}int(j\text{-}cl(A)) \cup j\text{-}cl(i\text{-}int(A))$. The complement of an (i, j)-b-open set is (i, j)-b-closed.

Definition 2.2. A function $f : (X, \tau_1, \tau_2) \rightarrow (X, \sigma_1, \sigma_2)$ is said to be (i, j)-b-continuous(respectively, (i, j)-b-irresolute) if $f^{-1}(V)$ is (i, j)-b-open in X, for every σ_i-open(respectively, (i, j)-b-open) set V of Y.

The following definition is due to Pervine [13].

Definition 2.3. A function $f : (X, \tau_1, \tau_2) \rightarrow (X, \sigma_1, \sigma_2)$ is said to be pairwise continuous if the induced functions $f : (X, \tau_1) \rightarrow (X, \sigma_1)$ and $f : (X, \tau_2) \rightarrow (X, \sigma_2)$ are both continuous.

3. (i, j)-bI-Open Sets

Definition 3.1. A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is said to be (i, j)-bI-open if $A \subset i\text{-}int(j\text{-}cl^*(A)) \cup j\text{-}cl^*(i\text{-}int(A))$, where $i, j \in \{1, 2\}, i \neq j$.
We denote the family of all \((i, j)\)-bI-open sets of \((X, \tau_1, \tau_2, I)\) by \((i, j)\)-\textit{BIO}(X). By \((i, j)\) we mean the pair of topologies \((\tau_i, \tau_j)\).

Remark 3.1. \textit{BIO}(X, \tau_1, \tau_2, I) \neq \textit{BIO}(X, \tau_1) \cup \textit{BIO}(X, \tau_2).** It is clear from the following example.

Example 3.1. Let \(X = \{p, q, r\}, \tau_1 = \{\emptyset, \{p\}, X\}, \tau_2 = \{\emptyset, \{q\}, X\}\) and \(I = \{\emptyset, \{p\}\}\).

It can be easily shown that \(\tau_1\)-bI-open sets are \(\{\emptyset, \{p\}, \{p, q\}, \{p, r\}, X\}\) and \(\tau_2\)-bI-open sets are \(\{\emptyset, \{q\}, \{p, q\}, \{q, r\}, X\}\). But, \((\tau_1, \tau_2)\)-bI-open sets are \(\{\emptyset, \{p\}, \{q\}, \{p, q\}, \{q, r\}, X\}\).

Remark 3.2. Every \((i, j)\)-bI-open set is \((i, j)\)-\textit{bI-open}. It can be easily proved by using the fact that \(\tau^*(I)\) is finer than \(\tau\).

But, the converse may not be true in general as shown by the following example.

Example 3.2. Let \(X = \{p, q, r\}, \tau_1 = \{\emptyset, \{q\}, X\}, \tau_2 = \{\emptyset, \{p\}, \{p, r\}, X\}\) and \(I = \{\emptyset, \{p\}\}\). Now \(\{p\}\) is \((1, 2)\)-\textit{bI-open} but not \((1, 2)\)-bI-open.

Remark 3.3. The intersection of two \((i, j)\)-bI-open sets may not be a \((i, j)\)-bI-open set is clear from the following example.

Example 3.3. Let \(X = \{p, q, r\}, \tau_1 = \{\emptyset, \{p, r\}, X\}, \tau_2 = \{\emptyset, \{q, r\}, X\}\) and \(I = \{\emptyset, \{p\}\}\). Then \(\{p, q\}\) and \(\{p, r\}\) is \((1, 2)\)-bI-open sets but \(\{p, q\} \cap \{p, r\} = \{p\}\) is not \((1, 2)\)-bI-open.

Theorem 3.1. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space and \(A, B \subset X\). If \(A\) is \((i, j)\)-bI-open set and \(B \in \tau_1 \cap \tau_2\), then \(A \cap B\) is also \((i, j)\)-bI-open.

Proof. Let \(A\) is \((i, j)\)-bI-open. Then \(A \subset i\text{-int}(j\text{-cl}^*(A)) \cup j\text{-cl}^*(i\text{-int}(A))\). Now

\[
A \cap B \subset \{i \text{-int}(j - \text{cl}^*(A)) \cup j - \text{cl}^*(i - \text{int}(A))\} \cap B \\
= \{i \text{-int}(j - \text{cl}^*(A)) \cap B\} \cup \{j - \text{cl}^*(i - \text{int}(A)) \cap B\} \\
= \{i \text{-int}(A \cup A^*_j) \cap B\} \cup \{(i - \text{int}(A)) \cap (i - \text{int}(A))^*_j\} \cap B \\
\subset \{i \text{-int}((A \cap B) \cup (A^*_j \cap B))\} \cup \{(i - \text{int}(A) \cap B) \cup (i - \text{int}(A)) \cap B^*_j\} \\
\subset \{i \text{-int}((A \cap B) \cup (A \cap B^*_j))\} \cup \{(i - \text{int}(A \cap B)) \cup (i - \text{int}(A \cap B))^*_j\} \\
= i - \text{int}(j - \text{cl}^*(A \cap B)) \cup j - \text{cl}^*(i - \text{int}(A \cap B)).
\]

Hence \(A \cap B\) is \((i, j)\)-bI-open.
Theorem 3.2. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space. If \(A_\alpha \in (i, j)-\text{BIO}(X)\) for each \(\alpha \in \wedge\), then \(\bigcup \{A_\alpha : \alpha \in \wedge\} \in (i, j)-\text{BIO}(X)\) where \(\wedge\) is an index set.

Proof. Let \(A_\alpha \in (i, j)-\text{BIO}(X)\). Then

\[A_\alpha \subset i - \text{int}(j - \cl^*(A_\alpha)) \cup j - \cl^*(i - \text{int}(A_\alpha)), \]

for each \(\alpha \in \wedge\).

Thus

\[
\bigcup_{\alpha \in \wedge} A_\alpha \subset \bigcup_{\alpha \in \wedge} \{i - \text{int}(j - \cl^*(A_\alpha)) \cup j - \cl^*(i - \text{int}(A_\alpha))\}
\]

\[
\subset \bigcup_{\alpha \in \wedge} \{i - \text{int}(A_\alpha \cup (A_\alpha)_j)\} \cup \{(i - \text{int}(A_\alpha)) \cup (i - \text{int}(A_\alpha))_j^*\}
\]

\[
\subset \{i - \text{int}((\bigcup_{\alpha \in \wedge} A_\alpha) \cup (\bigcup_{\alpha \in \wedge} (A_\alpha)_j^*))\}
\]

\[
\cup \{(i - \text{int}(\bigcup_{\alpha \in \wedge} A_\alpha)) \cup (\bigcup_{\alpha \in \wedge} (i - \text{int}(A_\alpha))_j^*)\}
\]

\[
\subset \{i - \text{int}((\bigcup_{\alpha \in \wedge} A_\alpha) \cup (\bigcup_{\alpha \in \wedge} A_\alpha)^*_j)\}
\]

\[
\cup \{i - \text{int}(\bigcup_{\alpha \in \wedge} A_\alpha) \cup (i - \text{int}(\bigcup_{\alpha \in \wedge} A_\alpha))_j^*\}
\]

\[
\subset i - \text{int}(j - \cl^*(\bigcup_{\alpha \in \wedge} A_\alpha)) \cup j - \cl^*(i - \text{int}(\bigcup_{\alpha \in \wedge} A_\alpha)).
\]

Hence \(\bigcup_{\alpha \in \wedge} A_\alpha\) is \((i, j)-bI\)-open.

Lemma 3.1. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space and \(A, B\) are subsets of \(X\) such that \(B \subset A\). Then \(B_i^*(\tau_i|_A, I|_A) = B_i^*(\tau_i, I) \cap A\), for \(i = 1, 2\).

Here we denote that for any subset \(A\) of \((X, \tau_1, \tau_2, I)\), \(\tau_i|_A\) is the relative topology on \(A\) where \(i = 1, 2\) and \(I|_A = \{A \cap I : I \in I\}\) is obviously an ideal on \(A\).

Theorem 3.3. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space. If \(A \in (i, j)-\text{BIO}(X)\) and \(B \in \tau_1 \cap \tau_2\), then \(A \cap B \in \text{BIO}(B, \tau_1|_B, \tau_2|_B, I|_B)\).

Proof. Since \(B \in \tau_1 \cap \tau_2\), therefore \(i\text{-int}_B(P) = i\text{-int}(P)\), for any subset \(P\) of \(B\) and \(i = 1, 2\). By using the fact and Lemma 3.1, we have

\[A \cap B \subset \{i - \text{int}(j - \cl^*(A)) \cup j - \cl^*(i - \text{int}(A))\} \cap B \]
= \{ i - \text{int}(j - \text{cl}^* (A)) \cap B \} \cup j - \text{cl}^* (i - \text{int}(A)) \cap B \\
= \{ i - \text{int}(A \cup A^*_j) \} \cap B \cup \{(i - \text{int}(A)) \cup (i - \text{int}(A))_j^* \} \cap B \\
\subset \{(i - \text{int}(A \cup A^*_j)) \} \cap B \} \cup \{(i - \text{int}(A)) \} \cap B \\
\cup \{(i - \text{int}(A))_j^* \} \cap B \\
\subset \{(i - \text{int}((A \cap B) \cup (A \cap B)_j^*)) \} \cap B \} \cup \{(i - \text{int}_B(A \cap B)) \} \cap B \\
\cup \{(i - \text{int}_B(A \cap B))\}_j^*) \} \cap B \\
\subset \{(i - \text{int}((A \cap B) \cup (A \cap B)_j^*)) \} \cap B \} \cup \{(i - \text{int}_B(A \cap B)) \} \cap B \\
\cup \{(i - \text{int}_B(A \cap B))\}_j^*) \} \cap B \\
\subset \{ i - \text{int}_B(j - \text{cl}^* (A \cap B)) \} \cup \{ j - \text{cl}^* (i - \text{int}_B(A \cap B)) \}. \\

Hence A \cap B \in BIO(bI|B, \tau_1|B, \tau_2|B, I|B).

Definition 3.2. A subset A of an ideal bitopological space \((X, \tau_1, \tau_2, I)\) is said to be \((i, j)\)-bI-closed if its complement is \((i, j)\)-bI-open.

Theorem 3.4. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space. Then a subset A of \((X, \tau_1, \tau_2, I)\) is \((i, j)\)-bI-closed if \(i\)-cl\((j-int^*(A)) \cap j-int^*(i-cl(A)) \subset A\), where \(i, j \in \{1, 2\}, i \neq j\).

Proof. It is clear from the definition.

Theorem 3.5. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space. If a subset A of X is \((i, j)\)-bI-closed, then \(i\)-cl\((j-int^*(A)) \cap j-int(i-cl^*(A)) \subset A\), where \(i, j \in \{1, 2\}, i \neq j\).

Proof. Let A is \((i, j)\)-bI-closed. Then \(X \setminus A\) is \((i, j)\)-bI-open. Since \(\tau_i^*\) is finer than \(\tau_i\) \((i = 1, 2)\), we have

\[
\begin{align*}
X \setminus A &\subset i - \text{int}(j - \text{cl}^*(X \setminus A)) \cup j - \text{cl}^* (i - \text{int}(X \setminus A)) \\
&\subset i - \text{int}(j - \text{cl}(X \setminus A)) \cup j - \text{cl}(i - \text{int}(X \setminus A)) \\
&= \{X \setminus (i - \text{cl}(j - \text{int}(A)))\} \cup \{X \setminus (j - \text{int}(i - \text{cl}(A)))\} \\
&\subset \{X \setminus (i - \text{cl}^*(j - \text{int}(A)))\} \cup \{X \setminus (j - \text{int}(i - \text{cl}^*(A)))\} \\
&= X \setminus \{(i - \text{cl}^*(j - \text{int}(A))) \cap (j - \text{int}(i - \text{cl}^*(A)))\}.
\end{align*}
\]

Hence \(i\)-cl\((j-int(A)) \cap j-int(i-cl^*(A)) \subset A\).

Theorem 3.6. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space and \(A \subset X\). Then:
(a) If \(I = \emptyset \), then \(A \) is \((i, j)\)-bI-open if and only if \(A \) is \((i, j)\)-b-open.

(b) If \(I = P(X) \), then \(A \) is \((i, j)\)-bI-open if and only if \(A \in \tau_1 \cap \tau_2 \).

Proof. (a) It follows from the fact that if \(I = \emptyset \), then \(A^* = \text{cl}(A) \), for every subset \(A \) of \(X \).

(b) It follows from the fact that for every subset \(A \) of \(X \), if \(I = P(X) \) then \(A^* = \emptyset \).

Definition 3.3. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space and \(A \subseteq X \). Then

(a) The \((i, j)\)-bI-interior of \(A \), is defined as the union of all \((i, j)\)-bI-open sets contained in \(A \) and is denoted by \((i, j)\)-bI-int\((A)\).

(b) The \((i, j)\)-bI-closure of \(A \), is defined as the intersection of all \((i, j)\)-bI-closed sets containing \(A \) and is denoted by \((i, j)\)-bI-cl\((A)\).

Theorem 3.7. Let \(A \) be a subset of an ideal bitopological space \((X, \tau_1, \tau_2, I)\). Then:

- (a) \((i, j)\)-bI-int\((A)\) is \((i, j)\)-bI-open.
- (b) \((i, j)\)-bI-cl\((A)\) is \((i, j)\)-bI-closed.
- (c) \(A \) is \((i, j)\)-bI-open if and only if \(A = (i, j)\)-bI-int\((A)\).
- (d) \(A \) is \((i, j)\)-bI-closed if and only if \(A = (i, j)\)-bI-cl\((A)\).

Proof. The proof of (a) – (d) are obvious.

Theorem 3.8. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space and \(A \subseteq X \). Then a point \(x \in (i, j)\)-bI-cl\((A)\) if and only if \(A \cap B \neq \emptyset \), for every \((i, j)\)-bI-open set \(B \) of \(X \) containing \(x \).

Proof. Suppose that \(x \in (i, j)\)-bI-cl\((A)\) and \(B \) be a \((i, j)\)-bI-open set containing \(x \). Assume that \(A \cap B = \emptyset \). Then \(A \subseteq X \setminus B \), where \(X \setminus B \) is \((i, j)\)-bI-closed set. This implies that \(x \in (i, j)\)-bI-cl\((A)\) \(\subseteq (i, j)\)-bI-cl\((X \setminus B)\) = \(X \setminus B \). Thus \(x \in X \setminus B \), which is a contradiction. Hence \(A \cap B \neq \emptyset \).

Conversely suppose that \(A \cap B \neq \emptyset \), for every \((i, j)\)-bI-open set \(B \) of \(X \) containing \(x \). Let \(x \notin (i, j)\)-bI-cl\((A)\). Then there exists a \((i, j)\)-bI-closed set \(G \) of \(X \) such that \(A \subseteq G \) and \(x \notin G \). Therefore \(x \in X \setminus G \), where \(X \setminus G \) is \((i, j)\)-bI-open and \((X \setminus G) \cap A = \emptyset \). Which is a contradiction to the assumption. Hence \(x \in (i, j)\)-bI-cl\((A)\).

Theorem 3.9. Let \(A \) be a subset of an ideal bitopological space \((X, \tau_1, \tau_2, I)\). Then
(a) \((i, j)-bI-cl(X \setminus A) = X \setminus (i, j)-bI-int(A)\).

(b) \((i, j)-bI-int(X \setminus A) = X \setminus (i, j)-bI-cl(A)\).

Proof. (a) Let \(x \notin (i, j)-bI-cl(X \setminus A)\). Then there exists an \((i, j)-bI\)-open set \(B\) of \(X\) containing \(x\) such that \(B \cap (X \setminus A) = \emptyset\). We have \(x \in B\), therefore \(x \notin X \setminus A\) and so \(x \in A\). Thus \(x \in B \subset A\) and so \(x \in (i, j)-bI-int(A)\). Which implies that \(x \notin (i, j)-bI-int(A)\). Hence \((i, j)-bI-int(A) \subset (i, j)-bI-cl(X \setminus A)\).

Next let \(x \notin X \setminus (i, j)-bI-int(A)\). Then \(x \in (i, j)-bI-int(A)\) and so there exists an \((i, j)-bI\)-open set \(B\) of \(X\) such that \(x \in B \subset A\). Thus \(B \cap (X \setminus A) = \emptyset\) and \(x \notin (i, j)-bI-cl(X \setminus A)\). Therefore \((i, j)-bI-cl(X \setminus A) \subset X \setminus (i, j)-bI-int(A)\).

Hence the result follows.

(b) Similar to the proof of (a).

Definition 3.4. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space. Then a subset \(A\) of \(X\) is said to be an \((i, j)-bI\)-neighbourhood of a point \(x\) of \(X\) if there exists a \((i, j)-bI\)-open set \(B\) such that \(x \in B \subset A\).

Theorem 3.10. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space and \(A \subset X\). Then \(A\) is \((i, j)-bI\)-open if and only if it is an \((i, j)-bI\)-neighbourhood of each of its points.

Proof. Let \(A\) be an \((i, j)-bI\)-open set of \((X, \tau_1, \tau_2, I)\). So by definition, we have \(A\) is an \((i, j)-bI\)-neighbourhood of each of its points, since for every \(x \in A\), we have \(x \in A \subset A\) and \(A\) is \((i, j)-bI\)-open. Conversely assume that \(A\) is an \((i, j)-bI\)-neighbourhood of each of its points. Then for every \(x \in A\), there exists an \((i, j)-bI\)-open set \(B_x\) of \((X, \tau_1, \tau_2, I)\) such that \(x \in B_x \subset A\). Then \(A = \bigcup\{B_x : x \in A\}\). Since arbitrary union of \((i, j)-bI\)-open sets is \((i, j)-bI\)-open, therefore we have \(A\) is \((i, j)-bI\)-open in \(X\).

4. \((i, j)-bI\)-Continuous Functions

Definition 4.1. A function \(f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)\) is said to be \((i, j)-bI\)-continuous if the inverse image of every \(\sigma_i\)-open set in \(Y\) is \((i, j)-bI\)-open in \(X\), where \(i, j = 1, 2, i \neq j\).

Remark 4.1. Every \((i, j)-bI\)-continuous function is \((i, j)-b\)-continuous. But the converse may not be true in general as shown in the following example.

Example 4.1. Let \(X = \{p, q, r\}, \tau_1 = \{\emptyset, \{q\}, X\}, \tau_2 = \{\emptyset, \{p\}, \{q, r\}, X\}\) and \(I = \{\emptyset, \{p\}\}\). Then the identity function \(f : (X, \tau_1, \tau_2, I) \to (X, \sigma_1, \sigma_2)\) is \((1, 2)-b\)-continuous but not \((1, 2)-bI\)-continuous.
Theorem 4.1. The following statements are equivalent for the function $f : (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$.

(a) f is (i,j)-bl-continuous.

(b) For all $x \in X$ and every σ_i-open set B of Y containing $f(x)$, there exists a (i,j)-bl-open set A of X containing x such that $f(A) \subset B$.

(c) Inverse image of every σ_i-closed set of Y is (i,j)-bl-continuous in X.

(d) $f((i,j)\text{-bl-cl}(A)) \subset \sigma_i\text{-cl}(f(A))$, for every subset A of X.

(e) (i,j)-bl-cl$(f^{-1}(B)) \subset f^{-1}(\sigma_i\text{-cl}(B))$, for every subset B of Y.

(f) $f^{-1}(\sigma_i\text{-int}(G)) \subset (i,j)\text{-bl-int}(f^{-1}(G))$, for every subset G of Y.

Proof. (a) \Rightarrow (b) Let B be a σ_i-open set in Y such that $f(x) \in B$. Since f is (i,j)-bl-continuous, therefore $f^{-1}(B)$ is (i,j)-bl-open in X. Let $A = f^{-1}(B)$. Then $f(x) \in f(A) \subset B$.

(b) \Rightarrow (a) Let B be a σ_i-open set in Y and $x \in f^{-1}(B)$. Then we have $f(x) \in B$. By (b), there exists an (i,j)-bl-open set A_x in X containing x such that $f(A_x) \subset B$. Therefore $x \in A_x \in f^{-1}(B)$. Consequently, $f^{-1}(B)$ is (i,j)-bl-open in X. Hence $f^{-1}(B)$ is (i,j)-bl-continuous.

(a) \Rightarrow (c) It is obvious.

(c) \Rightarrow (d) Let $A \subset X$. Since $\sigma_i\text{-cl}(f(A))$ is σ_i-closed set in Y, therefore by (c) we have $f^{-1}(\sigma_i\text{-cl}(f(A)))$ is (i,j)-bl-continuous set in X. Also, $A \subset f^{-1}(\sigma_i\text{-cl}(f(A)))$ and (i,j)-bl-cl(A) is the smallest (i,j)-bl-continuous set containing A. Therefore (i,j)-bl-cl$(A) \subset f^{-1}(\sigma_i\text{-cl}(f(A)))$. This implies that $f((i,j)\text{-bl-cl}(A)) \subset \sigma_i\text{-cl}(f(A))$.

(d) \Rightarrow (e) Let $B \subset Y$. Then $f^{-1}(B)$ is a subset of X. By (d), $f((i,j)\text{-bl-cl}(f^{-1}(B))) \subset \sigma_i\text{-cl}(f(f^{-1}(B))) \subset \sigma_i\text{-cl}(B)$. Hence $(i,j)\text{-bl-cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i\text{-cl}(B))$.

(e) \Rightarrow (c) Let B be a σ_i-closed set in Y. By (e), $(i,j)\text{-bl-cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i\text{-cl}(B)) = f^{-1}(B)$. Therefore $f^{-1}(B) = (i,j)\text{-bl-cl}(f^{-1}(B))$ and so $f^{-1}(B)$ is (i,j)-bl-closed in X.

(a) \Rightarrow (f) Let G be a σ_i-open subset of Y. By (a), $f^{-1}(G) = f^{-1}(\sigma_i\text{-int}(G))$ is (i,j)-bl-open in X. Then $f^{-1}(\sigma_i\text{-int}(G)) \subset (i,j)\text{-bl-int}(f^{-1}(\sigma_i\text{-int}(G))) \subset (i,j)\text{-bl-int}(f^{-1}(G))$.

(f) \Rightarrow (a) Let B be a σ_i-open subset of Y. Then $f^{-1}(B) = f^{-1}(\sigma_i\text{-int}(B)) \subset (i,j)\text{-bl-int}(f^{-1}(B))$. Therefore $f^{-1}(B)$ is (i,j)-bl-open in X and so f is (i,j)-bl-continuous.
bI-open sets in ideal bitopological spaces

Theorem 4.2. Let

\[f : (X, \tau_1, \tau_2, I) \longrightarrow (Y, \sigma_1, \sigma_2, J) \quad \text{and} \quad g : (Y, \sigma_1, \sigma_2, J) \longrightarrow (Z, \theta_1, \theta_2) \]

be two functions, where \(I \) and \(J \) are two ideals in \(X \) and \(Y \) respectively. If \(f \) is \((i, j)\)-bI-continuous and \(g \) is pairwise continuous, then \(g_0f \) is \((i, j)\)-bI-continuous.

Proof. Let \(C \) be a \(\theta_i \)-open set in \(Z \). Since \(g \) is pairwise continuous, therefore \(g^{-1}(C) \) is \(\sigma_i \)-open in \(Y \). Also, \(f \) is \((i, j)\)-bI-continuous, so \((g_0f)^{-1}(C) = f^{-1}(g^{-1}(C))\) is \((i, j)\)-bI-open in \(X \). Hence \(g_0f \) is \((i, j)\)-bI-continuous.

Theorem 4.3. Let \(f : (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2) \) be \((i, j)\)-bI-continuous and \(A \subset X \). If \(A \in \tau_1 \cap \tau_2 \), then the restriction function \(f|_A : (A, \tau_1|_A, \tau_2|_A, I|_A) \rightarrow (Y, \sigma_1, \sigma_2) \) is \((i, j)\)-bI-continuous.

Proof. Let \(B \) be a \(\sigma_i \)-open subset of \(Y \). Since \(f \) is \((i, j)\)-bI-continuous, therefore \(f^{-1}(B) \) is \((i, j)\)-bI-open set in \(X \). Also, \(A \in \tau_1 \cap \tau_2 \), therefore by theorem 3.3, we have \(A \cap f^{-1}(B) \in BIO(A, \tau_1|_A, \tau_2|_A, I|_A) \). Again

\[(f|_A)^{-1}(B) = A \cap f^{-1}(B) \]

and so \((f|_A)^{-1}(B) \in BIO(A, \tau_1|_A, \tau_2|_A, I|_A)\). Hence \(f|_A : (A, \tau_1|_A, \tau_2|_A, I|_A) \rightarrow (Y, \sigma_1, \sigma_2) \) is \((i, j)\)-bI-continuous.

Theorem 4.4. Let \(f : (X, \tau_1, \tau_2, I) \longrightarrow (Y, \sigma_1, \sigma_2) \) be a function. If a function \(g : (X, \tau_1, \tau_2, I) \longrightarrow (X \times Y, \sigma_1 \times \sigma_2) \), defined by \(g(x) = (x, f(x)) \) for each \(x \in X \) is \((i, j)\)-bI-continuous, then \(f \) is \((i, j)\)-bI-continuous.

Proof. Suppose that \(g \) is \((i, j)\)-bI-continuous. Let \(x \in X \) and \(B \) be a \(\sigma_i \)-open subset of \(Y \) containing \(f(x) \). Then \(X \times B \) is \(\tau_i \times \sigma_i \)-open in \(X \times Y \). By the \((i, j)\)-bI-continuity of \(g \), there exists an \((i, j)\)-bI-open set \(A \) in \(X \) containing \(x \) such that \(f(A) \subset X \times Y \), by theorem 4.1. So \(f(A) \subset B \). Hence \(f \) is \((i, j)\)-bI-continuous.

Definition 4.2. (see [13]) A bitopological space \((X, \tau_1, \tau_2)\) is said to be pairwise connected if it cannot be expressed as the union of two nonempty disjoint sets \(A \) and \(B \) such that \(A \) is \(\tau_i \)-open and \(B \) is \(\tau_j \)-open, where \(i, j = \{1, 2\} \).

Definition 4.3. An ideal bitopological space \((X, \tau_1, \tau_2, I)\) is said to be \((i, j)\)-bI-connected if there exists a nonempty \((i, j)\)-bI-open set \(A \) and a nonempty \((j, i)\)-bI-open set \(B \) in \(X \) such that \(X \neq A \cup B \) and \(A \cap B = \emptyset \).

Theorem 4.5. Let \(f : (X, \tau_1, \tau_2, I) \longrightarrow (Y, \sigma_1, \sigma_2) \) be a function. If \(f \) is \((i, j)\)-bI-continuous surjection and \(X \) is \((i, j)\)-bI-connected, then \(Y \) is pairwise connected.
Proof. Assume that Y is not pairwise connected. Then there exists a nonempty σ_i-open set A and a nonempty σ_j-open set B such that $Y = A \cup B$ and $A \cap B = \emptyset$. Since f is (i, j)-bI-continuous, therefore $f^{-1}(A)$ is (i, j)-bI-open in X and $f^{-1}(B)$ is (j, i)-bI-open in X. Since $A \cap B = \emptyset$ and f is surjective, therefore $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Thus $f^{-1}(Y) = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A) \neq \emptyset$ and $f^{-1}(B) \neq \emptyset$. This implies that $X = f^{-1}(A) \cup f^{-1}(B)$. Hence X is not (i, j)-bI-connected, which is a contradiction.

Lemma 4.1([12]). For any function $f : (X, \tau, I) \longrightarrow (Y, \sigma)$, $f(I)$ is an ideal on Y.

Definition 4.4. An ideal bitopological space (X, τ_1, τ_2, I) is said to be (i, j)-I-compact if for every open cover $\{C_\alpha : \alpha \in \wedge\}$ by τ_i-open sets of X, there exists a finite subset \wedge_0 of \wedge such that $X \setminus \bigcup\{C_\alpha : \alpha \in \wedge\} \in I$, where $i, j = \{1, 2\}$ and $i \neq j$.

Definition 4.5. An ideal bitopological space (X, τ_1, τ_2, I) is said to be (i, j)-bI-compact if for every open cover $\{C_\alpha : \alpha \in \wedge\}$ by (i, j)-bI-open sets of X, there exists a finite subset \wedge_0 of \wedge such that $X \setminus \bigcup\{C_\alpha : \alpha \in \wedge\} \in I$, where $i, j = \{1, 2\}$ and $i \neq j$.

Theorem 4.6. Let $f : (X, \tau_1, \tau_2, I) \longrightarrow (Y, \sigma_1, \sigma_2)$ be a function. If $f : (X, \tau_1, \tau_2, I) \longrightarrow (Y, \sigma_1, \sigma_2)$ is (i, j)-bI-continuous surjection and X is (i, j)-bI-compact, then $(Y, \sigma_1, \sigma_2, f(I))$ is (i, j)-$f(I)$-compact.

Proof. Let $\{C_\alpha : \alpha \in \wedge\}$ be an open cover of Y by σ_i-open sets in Y. Since f is (i, j)-bI-continuous, therefore $\{f^{-1}(C_\alpha) : \alpha \in \wedge\}$ be an open cover of X by (i, j)-bI-open sets in X. Also, (X, τ_1, τ_2, I) is (i, j)-bI-compact. Therefore there exists a finite subset \wedge_0 of \wedge such that $X \setminus \bigcup\{f^{-1}(C_\alpha) : \alpha \in \wedge_0\} \in I$. Thus $Y \setminus \bigcup\{C_\alpha : \alpha \in \wedge_0\} = f(X \setminus \bigcup\{f^{-1}(C_\alpha) : \alpha \in \wedge_0\} \in f(I)$. Hence $(Y, \sigma_1, \sigma_2, f(I))$ is (i, j)-$f(I)$-compact.

Definition 4.6. A function $f : (X, \tau_1, \tau_2, I) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i, j)-bI-irresolute if the inverse image of every (i, j)-bI-open set in Y is (i, j)-bI-open in X, where $i, j = 1, 2$ and $i \neq j$.

Theorem 4.7. The following statements are equivalent for the function $f : (X, \tau_1, \tau_2, I) \longrightarrow (Y, \sigma_1, \sigma_2)$.

(a) f is (i, j)-bI-irresolute.

(b) For all $x \in X$ and every (i, j)-bI-open set B of Y containing $f(x)$, there exists an (i, j)-bI-open set A of X containing x such that $f(A) \subset B$.

(c) Inverse image of every (i, j)-bI-closed set of Y is (i, j)-bI-closed set in X.
Theorem 4.8. Let

\[f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2, J) \] and \[g : (Y, \sigma_1, \sigma_2, J) \to (Z, \theta_1, \theta_2) \]

be two functions, where \(I \) and \(J \) are two ideals in \(X \) and \(Y \) respectively.

(a) If \(f \) is \((i, j)\)-\(bI \)-irresolute and \(g \) is \((i, j)\)-\(b \)-irresolute, then \(g_0f \) is \((i, j)\)-\(bI \)-irresolute.

(b) If \(f \) is \((i, j)\)-\(bI \)-irresolute and \(g \) is \((i, j)\)-\(b \)-continuous, then \(g_0f \) is \((i, j)\)-\(bI \)-continuous.

Proof. (a) Let \(C \) be an \((i, j)\)-\(b \)-open set in \(Z \). Since \(g \) is \((i, j)\)-\(b \)-irresolute, therefore \(g^{-1}(C) \) is \((i, j)\)-\(b \)-open set in \(Y \). Also, \(f \) is \((i, j)\)-\(bI \)-irresolute, so \((g_0f)^{-1}(C) = f^{-1}(g^{-1}(C)) \) is \((i, j)\)-\(bI \)-open in \(X \). Hence \(g_0f \) is \((i, j)\)-\(bI \)-irresolute.

(b) Let \(C \) be a \(\theta_1 \)-open set in \(Z \). Since \(g \) is \((i, j)\)-\(b \)-continuous, therefore \(g^{-1}(C) \) is \((i, j)\)-\(b \)-open set in \(Y \). Also, \(f \) is \((i, j)\)-\(bI \)-irresolute, so \((g_0f)^{-1}(C) = f^{-1}(g^{-1}(C)) \) is \((i, j)\)-\(bI \)-open in \(X \). Hence \(g_0f \) is \((i, j)\)-\(bI \)-continuous.

Theorem 4.9. Let \(f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2) \) be \((i, j)\)-\(bI \)-irresolute and \(A \subseteq X \). If \(A \in \tau_1 \cap \tau_2 \), then the restriction function \(f|_A : (A, \tau_1|_A, \tau_2|_A, I|_A) \to (Y, \sigma_1, \sigma_2) \) is \((i, j)\)-\(bI \)-irresolute.

Proof. Let \(B \) be a \((i, j)\)-\(b \)-open subset of \(Y \). Since \(f \) is \((i, j)\)-\(bI \)-irresolute, therefore \(f^{-1}(B) \) is \((i, j)\)-\(bI \)-open set in \(X \). Also, \(A \in \tau_1 \cap \tau_2 \), therefore by theorem 3.3, we have \(A \cap f^{-1}(B) \in BIO(A, \tau_1|_A, \tau_2|_A, I|_A) \). Again

\[(f|_A)^{-1}(B) = A \cap f^{-1}(B) \]

and so

\[(f|_A)^{-1}(B) \in BIO(A, \tau_1|_A, \tau_2|_A, I|_A). \]

Hence

\[f|_A : (A, \tau_1|_A, \tau_2|_A, I|_A) \to (Y, \sigma_1, \sigma_2) \]

is \((i, j)\)-\(bI \)-irresolute.

References

