THE TOPOLOGICAL INDICES OF
NON-COMMUTING GRAPH OF A FINITE GROUP

M. Jahandideh¹§, N.H. Sarmin², S.M.S. Omer³

¹Department of Mathematics
Shahid Chamran University of Ahvaz
Ahvaz, IRAN

²Department of Mathematical Sciences
Faculty of Science
University Teknologi Malaysia
81310 UTM Johor Bahru, Johor, MALAYSIA

³Department of Mathematics
Faculty of Science
University of Benghazi
Benghazi, LIBYA

Abstract: Assume G is a non-abelian finite group. The non-commuting graph Γ_G of G is defined as a graph with vertex set G \(- Z(G) in which Z(G) is the center of G and two distinct vertices x and y are joined if and only if xy \neq yx. Various topological indices have been determined for simple and connected graphs. Since non-commuting graph is a simple and connected graph, topological indices could be defined for it. The main objective of this article is to calculate various topological indices including the Szeged index, Edge-Wiener index, the first Zagreb index and the second Zagreb index for the non-commuting graph of G.

AMS Subject Classification: 05C12
Key Words: non-commuting graph, Szeged index, edge-wiener index, the first Zagreb index, the second Zagreb index

Received: June 26, 2015

§Correspondence author
1. Introduction

In this paper, G is a non-abelian finite group. Various graphs could be attributed to G, one of which is the non-commuting graph, denoted by Γ_G. The set of vertices and edges of Γ_G are $V(\Gamma_G)$ and $E(\Gamma_G)$, respectively so that $V(\Gamma_G) = G - Z(G)$ in which $Z(G)$ is the center of G and for every $x, y \in V(\Gamma_G)$ we have $\{x, y\} \in E(\Gamma_G) \iff xy \neq yx$. The centralizer of x within G which is denoted by $C_G(x)$ is a subset of G which is defined as $\{g \in G : gx = xg\}$. According to [3], the non-commuting graph of a finite group G was first introduced by Paul Erdos.

Assume that $G = (V, E)$ is a graph in which V is the set of vertices and E is the set of edges. This graph is a finite graph whenever $|V|$ and $|E|$ are finite. The distance between two vertices x and y is denoted by $d(x, y)$, which the length of the shortest path between the two vertices x and y. The degree of the vertex x is denoted by $\deg(x)$, equal to the number of edges through x. The diameter of G is defined as follows:

$$\text{diam}(G) = \max\{d(x, y) : x, y \in V(\Gamma_G)\}.$$

The Szeged index of the graph $G = (V, E)$ is defined as follows: This index is a recently introduced invariant of a graph which is based on the distances of the vertices of the graph [5] and [6]. Let $e = xy$ be an edge of G. We define the following sets:

$$N_x(e|G) = \{w \in V : d(w, x) < d(w, y)\},$$
$$N_y(e|G) = \{w \in V : d(w, y) < d(w, x)\}.$$

Hence $N_x(e|G)$ is the set of all vertices of G which are closer to x than y and $N_y(e|G)$ is the set of all vertices of G which are closer to y than x. The size of $N_x(e|G)$ are $N_y(e|G)$ are denoted by $n_x(e|G)$ and $n_y(e|G)$, respectively.

The Szeged index of the graph G is defined by

$$Sz(G) = \sum_{e=xy \in E(G)} n_x(e|G) \cdot n_y(e|G).$$

Let G be a connected graph. The Edge-Wiener index of G is defined as follows:

$$W_e(G) = \sum_{\{e,f\} \subseteq E(G)} d(e, f).$$

Where e, f are two edges in G and $d(e, f)$ is the distance between two vertices in the line-graph. In view of the above definition $W_e(G) = W(\overline{G})$ (\overline{G} is the
line-graph of G). For more details, refer to the [4]. The first Zagreb index of G is denoted by $Z_1(G)$ and is defined by:

$$Z_1(G) = \sum_{x \in V} (\text{deg}(x))^2.$$

The second Zagreb index of the graph G is defined by:

$$Z_2(G) = \sum_{\{x,y\} \subseteq V} \text{deg}(x) \cdot \text{deg}(y).$$

The readers can refer to [7] for more details. Our main goal is to calculate the above mentioned indices for the non-commuting graph of G in terms of the order of G, $Z(G)$ and the number of conjugacy classes of G. The following lemmas will be used repeatedly.

Lemma 1. [1]. Let G be a finite group. Then $\text{diam}(\Gamma_G) = 2$.

Lemma 2. [1]. Let G be a finite group and $k(G)$ the number of conjugacy classes of G, then

$$|E(\Gamma_G)| = \frac{1}{2}|G|(|G| - k(G)).$$

Lemma 3. [1]. Let G be a finite group. If x be one of the vertices of Γ_G, then

$$\text{deg}(x) = |G| - |C_G(x)|.$$

2. The Szeged Index of a Non-Commuting Graph

In this section, we find the Szeged index for the non-commuting graph of a finite group.

Lemma 4. Let G be a finite group. Then

$$\sum_{x \notin Z(G)} |C_G(x)| = |G|(k(G) - |Z(G)|).$$

Proof. We know that G is the union of its conjugacy classes. Assume that $\{x_i\}_{i=1}^k$ are the representative of the conjugacy classes and $\text{class}(x_i)$ denotes the conjugacy class of x_i and $G = \bigcup_{i=1}^k \text{class}(x_i)$.

Now, let $\{x_i\}_{i=1}^t \notin Z(G)$, thus we have $k(G) = t + |Z(G)|$. Every x which is not
placed within \(Z(G) \) would be placed within one of class\((x_i) \)s in which \(1 \leq i \leq t \). Therefore we have:

\[
\sum_{x \notin Z(G)} |C_G(x)| = \sum_{i=1}^{t} |\text{class}(x_i)||C_G(x_i)| = |G|t = |G|(k(G) - |Z(G)|).
\]

\[
\Box
\]

In the next theorem, we calculate the Szeged index of \(\Gamma_G \).

Theorem 5. Assume \(G \) is a finite group and \(\Gamma_G \) its non-commuting graph. Then the Szeged index of \(\Gamma_G \) is

\[
Sz(\Gamma_G) = \frac{1}{2} \left(\sum_{i=1}^{n} \left(\sum_{x_j \notin C_G(x_i)} \left(|C_G(x_i) \cap C_G(x_j)| \right)^2 \right) + \sum_{i=1}^{n} \deg(x_i) \left(\sum_{x_j \notin C_G(x_i)} +2|C_G(x_i) \cap C_G(x_j)| - |C_G(x_j)| \right) \right. \\
\left. + |G| \left(\sum_{i=1}^{n} \left(\sum_{x_j \notin C_G(x_i)} -2|C_G(x_i) \cap C_G(x_j)| + |C_G(x_j)| \right) \right) \right).
\]

Proof. Assume that \(x \) and \(y \) are two arbitrary vertices of the graph \(\Gamma_G \) that are joined together by \(e \) (where \(e \) is one of the edges of the non-commuting graph). Now we calculate \(n_x(e|\Gamma_G) \) and \(n_y(e|\Gamma_G) \):

\[
N_x(e|\Gamma_G) = \{w \in V(\Gamma_G) : d(w, x) < d(w, y)\}.
\]

According to Lemma 1, we have:

If \(d(w, y) = 1 \) then \(d(w, x) = 0 \) and \(w = x \). If \(d(w, y) = 2 \) then \(d(w, x) = 0 \) or 1. So

\[
n_x(e|\Gamma_G) = (|C_G(y)| - 1) - |C_G(x) \cap C_G(y)| + 1 \\
= |C_G(y)| - |C_G(x) \cap C_G(y)|
\]

In order to

\[
n_y(e|\Gamma_G) = (|C_G(x)| - 1) - |C_G(x) \cap C_G(y)| + 1 \\
= |C_G(x)| - |C_G(x) \cap C_G(y)|.
\]
\[S_{2}(\Gamma_{G}) = \sum_{e = xy \in E} n_{x}(e|\Gamma_{G}) \cdot n_{y}(e|\Gamma_{G}) \]

\[= \sum_{e = xy \in E} (|C_{G}(y)| - |C_{G}(x) \cap C_{G}(y)|)(|C_{G}(x)| - |C_{G}(x) \cap C_{G}(y)|) \]

\[= \sum_{e = xy \in E} |C_{G}(x) \cap C_{G}(y)|^2 \]

\[- \sum_{e = xy \in E} (|C_{G}(x)| + |C_{G}(y)|)|C_{G}(x) \cap C_{G}(y)| + \sum_{e = xy \in E} |C_{G}(x)||C_{G}(y)| \]

Now, we have to calculate the all of summations. Letting \(|G| - |Z(G)| = n\), we obtain

\[\sum_{e = xy \in E} |C_{G}(x) \cap C_{G}(y)|^2 = \frac{1}{2} \sum_{i=1}^{n} \left(\sum_{x \in G - Z(G)} \sum_{j \notin C_{G}(x)} (|C_{G}(x_i) \cap C_{G}(x_j)|)^2 \right) \]

So we can gain

\[\sum_{e = xy \in E} (|C_{G}(x)| + |C_{G}(y)|)|C_{G}(x) \cap C_{G}(y)| = \sum_{x \in G - Z(G)} |C_{G}(x)||C_{G}(x) \cap C_{G}(y)| \]

\[= \sum_{i=1}^{n} |C_{G}(x_i)| \left(\sum_{x \notin C_{G}(x_i)} |C_{G}(x_i) \cap C_{G}(x_j)| \right) \]

\[= \sum_{i=1}^{n} (|G| - \deg(x_i)) \left(\sum_{x \notin C_{G}(x_i)} |C_{G}(x_i) \cap C_{G}(x_j)| \right) \]

\[= \sum_{i=1}^{n} - \deg(x_i) \left(\sum_{x \notin C_{G}(x_i)} |C_{G}(x_i) \cap C_{G}(x_j)| \right) \]

\[+ |G| \sum_{i=1}^{n} \left(\sum_{x \notin C_{G}(x_i)} |C_{G}(x_i) \cap C_{G}(x_j)| \right). \]

Now, calculating

\[\sum_{e = xy \in E} |C_{G}(x)||C_{G}(y)|. \]

\[\sum_{e = xy \in E} |C_{G}(x)||C_{G}(y)| = \frac{1}{2} \sum_{i=1}^{n} \left(|C_{G}(x_i)| \sum_{x \notin C_{G}(x_i)} |C_{G}(x_j)| \right) \]
\[
= \frac{1}{2} \sum_{i=1}^{n} \left(|G| - \deg(x_i) \sum_{x_j \not\in C_G(x_i)} |C_G(x_j)| \right)
\]
\[
= -\frac{1}{2} \sum_{i=1}^{n} \left(\deg(x_i) \sum_{x_j \not\in C_G(x_i)} |C_G(x_j)| \right)
\]
\[
+ \frac{|G|}{2} \sum_{i=1}^{n} \left(\sum_{x_j \not\in C_G(x_i)} |C_G(x_j)| \right).
\]

Now, the Szeged index is equal to
\[
S_Z(\Gamma_G) = \sum_{e=xy \in E} |C_G(x) \cap C_G(y)|^2 - \sum_{e=xy \in E} (|C_G(x)| + |C_G(y)|)|C_G(x) \cap C_G(y)|
\]
\[
+ \sum_{e=xy \in E} |C_G(x)||C_G(y)|
\]
\[
= \frac{1}{2} \sum_{i=1}^{n} \left(\sum_{x_j \not\in C_G(x_i)} \left(|C_G(x_i) \cap C_G(x_j)| \right)^2 \right)
\]
\[
+ \sum_{i=1}^{n} \deg(x_i) \left(\sum_{x_j \not\in C_G(x_i)} |C_G(x_i) \cap C_G(x_j)| \right)
\]
\[
- |G| \sum_{i=1}^{n} \left(\sum_{x_j \not\in C_G(x_i)} |C_G(x_i) \cap C_G(x_j)| \right)
\]
\[
- \frac{1}{2} \sum_{i=1}^{n} \left(\deg(x_i) \sum_{x_j \not\in C_G(x_i)} |C_G(x_j)| \right)
\]
\[
+ \frac{|G|}{2} \sum_{i=1}^{n} \left(\sum_{x_j \not\in C_G(x_i)} |C_G(x_j)| \right)
\]
\[
= \frac{1}{2} \left(\sum_{x_j \not\in C_G(x_i)} \left(|C_G(x_i) \cap C_G(x_j)| \right)^2 \right)
\]
\[
+ \sum_{i=1}^{n} \deg(x_i) \left(\sum_{x_j \not\in C_G(x_i)} +2|C_G(x_i) \cap C_G(x_j)| - |C_G(x_j)| \right)
\]
+ |G| \left(\sum_{i=1}^{n} \left(\sum_{x_j \notin C_G(x_i)} -2|C_G(x_i) \cap C_G(x_j)| + |C_G(x_j)| \right) \right) \right). \]

3. The Edge-Wiener Index of a Non-Commuting Graph

In this section, we find the Edge-Wiener index of a non-commuting graph. We start with a couple of lemmas.

Lemma 6. [2]. Assume G is a finite group and Γ_G its non-commuting graph. If Γ_G is a line-graph then,

$$|V(\Gamma_G)| = |E(\Gamma_G)|, \quad |E(\Gamma_G)| = \sum_{x \in V(\Gamma_G)} \left(\frac{\deg(x)}{2} \right).$$

Lemma 7. Assume G is a finite group and Γ_G a line-graph of Γ_G. Then Γ_G is a connected graph and $\text{diam}(\Gamma_G) = 2$.

Proof. First, we prove that there is a path between two vertices of Γ_G. Assume that two arbitrary vertices e and f belong to Γ_G, thus e is an edge in Γ_G, so there are two vertices x and y of Γ_G that are joined together by e. Furthermore, there are two vertices x_1 and y_1 that are connected together by f. We know that $\text{diam}(\Gamma_G) = 2$, thus there is at least an edge between all mentioned vertices. It means: there is a path between two edges. Now, we prove that $\text{diam}(\Gamma_G) = 2$. Suppose that $\text{diam}(\Gamma_G) = 1$, then Γ_G is a complete graph. Next

$$\exists \ x \in G \ \exists \ y \neq x^{-1} \Rightarrow \exists \ y \in G \ \exists \ x \xrightarrow{e} y \xrightarrow{f} x^{-1},$$

$$G \neq C_G(x) \cup C_G(y) \Rightarrow \exists \ z \in G - C_G(x) \cup C_G(y).$$

Therefore, we have $z \xrightarrow{h} x \xrightarrow{e} y \xrightarrow{g} z$, but Γ_G is a complete graph, so h and f are joined together, which is impossible. Since $z \neq x, y$ and $x \neq y, x^{-1}$. Thus $\text{diam}(\Gamma_G) \neq 1$. Hence $\text{diam}(\Gamma_G) = 2$. \qed

Theorem 8. Let G be a finite group and Γ_G a line-graph of Γ_G. Then

$$W_e(\Gamma_G) = |E(\Gamma_G)|^2 + |G|^2 \left(k(G) - \frac{1}{2} |Z(G)| - \frac{1}{2} |G| \right) - \frac{1}{2} \sum_{x \in G - Z(G)} |C_G(x)|^2.$$
Proof. By definition, \(W_e(\overline{\Gamma_G}) = \sum_{\{e,f\} \subseteq E(\Gamma_G)} d(e, f) = \frac{1}{2} \sum_{e \in E(\Gamma_G)} d(e) \) where
\[
d(e) = \sum_{f \in E(\Gamma_G)} d(e, f).
\]

First we compute \(d(e) \) for an arbitrary vertex of the graph \(\overline{\Gamma_G} \). According to Lemma 7, \(d(e) = \sum_{f \in E(\Gamma_G)} d(e, f) = 2 \) (the number of vertices whose distance from \(e \) is 2) + 1 (the number of vertices whose distance from \(e \) is 1). Let \(x \) and \(y \) be joined together by \(e \). Then
\[
d(e) = \sum_{f \in E(\Gamma_G)} d(e, f)
= 1((\deg(x) - 1) + (\deg(y) - 1)) + 2(|E(\Gamma_G)| - \deg(x) - \deg(y) + 1)
= 2|E(\Gamma_G)| - (\deg(x) + \deg(y)).
\]

Using the above formula, we can calculate \(W_e(\overline{\Gamma_G}) \):
\[
W_e(\overline{\Gamma_G}) = \frac{1}{2} \sum_{e \in E(\Gamma_G)} d(e)
= \frac{1}{2} \sum_{e \in E(\Gamma_G)} 2|E(\Gamma_G)| - (\deg(x) + \deg(y))
= |E(\Gamma_G)|^2 - \frac{1}{2} \sum_{e \in E(\Gamma_G)} (\deg(x) + \deg(y))
= |E(\Gamma_G)|^2 - \frac{1}{2} \sum_{x \in G - Z(G)} (|G| - |C_G(x)|)^2
= |E(\Gamma_G)|^2 - \frac{1}{2} |G|^2 (|G| - |Z(G)|) + |G| \sum_{x \in G - Z(G)} |C_G(x)|
- \frac{1}{2} \sum_{x \in G - Z(G)} |C_G(x)|^2
= |E(\Gamma_G)|^2 - \frac{1}{2} |G|^2 (|G| - |Z(G)|) + |G|^2 (k(G) - |Z(G)|)
- \frac{1}{2} \sum_{x \in G - Z(G)} |C_G(x)|^2.
\[|E(\Gamma_G)|^2 + |G|^2 \left(k(G) - \frac{1}{2}|Z(G)| - \frac{1}{2}|G| \right) \]
\[- \frac{1}{2} \sum_{x \in G - Z(G)} |C_G(x)|^2. \]

\[\square \]

4. The First Zagreb Index of a Non-Commuting Graph

In this section, the first Zagreb index of a non-commuting graph is computed.

Theorem 9. Let \(G \) be a finite group and \(\Gamma_G \) its non-commuting graph. Then
\[Z_1(\Gamma_G) = |G|^2 (|G| + |Z(G)| - 2k(G)) + \sum_{x \in G - Z(G)} |C_G(x)|^2. \]

Proof. Using the definition of \(Z_1(\Gamma_G) \), we have
\[Z_1(\Gamma_G) = \sum_{x \in G - Z(G)} \text{deg}(x)^2 \]
\[= \sum_{x \in G - Z(G)} (|G| - |C_G(x)|)^2 \]
\[= |G|^2 (|G| - |Z(G)|) - 2|G| \sum_{x \in G - Z(G)} |C_G(x)| + \sum_{x \in G - Z(G)} |C_G(x)|^2 \]
\[= |G|^2 (|G| + |Z(G)| - 2k(G)) + \sum_{x \in G - Z(G)} |C_G(x)|^2. \]
\[\square \]

5. The Second Zagreb Index of a Non-Commuting Graph

In this section, we calculate the second Zagreb index of a non-commuting graph.

Theorem 10. Let \(G \) be a finite group and \(\Gamma_G \) its non-commuting graph. Then
\[Z_2(\Gamma_G) = \frac{1}{2} \left(|G|^2 (|G| - k(G))^2 + |G|^2 (k(G) - |Z(G)|) - \sum_{1 \leq i \leq n} |C_G(x_i)|^2 \right). \]
Next, we calculate the second Zagreb index of the non-commuting graph. Let
\[
\sum_{x \neq y \in G - Z(G)} \deg(x) \cdot \deg(y) = \sum_{x \neq y \in G - Z(G)} (|G| - |C_G(x)|)(|G| - |C_G(y)|)
\]
\[
= \sum_{x \neq y \in G - Z(G)} (|G| - |C_G(x)|)|G|
\]
\[
- \sum_{x \neq y \in G - Z(G)} (|G| - |C_G(x)|)|C_G(y)|
\]
\[
= |G|(|G| - |Z(G)| - 1)(|G| - |C_G(x)|)
\]
\[
- (|G| - |C_G(x)|) \sum_{x \neq y \in G - Z(G)} |C_G(y)|.
\]
We know that \(\sum_{y \in G - Z(G)} |C_G(y)| = |G|(k(G) - |Z(G)|) \), thus \(\sum_{x \neq y \in G - Z(G)} |C_G(y)|. \)

Can be found as follows:
\[
\sum_{x \neq y \in G - Z(G)} |C_G(y)| = |G|(k(G) - |Z(G)|) - |C_G(x)| \quad \text{where}
\]
\[
\sum_{x \neq y \in G - Z(G)} \deg(x) \cdot \deg(y) = (|G| - |C_G(x)|)(|G|(|G| - k(G)) + |C_G(x)| - |G|).
\]

Next, we calculate the second Zagreb index of the non-commuting graph. Let
\(G - Z(G) = \{x_1, x_2, \ldots, x_n\} \). Then
\[
Z_2(G) = \sum_{\{x, y\} \subseteq V} \deg(x) \cdot \deg(y)
\]
\[
= \frac{1}{2} \left(\sum_{x_1 \neq y \in G - Z(G)} \deg(x_1) \cdot \deg(y) \right)
\]
\[
+ \sum_{x_2 \neq y \in G - Z(G)} \deg(x_2) \cdot \deg(y)
\]
\[
+ \ldots + \sum_{x_n \neq y \in G - Z(G)} \deg(x_n) \cdot \deg(y)
\]
\[
= \frac{1}{2} \left[(|G| - |C_G(x_1)|)(|G|(|G| - k(G)) + |C_G(x_1)| - |G|)
\right.
\]
\[
+ (|G| - |C_G(x_2)|)(|G|(|G| - k(G)) + |C_G(x_2)| - |G|)
\]
\[
+ \ldots + (|G| - |C_G(x_n)|)(|G|(|G| - k(G)) + |C_G(x_n)| - |G|)
\]
\[
= \frac{1}{2}(|G|^2(|G| - k(G))(|G| - |Z(G)|) - |G|(|G| - k(G)) \sum_{1 \leq i \leq n} |C_G(x_i)| \\
+ |G| \sum_{1 \leq i \leq n} |C_G(x_i)| - \sum_{1 \leq i \leq n} |C_G(x_i)|^2 \\
- |G|^2(|G| - |Z(G)|) + |G| \sum_{1 \leq i \leq n} |C_G(x_i)|)
\]

\[
= \frac{1}{2} \left(|G|^2(|G| - k(G))^2 + |G|^2(k(G) - |Z(G)|) - \sum_{1 \leq i \leq n} |C_G(x_i)|^2 \right).
\]

\[\square \]

6. Acknowledgements

The first author would like to thank her supervisor Prof. Darafsheh, professor at Shahid Chamran University. The first author would also like to thank University Teknologi Malaysia for their hospitality in the period 16-July to 15-September 2013 while the author had a visiting position at the university.

References

