FIXED POINT THEOREM IN
STRUCTURE FUZZY METRIC SPACE

Santanu Acharjee
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology
Paschim Boragaon, Guwahati, 781035, Assam, INDIA

Abstract: In this short paper we prove a fixed point theorem on structure fuzzy metric space which doesn’t have unique fixed point.

AMS Subject Classification: 54H25, 47H10
Key Words: structure fuzzy metric space

1. Introduction

In this paper we will study a fixed point theorem from view point of a new class of fuzzy metric defined on a set. Fixed point theorems in any areas are most useful. Mathematical economists, physicists, computer scientists etc are using fixed point theorems in their respective research. At present various types of fuzzy fixed point theorems are also playing crucial role in mathematical economics, social choices, auction theory.

Received: December 4, 2014 © 2015 Academic Publications, Ltd.
url: www.acadpubl.eu
2. Preliminary Definitions

In this section we discuss some existing definitions.

Definition 2.1. (see [6]) A binary operation \(*: [0,1] \times [0,1] \to [0,1]\) is a *continuous t-norm* if \(*\) satisfies the following conditions:

(a) * is commutative and associative;
(b) * is continuous;
(c) \(a * 1 = a \forall a \in [0,1]\);
(d) \(a * b \leq c * d\) whenever \(a \leq c\) and \(b \leq d\) and \(a, b, c, d \in [0,1]\).

Definition 2.2. (see [12]) Let \(X\) be a non-empty set, \(*\) be a *continuous t-norm* and \(M : X^2 \times [0,\infty) \to [0,1]\) be a fuzzy set. Consider the following conditions for all \(x, y, z \in X\) and \(t, s \in [0,\infty)\):

(M1) \(M(x, y, 0) = 0\)
(M2) \(M(x, x, t) = 1\)
(M3) \(M(x, y, t) = 1 \Rightarrow x = y\)
(M4) \(M(x, y, t) = M(y, x, t)\)
(M5) \(M(x, y, t + s) \geq M(x, z, t) * M(z, y, s)\)
(M6) \(M(x, y, \cdot) : [0,\infty) \to [0,1]\) is left continuous

Then \((X, M, *)\) is said to be a fuzzy metric space.

3. Main Result

In this section we will prove a fixed point theorem which doesn’t have unique fixed point by removing certain conditions from definitions of fuzzy metric space.

Definition 3.1. \((X, M, *)\) is said to be a *structure fuzzy metric space (SFMS)* if it satisfies conditions \((M1), (M3), (M4), (M5)\) and \((M6)\) of Definition 2.2.

Definition 3.2. A sequence \(<x_n>\) in a SFMS is said to be *structure convergent* if \(\exists x \in X\) such that \(\lim_{n \to \infty} M(x_n, x, t) = 1 \forall t > 0\). Then \(x\) is said to be *structure limit* of \(<x_n>\) and denoted by \(\lim_n x_n = x\).
Definition 3.3. A sequence \(< x_n >\) in a SFMS \((X, M, \ast)\) is said to be structure cauchy sequence if for each \(t > 0\) and \(r \in N\) such that \(\lim_{n \to \infty} M(x_{n+r}, x_n, t) = 1\).

\((X, M, \ast)\) is said to be structure complete if every structure cauchy sequence in it is structure convergent.

Definition 3.4. Let \((X, M, \ast)\) be a SFMS and \(f\) and \(h\) are self maps on \(X\). Then \(f\) and \(h\) are said to be normalized at \(x\) if and only if \(M(fh_x, hfx, t) = 1\) \(\forall t \in [0, \infty)\).

\(f\) and \(h\) are said to be normalized on \(X\) if \(f\) and \(h\) are normalized at all point \(x\) of \(X\).

Definition 3.5. \(f\) and \(h\) are said to be common domain normalized (CDN) if they are normalized at the coincidence point of \(f\) and \(h\).

Theorem 3.1. Let \((X, M, \ast)\) be a SFMS, \(f, h : X \to X\) be two mappings and \(D\) be the set of all coincidence points of \(f\) and \(h\) with the following conditions:

(a) \(f(X) \subset h(X)\)

(b) Either \(f(X)\) or \(h(X)\) is structure complete

(c) \(M(fx, fy, t) \geq g(M(hx, hy, t)) \forall x, y \in X, t \in (0, \infty)\) and \(M(hx, hy, t) > 0\)

(d) \(g : (0, 1] \to (0, 1]\) is monotonic increasing and \(\lim_{n \to \infty} g^n(\beta) = 1, g(\beta) \geq \beta \forall \beta \in (0, 1]\)

(e) \(M(hx, fx, t) > 0 \forall t > 0\) and for some fixed \(x \in X\)

Then \(f\) and \(h\) have a coincidence point; moreover if \(f\) and \(h\) are CDN and \(M(h^2a, ha, t) > 0\) for some \(a \in D\) and \(t \in (0, \infty)\) then \(f\) and \(h\) have a fixed point.

Proof. Let \(x_o\) be fixed and \(x_0 \in X\) and \(M(hx_0, fx_0, t) > 0 \forall t \in (0, \infty)\). As \(f(X) \subset g(X)\) then \(\exists x_1 \in X\) such that \(y_1 = fx_o = hx_1\). By mathematical induction we have, \(y_{n+1} = fx_n = hx_{n+1} \forall n \in N\) and \(y_o = hx_o\).

Now \(M(y_{n+1}, y_{n+2}, t) \geq g^n(M(hx_o, fx_o, t)) \forall n \in N, t \in (0, \infty)\). As \(n \to \infty\), so by condition (d) we have \(M(y_{n+1}, y_{n+2}, t) \to 1\).

Thus

\[M(y_n, y_{n+2}, t) \geq M(y_n, y_{n+1}, \frac{t}{2}) \ast M(y_{n+1}, y_{n+2}, \frac{t}{2}) \]
\[M(y_n, y_{n+3}, t) \geq M(y_n, y_{n+1}, \frac{t}{3}) \times M(y_{n+1}, y_{n+2}, \frac{t}{3}) \times M(y_{n+2}, y_{n+3}, \frac{t}{3}). \]

Proceeding by using mathematical induction we have the following step

\[M(y_n, y_{n+r}, t) \geq M(y_n, y_{n+1}, \frac{t}{r}) \times M(y_{n+1}, y_{n+2}, \frac{t}{r}) \times M(y_{n+2}, y_{n+3}, \frac{t}{r}) \times \ldots \times M(y_{n+r-1}, y_{n+r}, \frac{t}{r}), \]

where \(r \in N \). If \(n \to \infty \) then \(M(y_n, y_{n+r}, t) \to 1 \), i.e. \(\lim_{n \to \infty} M(y_n, y_{n+r}, t) = 1 \). Thus implies \(< y_n > \) is a structure Cauchy sequence.

Let us assume that \(h(X) \) is structure complete, then \(\exists u \in h(X) \) such that \(\lim_{n \to \infty} y_{n+1} = \lim_{n \to \infty} h x_{n+1} = u = \lim_{n \to \infty} f x_n \). Let \(hv = u \) for some \(v \in X \). If \(n \to \infty \) then by definition of SFMS, we have \(M(hv, fx_n, t) \to 1 \Rightarrow M(hv, hx_{n+1}, t) \to 1 \).

By condition (c) and (d), we have \(M(fv, fx_{n+1}, t) \geq g(M(hv, hx_{n+1}, t)) \geq M(hv, hx_{n+1}, t) \). If \(n \to \infty \) then we have \(fv = hv \) i.e. \(f \) and \(h \) have a coincidence point.

Let us consider that \(f \) and \(h \) are CDN and \(M(h^2a, ha, t) > 0 \) for some \(a \in D \) and \(t \in (0, \infty) \). Let \(fa = ha = \omega \). So, by condition (c), \(M(fha, fa, t) \geq g(M(h^2a, ha, t)) > 0 \). It implies \(M(hfa, ha, t) > 0 \), after proceeding with mathematical induction we have \(M(f^2a, fa, t) \geq g^n(M(hfa, ha, t)) \). As \(n \to \infty \) then by condition (d), \(M(f^2a, fa, t) \to 1 \). It implies that \(f^2a = fa \) or \(f\omega = \omega \).

Now easy to verify that \(hfa = fa \) or \(h\omega = \omega \). Hence \(\omega \) is the fixed point of \(f \) and \(h \). In similar way we can prove for structure completeness of \(f(X) \).

Remark 3.1. It can be easily checked that the case of uniqueness of fixed point is not possible in the above fixed point theorem.

Acknowledgments

Author is very much thankful to his mother Mrs. M. Acharjee for her constant support and inspiration in author’s life. Author is also very thankful to reviewers of this research paper for their suggestions.

References

