HAUSDROFF PROPERTY OF CARTESIAN AND
TENSOR PRODUCT OF GRAPHS

Seena V1§, Raji Pilakkat2
1,2Department of Mathematics
University of Calicut
Calicut University
Malappuram (District), PIN 673 635, Kerala, INDIA
rajiunical@rediffmail.com

\textbf{Abstract:} A simple graph G is said to be Hausdroff if for any two distinct vertices u and v of G, one of the following conditions hold:

1. Both u and v are isolated
2. Either u or v is isolated
3. There exist two nonadjacent edges e_1 and e_2 of G such that e_1 is incident with u and e_2 is incident with v.

In this paper we derive sufficient conditions for cartesian and tensor products of two graphs to be Hausdroff.

\textbf{AMS Subject Classification:} 05C76
\textbf{Key Words:} Hausdroff graph, isolated vertex, Cartesian product, end-block, tensor product

\section{1. Introduction}

All the graphs considered here are finite and simple. In this paper we denote the set of vertices of G by $V(G)$, the set of edges of G by $E(G)$ and the minimum degree of G by $\delta(G)$.
The degree [4] of a vertex \(v \) in a graph \(G \), denoted by \(\text{deg} v \), is the number of edges incident with \(v \). A pendant vertex [6] in a graph \(G \) is a vertex of degree one. A vertex \(v \) is isolated [2] if \(\text{deg} v = 0 \). By an empty graph [5] we mean a graph with no edges. Two vertices \(u \) and \(v \) of \(G \) are adjacent[8], if \(uv \) is an edge of \(G \). A simple graph is said to be complete[7] if every pair of distinct vertices of \(G \) are adjacent in \(G \). A complete graph of \(n \) vertices is denoted by \(K_n \). A connected graph that has no cut vertices is called a block [3]. A block of \(G \) containing exactly one cut vertex of \(G \) is called an end-block [3] of \(G \). The Cartesian product[9] \(G \square H \) of two graphs \(G = (V(G), E(G)) \) and \(H = (V(H), E(H)) \) is the graph with vertex set \(V(G) \times V(H) \) where the vertex \((u_1, v_1) \) is adjacent to the vertex \((u_2, v_2) \) whenever \(u_1u_2 \in E(G) \) and \(v_1 = v_2 \), or \(u_1 = u_2 \) and \(v_1v_2 \in E(H) \). The Tensor product (or direct product)[1] \(G \times H \) of two graphs \(G \) and \(H \) is the graph with the vertex set \(V(G) \times V(H) \), two vertices \((u_1, v_1) \) and \((u_2, v_2) \) being adjacent in \(G \times H \) if, and only if, \(u_1u_2 \in E(G) \) and \(v_1v_2 \in E(H) \). A graph \(G \) is said to be Hausdorff [10] if for any two distinct vertices \(u \) and \(v \) of \(G \), one of the following three conditions hold: (1) Both \(u \) and \(v \) are isolated (2) Either \(u \) or \(v \) is isolated (3) There exist two nonadjacent edges \(e_1 \) and \(e_2 \) of \(G \) such that \(e_1 \) is incident with \(u \) and \(e_2 \) is incident with \(v \). From the definition of a Hausdorff graph we have if \(G \) is a graph with \(\delta(G) = 1 \), then it cannot be Hausdorff. In particular \(K_2 \) is not Hausdorff. Also if \(G \) is Hausdorff, then any supergraph of \(G \) is Hausdorff.

Theorem 1. [10] Let \(G = (V(G), E(G)) \) be a graph with \(\delta(G) \geq 3 \) then, \(G \) is Hausdorff.

2. Cartesian Product

From the definition of cartesian product of graphs we have:

Proposition 2. The cartesian product \(K_n \square K_n \) is Hausdorff for every \(n \).

Proposition 3. The cartesian product \(K_n \square K_m \) (\(n \neq m \)) is Hausdorff if, and only if, either \(n = 1 \) and \(m \geq 4 \) or \(n \geq 2 \) and \(m \geq 2 \).

Corollary 4. The cartesian product \(C_n \square C_m \) is Hausdorff \(\forall n, m \).

Proposition 5. The cartesian product \(P_n \square P_m \) is Hausdorff \(\forall n, m \).

Example 6.

Example 6 shows that the cartesian product of two non-Hausdorff graphs can be Hausdorff.
Theorem 7. Let G_1 and G_2 be two graphs with no isolated vertices. Then $G_1 \Box G_2$ is Hausdroff.

Proof. Let (u_i, v_j) and (u_r, v_s) be two distinct vertices of $G_1 \Box G_2$.

Case 1. $u_i = u_r$

Then the vertices v_j and v_s of G_2 are distinct. Since G_1 is a graph with no isolated vertices, G_1 contains a vertex v_p such that u_i and v_p are adjacent in G_1. Then $(u_i, v_j)(u_p, v_j)$ and $(u_i, v_s)(u_p, v_s)$ are two nonadjacent edges of $G_1 \Box G_2$.

Case 2. $u_i \neq u_r$

In this case, either $v_j = v_s$ or $v_j \neq v_s$. Suppose $v_j = v_s$. Since $G_1 \Box G_2 = G_2 \Box G_1$, the result follows as in Case 1. So we need only to consider the case $v_j \neq v_s$. In this case if u_i is adjacent to u_r, then $(u_i, v_j)(u_r, v_j)$ and $(u_r, v_s)(u_i, v_s)$ are two nonadjacent edges of $G_1 \Box G_2$ incident with (u_i, v_j) and (u_r, v_s) respectively. If u_i is not adjacent to u_r, since G_1 is free from isolated vertices, there exist vertices u_p and u_q distinct from u_i and u_r such that u_i is adjacent to u_p and u_r is adjacent to u_q in G_1. (u_p may be equal to u_q) Then $(u_i, v_j)(u_p, v_j)$ and $(u_r, v_s)(u_q, v_s)$ are two nonadjacent edges of $G_1 \Box G_2$ incident with (u_i, v_j) and (u_r, v_s) respectively.

Hence the theorem.

Remark 8. Theorem 7 need not be true if both the graphs contain isolated vertices. (see. Figure [2]).

If G_1 contains an isolated vertex u and G_2 contains a pendant edge vw then $(u, v)(u, w)$ is a pendant edge of the cartesian product $G_1 \Box G_2$ of G_1 and G_2. Thus in such cases $G_1 \Box G_2$ can never be Hausdroff. We state this result as a proposition as follows:
Proposition 9. The cartesian product $G_1 \square G_2$ of two graphs G_1 and G_2 is not Hausdroff if $\delta(G_1) = 0$ and $\delta(G_2) = 1$.

The question then arise is that what happens to the cartesian product when we increase the minimum degree of the graph G_2. Unfortunately, the result remains failed in certain cases. For example, consider the graphs G_1 and G_2 and their cartesian product in Figure 3. There $\delta(G_1) = 0$ and $\delta(G_2) = 2$. The cartesian product $G_1 \square G_2$ of G_1 and G_2 contains a triangle, hence it cannot be Hausdroff.

Example 10.

But one can overcome this difficult situation by giving some restrictions to the graph G_2.

Theorem 11. Let G_1 be any graph and G_2 be a graph with no triangle as end-block. If $\delta(G_2) = 2$, then $G_1 \square G_2$ is Hausdroff.
Proof. Let \((u_i, v_j)\) and \((u_r, v_s)\) be two distinct vertices of \(G_1 \Box G_2\).

Case 1. \(u_i = u_r\)

Suppose \(v_j\) and \(v_s\) are adjacent vertices of \(G_2\). Since \(\delta(G_2) = 2\), there exists a vertex \(v_p\) distinct from \(v_s\) such that \(v_j\) is adjacent to \(v_p\). If \(v_s\) and \(v_p\) are not adjacent then \(v_s\) must be adjacent to some vertex \(v_q\) of \(G_2\) distinct from \(v_j\) and \(v_p\). Then \((u_i, v_j)(u_i, v_p)\) and \((u_i, v_s)(u_i, v_q)\) are two nonadjacent edges of \(G_1 \Box G_2\) incident with \((u_i, v_j)\) and \((u_r, v_s)\) respectively.

If \(v_s\) and \(v_p\) are adjacent then the subgraph induced by the vertices \(v_j, v_s, v_p\) is a triangle in \(G_2\). Since \(G_2\) contains no triangle as end-block either \(v_s\) is adjacent to a vertex \(v_q\) distinct from \(v_j\) and \(v_p\) or \(v_j\) is adjacent to a vertex \(v_t\) distinct from \(v_s\) and \(v_p\). In the first case \((u_i, v_j)(u_i, v_p)\) and \((u_i, v_s)(u_i, v_q)\) are two nonadjacent edges of \(G_1 \Box G_2\). In the second case \((u_i, v_j)(u_i, v_t)\) and \((u_i, v_s)(u_i, v_p)\) are two nonadjacent edges of \(G_1 \Box G_2\).

Suppose \(v_j\) and \(v_s\) are not adjacent in \(G_2\). In this case since \(\delta(G_2) = 2\), we can choose two distinct vertices \(v_p\) and \(v_q\) of \(G_2\) such that \(v_p\) is adjacent to \(v_j\) and \(v_q\) is adjacent to \(v_s\), then \((u_i, v_j)(u_i, v_p)\) and \((u_i, v_s)(u_i, v_q)\) are two nonadjacent edges of \(G_1 \Box G_2\) incident with \((u_i, v_j)\) and \((u_r, v_s)\) respectively.

Case 2. \(u_i \neq u_r\)

Suppose \(v_j = v_s\), since \(\delta(G_2) = 2\), there exist two distinct vertices \(v_p\) and \(v_q\) such that \(v_j\) is adjacent to both \(v_p\) and \(v_q\). Then \((u_i, v_j)(u_i, v_p)\) and \((u_r, v_s)(u_r, v_q)\) are two nonadjacent edges of \(G_1 \Box G_2\).

Suppose \(v_j \neq v_s\), then by proceeding as in the proof of Case 1 we get two nonadjacent edges incident with the vertices \((u_i, v_j)\) and \((u_r, v_s)\). First of all we consider the case \(v_j\) and \(v_s\) are adjacent vertices of \(G_2\). Since \(\delta(G_2) = 2\), there exists a vertex \(v_p\) distinct from \(v_s\) such that \(v_p\) is adjacent to \(v_j\). If \(v_s\) and \(v_p\) are not adjacent then \(v_s\) must be adjacent to some vertex \(v_q\) of \(G_2\) distinct from \(v_j\) and \(v_p\). Which implies \((u_i, v_j)(u_i, v_p)\) and \((u_i, v_s)(u_i, v_q)\) are two nonadjacent edges of \(G_1 \Box G_2\) incident with \((u_i, v_j)\) and \((u_r, v_s)\) respectively. If \(v_s\) and \(v_p\) are adjacent then \(v_j, v_s, v_p\) form a triangle. Since \(G_2\) contains no triangle as end-block either \(v_s\) is adjacent to a vertex \(v_q\) distinct from \(v_j\) and \(v_p\) or \(v_j\) is adjacent to a vertex \(v_t\) distinct from \(v_s\) and \(v_p\). In the first case \((u_i, v_j)(u_i, v_p)\) and \((u_r, v_s)(u_r, v_q)\) are two nonadjacent edges of \(G_1 \Box G_2\). In the second case \((u_i, v_j)(u_i, v_t)\) and \((u_r, v_s)(u_r, v_p)\) are two nonadjacent edges of \(G_1 \Box G_2\).

Suppose \(v_j\) and \(v_s\) are not adjacent in \(G_2\). In this case, since \(\delta(G_2) = 2\), we can choose two distinct vertices \(v_p\) and \(v_q\) of \(G_2\) such that \(v_j\) is adjacent to \(v_p\) and \(v_s\) is adjacent to \(v_q\). Then, \((u_i, v_j)(u_i, v_p)\) and \((u_r, v_s)(u_r, v_q)\) are two nonadjacent edges of \(G_1 \Box G_2\).

Thus in all the cases we have proved that for any two distinct vertices
(\(u_i, v_j\)), (\(u_r, v_s\)) of \(G_1 \square G_2\) there exist two nonadjacent edges \(e_1\) and \(e_2\) of \(G_1 \square G_2\) such that \(e_1\) is incident with \((u_i, v_j)\) and \(e_2\) is incident with \((u_r, v_s)\). Hence \(G_1 \square G_2\) is Hausdorff.

Theorem 12. Let \(G_1\) be any graph and \(G_2\) be a graph with \(\delta(G_2) \geq 3\), then \(G_1 \square G_2\) is Hausdorff.

Proof. Let \((u, v) \in V(G_1 \square G_2)\), then \(u \in V(G_1)\) and \(v \in V(G_2)\). Since \(\delta(G_2) \geq 3\), \(v\) is adjacent to at least three vertices, say \(v_1, v_2, v_3\) of \(G_2\). Then the vertex \((u, v)\) is adjacent to the vertices \((u, v_1), (u, v_2)\) and \((u, v_3)\) of \(G_1 \square G_2\). Therefore, \(\deg(u, v) \geq 3\). Since \((u, v)\) is an arbitrary vertex of \(G_1 \square G_2\), \(\delta(G_1 \square G_2) \geq 3\). Hence by Theorem 1, \(G_1 \square G_2\) is Hausdorff.

Proposition 13. Let \(G_1\) be an empty graph and \(G_2\) be a Hausdorff graph then \(G_1 \square G_2\) is Hausdorff.

Proof. Let \(\{u_1, u_2, \ldots, u_n\}\) and \(\{v_1, v_2, \ldots, v_m\}\) be the vertex sets of \(G_1\) and \(G_2\) respectively. For \(i = 1, 2, \ldots, n\), let \(H_i = \{(u_i, v_j); j = 1, 2, \ldots, m\}\). Then \(G_1 \square G_2 = \bigcup_{i=1}^n H_i\). Note that for every \(i\), \(H_i\) is isomorphic to \(G_2\) and hence Hausdorff. Therefore, the graph \(G_1 \square G_2\), being the union of Hausdorff graphs, is Hausdorff.

Remark 14. Since \(G_1 \square G_2 = G_2 \square G_1\), Propositions 9, 13 and Theorems 7,11,12 are still true even if we interchange the roles of \(G_1\) and \(G_2\).

Theorem 15. Cartesian product of two Hausdorff graphs is Hausdorff.

Proof. Let \(G_1\) and \(G_2\) be two Hausdorff graphs. Then, for \(i = 1, 2\), \(G_i = K_i \cup H_i\), where \(V(K_i)\) is the set all isolated vertices of \(G_i\) and \(V(H_i)\) is the set of all non-isolated vertices of \(G_i\). Hence \(G_1 \square G_2 = (K_1 \square K_2) \cup (K_1 \square H_2) \cup (H_1 \square K_2) \cup (H_1 \square H_2)\). By Proposition 13, \((K_1 \square K_2), (K_1 \square H_2)\) and \((H_1 \square K_2)\) are Hausdorff. By Theorem 7, \(H_1 \square H_2\) is Hausdorff. Therefore, \(G_1 \square G_2\) is Hausdorff.
Another interesting graph product that we can consider is that of the tensor product. Let us start with the tensor product of K_2 and K_3. Though both K_2 and K_3 are non-Hausdorff their tensor product seems to be Hausdorff.

Note that the graph K_2 is free from isolated vertices and the graph K_3 has minimum degree 2. Lemma 16 shows that this result is true in general. That is, if $\delta(G_1) \geq 1$ and $\delta(G_2) = 0$, then $G_1 \times G_2$ is Hausdorff.

Lemma 16. Let G_1 be a graph with no isolated vertices and G_2 be a graph with $\delta(G_2) = 2$. Then $G_1 \times G_2$ is Hausdorff.

Proof. Let $V(G_1) = \{u_i, i = 1, 2, \ldots m\}$ and $V(G_2) = \{v_j, j = 1, 2, \ldots n\}$. Then, $V(G_1 \times G_2) = \{(u_i, v_j); i = 1, 2, \ldots m, j = 1, 2, \ldots n\}$. Consider two distinct vertices (u_i, v_j) and (u_r, v_s) of $G_1 \times G_2$. Since G_1 contains no isolated vertices, the vertex u_i is adjacent to at least one vertex of G_1.

Case 1. u_i and u_r are adjacent vertices of G_1.

Since $\delta(G_2) = 2$, there exists a vertex v_p distinct from v_s such that v_p is adjacent to v_j. Similarly there exists a vertex v_q distinct from v_j such that v_q is adjacent to v_s. Then $(u_i, v_j)(u_r, v_p)$ and $(u_r, v_s)(u_i, v_q)$ are two nonadjacent edges of $G_1 \times G_2$ incident with (u_i, v_j) and (u_r, v_s) respectively.

Case 2. u_i and u_r are nonadjacent vertices of G_1.

Choose vertices u_p and u_q of G_1, which are adjacent to the vertices u_i and u_r respectively. If v_j and v_s are adjacent in G_2, then, the edges $(u_i, v_j)(u_p, v_s)$ and $(u_r, v_s)(u_q, v_j)$ are two nonadjacent edges of $G_1 \times G_2$ incident with (u_i, v_j) and (u_r, v_s) respectively. Otherwise, since $\delta(G_2) = 2$, we can choose two distinct vertices v_p and v_q of G_2 such that v_p is adjacent to v_j and v_q is adjacent to v_s. Then, the edges $(u_i, v_j)(u_p, v_p)$ and $(u_r, v_s)(u_q, v_q)$ are two nonadjacent edges of $G_1 \times G_2$ incident with (u_i, v_j) and (u_r, v_s) respectively.
Theorem 17 shows that the restriction $\delta(G_2) = 2$ on the second graph G_2 can be withdrawn.

Theorem 17. Let G_1 be a graph with no isolated vertices and G_2 be a graph with $\delta(G_2) \geq 2$. Then, the tensor product $G_1 \times G_2$ of G_1 and G_2 is Hausdroff.

Proof. If $\delta(G_2) = 2$, then the proof follows from Lemma 16. Now suppose $\delta(G_2) \geq 3$. Let (u, v) be a vertex of $G_1 \times G_2$. Since G_1 is a graph with no isolated vertices, the vertex u is adjacent to at least one vertex say w of G_1. Since $\delta(G_2) \geq 3$, the vertex v is adjacent to at least three vertices say v_1, v_2, v_3 of G_2. Then the vertex (u, v) is adjacent to the vertices $(w, v_1), (w, v_2), (w, v_3)$ of $G_1 \times G_2$. Therefore, $\deg(u, v) \geq 3$. Since (u, v) is arbitrary, $\delta(G_1 \times G_2) \geq 3$. Hence by Theorem 1, $G_1 \times G_2$ is Hausdroff.

Lemma 18. If one of G_1 and G_2 be empty graphs then, $G_1 \times G_2$ is Hausdroff.

Proof. Let one of G_1 and G_2 be empty graphs then, $G_1 \times G_2$ is an empty graph. This implies $G_1 \times G_2$ is Hausdroff.

Theorem 19. Let G_1 be any graph and G_2 be a graph with $\delta(G_2) \geq 2$, then $G_1 \times G_2$ is Hausdroff.

Proof. We can write $G_1 = K \cup H$, where $V(K)$ is the set all isolated vertices of G_1 and $V(H)$ is the set all non-isolated vertices of G_1. Then $G_1 \times G_2 = (K \times G_2) \cup (H \times G_2)$. Since K is empty by Lemma 18, $K \times G_1$ is Hausdroff. By Theorem 17, $H \times G_2$ is Hausdroff. Therefore, the graph $G_1 \times G_2$, being the union of Hausdroff graphs, is Hausdroff.

Corollary 20. For every $n, m \geq 3$, $C_n \times C_m$ is Hausdroff.

Theorem 21. Let G_1 and G_2 be two graphs such that both G_1 and G_2 contain at least one pendant vertex. Then $G_1 \times G_2$ can never be Hausdroff.

Proof. Let u be a pendant vertex with pendant edge ux in G_1 and let v be a pendant vertex with uy as pendant edge in G_2. Then $(u, v)(x, y)$ is a pendant edge in $G_1 \times G_2$. Therefore, $G_1 \times G_2$ is not Hausdroff.

Theorem 22. Tensor product of any two Hausdroff graphs is Hausdroff.
Proof. Let G_1 and G_2 be the given Hausdroff graphs. For $i = 1, 2$, we write $G_i = K_i \cup H_i$, where $V(K_i)$ is the set all isolated vertices of G_i and $V(H_i)$ is the set all non-isolated vertices of G_i. Then $G_1 \times G_2 = (K_1 \times K_2) \cup (K_1 \times H_2) \cup (H_1 \times K_2) \cup (H_1 \times H_2)$. Since both K_1 and K_2 are empty graphs by Lemma 18, $K_1 \times K_2$, $K_1 \times H_2$, $H_1 \times K_2$ are Hausdroff. By Theorem 19, $H_1 \times H_2$ is Hausdroff. Therefore, the graph $G_1 \times G_2$, being the finite union of Hausdroff graphs, is Hausdroff.

4. Conclusion

In this paper we have discussed conditions under which Cartesian product of two graphs is Hausdroff. It is identified that Cartesian product of two Hausdroff Graphs is Hausdroff. Conditions under which Tensor product of two graphs become Hausdroff have been formulated. There are many unsolved problems in this area which are yet to be settled.

Acknowledgments

The first author acknowledge the financial support by University Grants Commission of India, under Faculty Development Programme and from CSIR.

References
