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ON LOCAL SPECTRAL PROPERTIES

OF λ-COMMUTING OPERATORS
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Abstract: Let B(X) be the Banach algebra of all bounded operators on a complex Banach

space X, for a scalar λ ∈ C two operators T, S ∈ B(X) are said to λ-commute if TS = λST .

If it holds, we show that TS and ST have many basic local spectral properties in common.
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1. Introduction

Throughout we will denote by B(X) the Banach algebra of all linear operators
on the complex Banach space X. For T ∈ B(X) we denote by σ(T ), N(T ) and
R(T ) the spectrum, the kernel and the range of T respectively.

Recently many mathematicians have been attracted by the question: under
what conditions if T, S ∈ B(X) there is λ ∈ C such that TS = λST ?
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It is well known that if X is a Hilbert space and T λ-commutes with a
compact operator, then T has a non-trivial hyperinvariant subspace [5].

In [2] Brooke, Busch and Pearson showed that for T, S ∈ B(X) satisfying
TS = λST then σ(TS) = σ(ST ) = λσ(TS). If TS is not quasinilpotent then
necessary |λ| = 1, and if T or S is self-adjoint then λ ∈ R. At 2004, Yang and
Du gave a simple proofs and generalizations of this results, particulary they
proved that if TS = λST then TS is bounded below if and only if both T and
S are bounded below [9, theorem 2.5]. Schmoeger in [8] generalized this results
to hermitian or normal elements of a complex Banach algebra.

Cho, Duggal, Harte and ôta generalized some Schmoeger’s results and they
gave the new characterization of a commutativity of Banach space operators
[3, theorem 2.4 and theorem 2.2].

In [4] where X is a complex Hilbert space, Conway and Prajitura charac-
terized the closure and the interior of the set of operators that λ-commute with
a compact operator.

At 2011, Zhang, Ohwada and Cho have studied the properties of Hilbert
space operators that λ-commute with a paranormal operator [10, theorem 1
and theorem 3].

In the present paper, our aim is to study some properties and concepts in
local spectral theory for Banach space operators satisfying the λ-commutativity.

For T ∈ B(X), let the following notations, for detail see [1], [6], and [7]:
The spectrum of T

σ(T ) = {λ ∈ C : T − λ is not invertible},

The left spectrum

σl(T ) = {λ ∈ C : T − λ is not left invertible},

The right spectrum

σr(T ) = {λ ∈ C : T − λ is not The right spectrum },

The left or right spectrum

σlr(T ) = {λ ∈ C : T − λ is not left or right inevertible},

The ponctual spectrum

σp(T ) = {λ ∈ C : T − λ is not injective},

The surjective spectrum

σsu(T ) = {λ ∈ C : T − λ is not surjective},
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The compression spectrum

σcom(T ) = {λ ∈ C : R(T − λ) is not dense inX},

The approximate point spectrum

σap(T ) = {λ ∈ C; ∃(xn)n∈N of X such that ‖xn‖ = 1 and (T − λ)xn → 0}.

Recall that T has the single-valued extension property (SVEP) at λ ∈ C

if for any neighborhood Uλ of λ the only analytical function of f : Uλ → X
satisfying (T − µ)f(µ) = x ∀µ ∈ Uλ is the null function f ≡ 0.

We set

S(T ) = {λ ∈ C : T does not have SVEP at λ}.

We say that T has SVEP if S(T ) = ∅.
The local resolvent ρT (x) of T at x ∈ X is defined as the set of all λ ∈ C

such that there exists a neighborhood Uλ of λ and f : Uλ → X such that
(T − µ)f(µ) = x for all µ ∈ Uλ.

The local spectrum σT (x) of T at x is defined as σT (x) = C \ ρT (x).
Note that the local analytical solution of the equation given in the definition

of the local resolvent will be unique if T has SVEP [6].

For any subset F of C, The local spectral space of T associated with F is
defined by

XT (F ) = {x ∈ X : σT (x) ⊂ F}.

Obviously XT (F ) is a hyper-invariant space by T , but not necessarily closed.

Recall that T has the property of Dunford (C) if XT (F ) is a closed set for
every closed set F of C.

We denote by O(U,X) the Frchet algebra of all analytic functions from the
open set U to X with the topology of uniform convergence on the compact
subset in U .

We say that T satisfies the Bishop’s property (β) at λ ∈ C if there exists
r > 0 , for every open set U ⊂ D(λ, r) and for any sequence {fn}

∞
n=1 ⊂ O(U,X)

such that limn→∞(T − µ)fn(µ) = 0 in O(U,X), then limn→∞ fn(µ) = 0 in
O(U,X).

σβ(T ) = {λ ∈ C : T does not satisfy the property (β)}.

T is said satisfy the property (β) if σβ(T ) = ∅
We say that T has the decomposition property (δ) if T ∗ satisfies property

(β).
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T is said decomposable on Foias’s sense if and only if T satisfies (β) and
(δ).

We have the following implications: Property (β) ⇒ Dunford property (C)
⇒ SVEP.

For every closed set F of C, the global spectral subset XT (F ) is defined as
the set of all point x ∈ X such that there exists an analytic function f : C\F →
X satisfying (T − λ)f(λ) = x for all λ ∈ C \ F .

Clearly XT (F ) is a hyper invariant subspace of T and XT (F ) ⊂ XT (F ). In
addition we obtain the equality XT (F ) = XT (F ) for every closed set F of C
when T has SVEP.

The algebraic core C(T ) of T is the largest subspace M of X satisfying
T (M) = M . In another way,

C(T ) = {x ∈ X : ∃(xn)n≥0 ⊂ X ; x0 = x, Txn = xn−1 ∀n ∈ N
∗}.

and the analytical core K(T ) of T is the set

K(T ) = {x ∈ X : ∃(xn)n≥0 ⊂ X, and ε > 0 ; x0 = x,

Txn = xn−1, ‖xn‖ ≤ εn‖x‖,∀n ∈ N
∗}.

K(T ) is the largest subspace of X satisfying T (M) = M and it can also be
shown that

K(T ) = XT (C \ {0}) = {x ∈ X : 0 ∈ ρT (x)}.

Next, we need the following notations and concepts in Fredholm theory, see
[1] and [7].

We denote by N∞(T ) =
⋃

n∈NN(T n) the hyper-kernel of T , R∞(T ) =⋂
n∈NR(T n) the hyper-range of T and both the deficiency indices α(T ) =

dimN(T ) and β(T ) = dimR(T ).
the ascent, the descent and the index of T are respectively

asc(T ) = inf{n ∈ N : N(T n) = N(T n+1)},

des(T ) = inf{n ∈ N : R(T n) = R(T n+1)},

ind(T ) = α(T ) − β(T ).

The ascent spectrum and the descent spectrum are the sets

σasc(T ) = {λ ∈ C : asc(T − λ) = ∞},

σdes(T ) = {λ ∈ C : des(T − λ) = ∞}.
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Let the sets of Fredholm operators, upper semi-Fredholm, lower semi-Fred-
holm, left semi-Fredholm , right semi-Fredholm, Weyl, upper semi-Weyl, lower
semi-Weyl, left semi Weyl, right semi-Weyl, Browder, upper semi-Browder,
lower semi-Browder, left semi-Browder and right semi-Browder respectively
with their associated spectrums:

Φ(X) := {T ∈ B(X) : α(T ) < ∞ and β(T ) < ∞}, σe(T ),

Φ+(X) := {T ∈ B(X) : α(T ) < ∞ and R(T ) is closed, σSF+(T ),

Φ−(X) := {T ∈ B(X) : β(T ) < ∞}, σSF
−

(T ),

Φl(X) := {T ∈ B(X) : α(T ) < ∞ and R(T )

is closed and admits an complemented in X}, σle(T ),

Φr(X) := {T ∈ B(X) : N(T )

admits an complemented in X and β(T ) < ∞}, σre(T ),

Φ0(X) := {T ∈ Φ(X) : ind(T ) = 0}, σw(T ),

Φ−
+(X) := {T ∈ Φ+(X) : ind(T ) ≤ 0}, σaw(T ),

Φ+
−(X) := {T ∈ Φ−(X) : ind(T ) ≥ 0}, σsw(T ),

Φlw(X) := {T ∈ Φl(X) : ind(T )0}, σlw(T ),

Φrw(X) := {T ∈ Φr(X) : ind(T ) ≥ 0}, σrw(T ),

Φb(X) := {T ∈ Φ(X) : asc(T ) = des(T ) < ∞}, σb(T ),

Φab(X) := {T ∈ Φ+(X) : asc(T ) < ∞}, σab(T ),

Φsb(X) := {T ∈ Φ−(X) : des(T ) < ∞}, σsb(T ),

Φlb(X) := {T ∈ Φl(X) : asc(T ) < ∞}, σlb(T ),

Φrb(X) := {T ∈ Φr(X) : des(T ) < ∞}, σrb(T ),

Also we consider the following operators with their associated spectrum:

R1(X) = {T ∈ B(X) : des(T ) < ∞, R(T des(T )) is closed}, σrD(T ),

R2(X) = {T ∈ B(X) : asc(T ) < ∞, R(T des(T )+1) is closed}, σlD(T ),

SF0(T ) = {T ∈ Φ+(X) ∪ Φ−(X) : α(T ) = 0 or β(T ) = 0}, σSF0
(T ),
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D(X) = {T ∈ B(X) : R(T ) is closed and N(T ) ⊂ R∞(T )}, σse(T ),

Recall that T ∈ B(X) ) is Drazin reversible if there is TD ∈ B(X) and some
k ∈ N

TTD = TDT, TDTTD = TD, T k+1TD = T k,

The Drazin spectrum of T is defined by

σD(T ) = {λ ∈ C : T − λ is not Drazin reversible }.

2. Main Results

We begin by the following theorem

Theorem 2.1. Let T, S ∈ B(X) and λ ∈ C
∗ such that

TS = λST.

Then we have :

1. σp(TS) = λσp(ST )

2. σsu(TS) = λσsu(ST )

3. σcom(TS) = λσcom(ST )

4. σap(TS) = λσap(ST )

5. σl(TS) = λσl(ST )

6. σr(TS) = λσr(ST )

Proof. 1. Let λ ∈ C
∗, it is clear that

µ ∈ σp(TS) ⇔ TS − µ is not injective

⇔ λST − µ = λ(ST −
µ

λ
) is not injective

⇔ ST −
µ

λ
is not injective

⇔
µ

λ
∈ σp(ST )

Hence σp(TS) = λσp(ST )
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2. Again if λ ∈ C
∗ then

µ 6∈ σsu(TS) ⇔ TS − µ is surjective

⇔ R(TS − µ) = X

⇔ R(λST − µ) = R(λ(ST −
µ

λ
)) = X

⇔ R(ST −
µ

λ
) = X

⇔
µ

λ
6∈ σsu(ST )

Therefore σsu(TS) = λσsu(ST )

3. Let λ ∈ C
∗ then

µ 6∈ σcom(TS) ⇔ R(TS − µ) is dense in X

⇔ R(TS − µ) = X

⇔ R(λST − µ) = R(λ(ST −
µ

λ
)) = X

⇔ R(ST −
µ

λ
) = X

⇔
µ

λ
6∈ σcom(ST )

This shows that σcom(TS) = λσcom(ST )

4. Let µ ∈ σap(TS) then

µ ∈ σap(TS) ⇔∃(xn)n∈N ⊂ X such that ‖xn‖ = 1 and

lim
n−→+∞

(TS − µ)xn = 0

⇔∃(xn)n∈N ⊂ X such that ‖xn‖ = 1 and

lim
n−→+∞

λ(ST −
µ

λ
)xn = 0

⇔∃(xn)n∈N ⊂ X such that ‖xn‖ = 1 and

lim
n−→+∞

(ST −
µ

λ
)xn = 0

⇔
µ

λ
∈ σap(ST ).

Hence σap(TS) = λσap(ST )

5. Let λ ∈ C
∗, then

µ 6∈ σl(TS) ⇔ TS − µ is left inversible
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⇔ ∃ T1 ∈ B(X) such that

T1(TS − µ) = I

⇔ ∃ T1 ∈ B(X) such that

T1(λST − µ) = (λT1)(ST −
µ

λ
) = I

⇔ ∃ T ′
1 ∈ B(X) such that

T ′
1(ST −

µ

λ
) = I with T ′

1 = λT1

⇔ ST −
µ

λ
is also left inversible

⇔
µ

λ
6∈ σl(ST )

Hence σl(TS) = λσl(ST )

6. Similarly.

We obtain the following corollary, see [2, lemma 2.1].

Corollary 2.1. Let T, S ∈ B(X) and λ ∈ C
∗ such that

TS = λST.

Then :
σ(TS) = λσ(ST ).

Proof. Using theorem 2.1 we have

σ(TS) = σl(TS) ∩ σr(TS)

= [λσl(ST )] ∩ [λσr(ST )]

= λ[σl(ST ) ∩ σr(ST )]

= λσ(ST ).

We now establish the relationship between the local spectrum and β-spectrum
for operators that λ-commute.

Theorem 2.2. Let T, S ∈ B(X), µ ∈ C and λ ∈ C
∗ such that

TS = λST.

Then we have:
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1. σTS(x) = λσST (x)

2. σβ(TS) = λσβ(ST )

3. TS has SVEP at µ if and only if ST has it at µ
λ
. Otherwise we have

S(TS) = λS(ST )

4. TS has SVEP if and only if ST has it

Proof. 1. Suppose that TS = λST and µ0 /∈ σTS(x), then there exists a
neighborhood U of µ0 and f ∈ O(U,X) such that

(TS − µ)f(µ) = x for all µ ∈ U

Since TS = λST , then

(TS − µ)f(µ) = x for all x ∈ U ⇔ (λST − µ)f(µ) = x for all µ ∈ U

⇔ λ(ST −
µ

λ
)f(µ) = x for all µ ∈ U

⇔ (ST −
µ

λ
)[λf(µ)] = x for all µ ∈ U

We define the following two bijections:
S : X → X with S(x) = λx and s : C → C with s(z) = λz, then

λf(µ) = (S ◦ f)(µ) = (S ◦ f)(s(
µ

λ
)) for all µ ∈ U.

Hence λf(µ) = (S ◦ f ◦ s)(µ
λ
)

And Since µ course the neighborhood U of µ0 then µ
λ

also course the
neighborhood V of µ0

λ
, hence by replacing λf(µ) by (S ◦ f ◦ s)(µ

λ
) and by

noting g = S ◦ f ◦ s wich is analytic on V , we obtain:

(TS − µ)f(µ) = x for all x ∈ U ⇔ (ST −
µ

λ
)[λf(µ)] = x for all µ ∈ U

⇔ (ST −
µ

λ
)[S ◦ f ◦ s)(

µ

λ
)] = x

for all µ ∈ U

⇔ (ST − µ′)g(µ′) = x for all µ′ ∈ V

Finally µ0

λ
/∈ σST (x) and therefore σTS(x) = λσST (x)

2. Let µ0 ∈ σβ(TS), then there exists r > 0 for every open set U ⊂ D(µ0, r)
and for all sequence {fn}

∞
n=1 ⊂ O(U,X) such that

lim
n→∞

(TS − µ)fn(µ) = 0 ⇒ lim
n→∞

fn(µ) = 0 inO(U,X)
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To show that µ0

λ
∈ σβ(ST ), let r′ > 0, V ⊂ D(µ0

λ
, r′) and (gn)n∈N in

O(U,X) such that limn→∞(ST − µ′)gn(µ
′) = 0. We have

lim
n→∞

(ST − µ′)gn(µ
′) = 0 in O(V,X)

⇔ lim
n→∞

λ(ST − µ′)gn(µ
′) = 0 in O(V,X)

⇔ lim
n→∞

λ(ST − µ′)gn(µ
′) = 0 in O(V,X)

⇔ lim
n→∞

(λST − λµ′)gn(µ
′) = 0 in O(V,X)

⇔ lim
n→∞

(TS − λµ′)gn(
1

λ
λµ′) = 0 in O(V,X)

⇔ lim
n→∞

(TS − λµ′)[gn ◦ s−1](λµ′) = 0 inO(V,X)

⇔ µ = λµ′ lim
n→∞

(TS − µ)[gn ◦ s−1](µ) = 0

⇒ lim
n→∞

gn ◦ s−1(µ) = 0 in O(U,X)

⇒ lim
n→∞

gn(µ
′) = 0 in O(V,X)

Hence µ0

λ
∈ σβ(ST ). Similarly we can show the other inclusion.

Finally σβ(TS) = λσβ(ST )

3. By the same argument as 2.

4. As S(TS) = λS(ST ) Then:

TS has SV EP ⇔ S(TS) = ∅ ⇔ S(ST ) = ∅.

Lemma 2.1. Let T, S ∈ B(X) and λ ∈ C
∗ such that

TS = λST.

We have :

1. R(TS) = R(ST ), for all µ ∈ C R(TS − µ) = R(ST − µ
λ
)

2. N(TS) = N(ST ), for all µ ∈ C N(TS − µ) = N(ST − µ
λ
)

Proof. 1. ⇒) Let y ∈ R(TS) then there exists x ∈ X such that TS(x) =
y

TS(x) = y ⇔ λST (x) = y
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⇔ ST (λx) = y

⇔ ST (x′) = y with x′ = λx

Where y ∈ R(ST ).
⇐) Similarly we show the reverse inclusion. Finally R(TS) = R(ST )

2. Let x ∈ N(TS), then

x ∈ N(TS) ⇔ TS(x) = 0

⇔ λST (x) = 0

⇔ ST (x) = 0 ∀λ ∈ C
∗

⇔ x ∈ N(ST )

we then conclude that N(TS) = N(ST ).

As a straightforward consequence of Lemma 2.1 we easily obtain the fol-
lowing corollary

Corollary 2.2. Let T, S ∈ B(X) and λ ∈ C
∗ such that

TS = λST.

Then we have for all n ∈ N
∗:

1. R((TS)n) = R((ST )n) and for all µ ∈ C R[(TS − µ)n] = R[(ST − µ
λ
)n]

2. N((TS)n) = N((ST )n) and for all µ ∈ C N [(TS − µ)n] = N [(ST − µ
λ
)n]

3. α(TS) = α(ST ), β(TS) = β(ST ) and ind(TS) = ind(ST )

4. For all µ ∈ C α(TS − µ) = α(ST − µ
λ
), β(TS − µ) = β(ST − µ

λ
) and

ind(TS − µ) = ind(ST − µ
λ
)

5. asc(TS) = asc(ST ) and des(TS) = des(ST )

6. For all µ ∈ Casc(TS−µ) = asc(ST− µ
λ
) and des(TS−µ) = des(ST−

µ
λ
)

7. R∞(TS) = R∞(ST )

8. For all µ ∈ C R∞(TS − µ) = R∞(ST − µ
λ
)

9. N∞(TS) = N∞(ST )
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10. For all µ ∈ C N∞(TS − µ) = N∞(ST − µ
λ
)

We establish the following theorem, the proof is easily by using corollary
2.2

Theorem 2.3. Let T, S ∈ B(X) and λ ∈ C
∗ such that TS = λST. Then

we have the following equalities :

1. σasc(TS) = λσasc(ST ), σdes(TS) = λσdes(ST )

2. σe(TS) = λσe(ST )

3. σSF+(TS) = λσSF+(ST ), σSF−(TS) = λσSF−(ST )

4. σle(TS) = λσle(ST ), σre(TS) = λσre(ST )

5. σw(TS) = λσw(ST )

6. σaw(TS) = λσaw(ST ), σsw(TS) = λσsw(ST )

7. σlw(TS) = λσlw(ST ), σrw(TS) = λσrw(ST )

8. σb(TS) = λσb(ST )

9. σab(TS) = λσab(ST ), σsb(TS) = λσsb(ST )

10. σlb(TS) = λσlb(ST ), σrb(TS) = λσrb(ST )

11. σse(TS) = λσse(ST )

12. σBF (TS) = λσBF (ST ), σBW (TS) = λσBW (ST )

13. σrD(TS) = λσrD(ST ), σlD(TS) = λσlD(ST )

14. σSF0
(TS) = λσSF0

(ST )

The connection between the Drazin spectrum for operators satisfying the
λ-commutativity is the following

Theorem 2.4. Let T, S ∈ B(X) and λ ∈ C
∗ such that TS = λST. Then

σD(TS) = λσD(ST )
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Proof. Let µ /∈ σD(TS) (*), as TS = λST then we have the following
equivalents :

(∗) ⇔ TS − µ is Drazin invertible

⇔ ∃R ∈ B(X), (TS − µ)R = R(TS − µ), R(TS − µ)R = R

and (TS − µ)n+1R = (TS − µ)n

⇔ (λST − µ)R = R(λST − µ), R(λST − µ)R = R

and (λST − µ)n+1R = (λST − µ)n

⇔ (ST −
µ

λ
)[λR] = [λR](ST −

µ

λ
), [λR](ST −

µ

λ
)R = R,

λn+1(ST −
µ

λ
)n+1R = λn(ST −

µ

λ
)n

⇔ (ST −
µ

λ
)[λR] = [λR](ST −

µ

λ
), [λR](ST −

µ

λ
)[λR] = [λR],

(ST −
µ

λ
)n+1[λR] = (ST −

µ

λ
)n

⇔ ST −
µ

λ
is Drazin invertible

⇔
µ

λ
/∈ σD(ST ).

Using the previous results we obtain the following properties on local spec-
tral space, global spectral, analytical core and the property (C) for operators
satisfying the λ-commutativity.

Theorem 2.5. Let T, S ∈ B(X) and λ ∈ C
∗ such that TS = λST. Then

1. XTS(F ) = XST (
F
λ
) and XT (F ) = XT (

F
λ
)

2. TS has the property (C) if and only if ST also has the property (C)

3. K(TS) = K(ST )
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