VAGUE MAGNIFIED TRANSLATION IN Γ-SEMIRINGS

Y. Bhargavi¹ §, T. Eswarlal²
¹,²Department of Mathematics
K.L. University
Guntur, India

Abstract: In this paper, we introduce and study the concept of vague magnified translation of a vague set in Γ-semiring and we characterized vague Γ-semiring, left(resp. right) vague ideal, vague bi-ideal, vague quasi ideal in terms of vague magnified translation.

AMS Subject Classification: 08A72, 20N25, 03E72
Key Words: vague Γ-semiring, vague magnified translation, left (resp. right) vague ideal, vague bi-ideal, vague quasi ideal

1. Introduction

The concept of vague set theory was introduced by Gau W.L and Buehrer D.J[4] in 1993, as a improvement of the theory of fuzzy sets by Zadeh L.A[9] in approximating the real life situations. The idea of fuzzy magnified translation has been introduced by Majumder S.K and Sardar S.K[7]. In 1995, M.K.Rao[6] introduced the notion of Γ-semiring as a generalization of Γ-ring as well as semiring and studied the concepts of Γ-semirings and its sub Γ-semirings with a left(resp. right) unity. Moreover the concept of Γ-semiring not only generalizes the concepts of semiring and Γ-ring but also the notion of ternary semiring. In this paper we introduce and study the concept of vague magnified translation of a
vague set in Γ-semiring with membership and non membership functions taking values in unit interval of real numbers and established some of the properties. Further we prove that, if A is a left(resp. right) vague ideal of a Γ-semiring R then the vague magnified translation $A^c_{\beta\alpha}$ of A is a vague bi-ideal of R and if A is a left(resp. right) vague ideal of a left(resp. right) zero Γ-semiring R, then $A^c_{\beta\alpha}$ is a constant vague set.

Throughout this paper, R stands for Γ-semiring. That is for two additive commutative semigroups R and Γ and there exists a mapping $R \times \Gamma \times R \to R$ image to be denoted by aab for $a, b \in R$ and $\alpha, \beta \in \Gamma$ satisfying the following conditions.

1. $a(b + c) = aab + aac$
2. $(a + b)ac = aac + bac$

1 Correspondence author
3. $a(\alpha + \beta)c = aac + a\beta c$
4. $aa(b\beta c) = (aab)\beta c, \forall a, b, c \in R; \alpha, \beta \in \Gamma$.

Also, δ stands for the characteristic set of R.

2. Preliminaries

In this section we recall some of the fundamental concepts and definitions, which are necessary for this paper.

Definition 2.1: A Γ-semiring R is called left-zero(resp. right-zero) Γ-semiring if $x\gamma y = x (\text{resp. } x\gamma y = y), \forall x, y \in R; \gamma \in \Gamma$.

Definition 2.2: A Γ-semiring R is said to be regular if for all $x \in R$, there exists $a \in R$ and $\alpha, \beta \in \Gamma$ such that $x = x\alpha a\beta x$.

Definition 2.3: A Γ-semiring R is said to be intra-regular if for all $x \in R$, there exists $a, b \in R$ and $\alpha, \beta, \gamma \in \Gamma$ such that $x = aax\beta x\gamma b$.

Definition 2.4: Let μ be a non-empty fuzzy subset of X and $\alpha \in [0, 1 - \sup \{\mu(x) / x \in X\}]$ and $\beta \in [0, 1]$. A mapping $\mu^c_{\beta\alpha} : X \to [0, 1]$ is called a fuzzy magnified translation of μ if $\mu^c_{\beta\alpha}(x) = \beta \mu(x) + \alpha, \forall x \in X$.

Definition 2.5: A vague set A in the universe of discourse U is a pair (t_A, f_A), where $t_A : U \to [0, 1]$ and $f_A : U \to [0, 1]$ are mappings such that $t_A(u) + f_A(u) \leq 1, \forall u \in U$. The functions t_A and f_A are called true membership function and false membership function respectively.

Definition 2.6: A vague set A of a Γ-semiring R is called a constant vague set if $V_A(x) = V_A(y), \forall x, y \in R$.

Definition 2.7[1]: A vague set $A = (t_A, f_A)$ on R is said to be vague Γ-semiring
if the following conditions are true:

For all \(x, y \in R; \gamma \in \Gamma \),
\[
V_A(x + y) \geq \min\{V_A(x), V_A(y)\} \quad \text{and} \quad V_A(x\gamma y) \geq \min\{V_A(x), V_A(y)\}
\]
i.e.,

(i). \(t_A(x + y) \geq \min\{t_A(x), t_A(y)\} \),
(ii) \(t_A(x\gamma y) \geq \min\{t_A(x), t_A(y)\} \).
\[
1 - f_A(x + y) \geq \min\{1 - f_A(x), 1 - f_A(y)\} \quad \text{and} \quad 1 - f_A(x\gamma y) \geq \min\{1 - f_A(x), 1 - f_A(y)\}.
\]

Definition 2.8[2]: A vague set \(A = (t_A, f_A) \) on \(R \) is said to be left(resp. right) vague ideal of \(R \) if the following conditions are true:

For all \(x, y \in R; \gamma \in \Gamma \),
\[
V_A(x + y) \geq \min\{V_A(x), V_A(y)\} \quad \text{and} \quad V_A(x\gamma y) \geq V_A(y) \quad \text{(resp. } V_A(x\gamma y) \geq V_A(x)\text{)}
\]
i.e.,

(i). \(t_A(x + y) \geq \min\{t_A(x), t_A(y)\} \),
(ii) \(t_A(x\gamma y) \geq t_A(y)(t_A(x\gamma y) \geq t_A(x)) \),
\[
1 - f_A(x + y) \geq \min\{1 - f_A(x), 1 - f_A(y)\} \quad \text{and} \quad 1 - f_A(x\gamma y) \geq 1 - f_A(y) \quad \text{(resp. } 1 - f_A(x\gamma y) \geq 1 - f_A(x)\text{)}.
\]

Definition 2.9[3]: A vague \(\Gamma \)-semiring \(A = (t_A, f_A) \) of \(R \) is said to be vague bi-ideal of \(R \) if for all \(x, y, z \in R; \alpha, \beta \in \Gamma \),
\[
V_A(x\alpha y\beta z) \geq \min\{V_A(x), V_A(z)\}
\]
i.e.,
\[
t_A(x\alpha y\beta z) \geq \min\{t_A(x), t_A(z)\},
\]
\[
1 - f_A(x\alpha y\beta z) \geq \min\{1 - f_A(x), 1 - f_A(z)\}.
\]

Definition 2.10[3]: A vague set \(A = (t_A, f_A) \) of \(R \) is said to be vague quasi ideal of \(R \) if for all \(x, y \in R \),
1. \(V_A(x + y) \geq \min\{V_A(x), V_A(y)\} \)
2. \((A\Gamma\delta) \cap (\delta\Gamma A) \subseteq A\), where \(\delta \) is a vague characteristic set of \(R \).

3. Vague Magnified Translation of a Vague set

We introduce the concept of vague magnified translation of a vague set in \(\Gamma \)-semiring. We prove that, if \(A \) is a left(resp. right) vague ideal of a \(\Gamma \)-semiring \(R \) then the vague magnified translation \(A_{\delta\alpha}^\gamma \) of \(A \) is a vague bi-ideal of \(R \) and if \(A \) is a left(resp. right) vague ideal of a left(resp. right) zero \(\Gamma \)-semiring \(R \), then \(A_{\delta\alpha}^\gamma \) is a constant vague set.
We begin with the following.

Definition 3.1: Let A be a non-empty vague set of R and $\alpha \in [0, 1 - \sup\{t_A(x) + f_A(x)/ x \in R\}]$ and $\beta \in [0, 1]$. The vague magnified translation of A, $A^c_{\beta \alpha}$ is a pair $(t_{A^c_{\beta \alpha}}, f_{A^c_{\beta \alpha}})$, where $t_{A^c_{\beta \alpha}} : R \rightarrow [0, 1]$ and $f_{A^c_{\beta \alpha}} : R \rightarrow [0, 1]$ are mappings such that $t_{A^c_{\beta \alpha}}(x) = \beta t_A(x) + \alpha$ and $f_{A^c_{\beta \alpha}}(x) = \beta f_A(x) - \alpha$, $\forall x \in R$.

Verification 3.2: Vague magnified translation is also a vague set.

Let $A = (t_A, f_A)$ be a vague set of R.

Let $\alpha \in [0, 1 - \sup \{t_A(x) + f_A(x)/ x \in R\}]$ and $\beta \in [0, 1]$.

The vague magnified translation of A is $A^c_{\beta \alpha} = (t_{A^c_{\beta \alpha}}, f_{A^c_{\beta \alpha}})$.

Let $x \in R$.

Now, $t_{A^c_{\beta \alpha}}(x) + f_{A^c_{\beta \alpha}}(x) = \beta t_A(x) + \alpha + \beta f_A(x) - \alpha$

$= \beta [t_A(x) + f_A(x)] \leq 1$.

Thus $A^c_{\beta \alpha}$ is a vague set.

Example 3.3: Let R be the set of natural numbers including zero and Γ be the set of positive even integers.

Define $a \gamma b = a \cdot \gamma \cdot b$, where \('\cdot\)' is the usual multiplication on R, for all $a, b \in R; \gamma \in \Gamma$.

Therefore R is a Γ-semiring.

Let $A = (t_A, f_A)$, where $t_A : R \rightarrow [0, 1]$ and $f_A : R \rightarrow [0, 1]$ such that

$t_A(x) = \begin{cases}
0.8 & \text{if } x = 0 \\
0.6 & \text{if } x \text{ is even} \\
0.4 & \text{if } x \text{ is odd}
\end{cases}$

and $f_A(x) = \begin{cases}
0.2 & \text{if } x = 0 \\
0.3 & \text{if } x \text{ is even} \\
0.5 & \text{if } x \text{ is odd}
\end{cases}$

Therefore A is a vague set.

Now, $A^c_{\beta \alpha} = (t_{A^c_{\beta \alpha}}, f_{A^c_{\beta \alpha}})$, where $\beta \in [0, 1]$ and $\alpha \in [0, 1 - \sup\{1, 0.9, 0.9\}] = [0, 1-1] = 0$.

put $\beta = 0.4$

Then

$t_{A^c_{\beta \alpha}}(x) = \begin{cases}
0.32 & \text{if } x = 0 \\
0.24 & \text{if } x \text{ is even} \\
0.16 & \text{if } x \text{ is odd}
\end{cases}$

and $f_{A^c_{\beta \alpha}}(x) = \begin{cases}
0.08 & \text{if } x = 0 \\
0.12 & \text{if } x \text{ is even} \\
0.2 & \text{if } x \text{ is odd}
\end{cases}$

Therefore $A^c_{\beta \alpha} = (t_{A^c_{\beta \alpha}}, f_{A^c_{\beta \alpha}})$ is a vague set.

Theorem 3.4: Let $A = (t_A, f_A)$ and $B = (t_B, f_B)$ be two vague sets of R. Then
2. proof of 2 follows from 1.

\[f_{(A \cap B)}_{\beta \alpha} (x) = \beta f_{A \cap B}(x) - \alpha \]
\[= \beta \max \{f_A(x), f_B(x)\} - \alpha \]
\[= \max \{\beta f_A(x) - \alpha, \beta f_B(x) - \alpha\} \]
\[= \max \{f_{A_{\beta \alpha}}(x), f_{B_{\beta \alpha}}(x)\} \]
\[= f_{A_{\beta \alpha} \cap B_{\beta \alpha}}(x). \]
Hence \((A \cap B)_{\beta \alpha} = A_{\beta \alpha} \cap B_{\beta \alpha}.\)

2. proof of 2 follows from 1. \(\square\)

Theorem 3.5: Let \(A = (t_A, f_A)\) be a vague set of \(R\). Then \(A\) is a vague \(\Gamma\)-semiring of \(R\) if and only if the vague magnified translation of \(A, A_{\beta \alpha}^e\) is vague \(\Gamma\)-semiring of \(R\).

Proof. Suppose \(A\) is a vague \(\Gamma\)-semiring of \(R\).
Let \(x, y \in R; \gamma \in \Gamma.\)
Now, \(t_{A_{\beta \alpha}}^e (x + y) = \beta t_A(x + y) + \alpha \geq \beta \min \{t_A(x), t_A(y)\} + \alpha = \min \{\beta t_A(x) + \alpha, \beta t_A(y) + \alpha\} \}
\[= \min \{t_{A_{\beta \alpha}}^e (x), t_{A_{\beta \alpha}}^e (y)\} \]
and
\[f_{A_{\beta \alpha}}^e (x + y) = \beta f_A(x + y) - \alpha \leq \beta \max \{f_A(x), f_A(y)\} - \alpha = \max \{\beta f_A(x) - \alpha, \beta f_A(y) - \alpha\} = \max \{f_{A_{\beta \alpha}}^e (x), f_{A_{\beta \alpha}}^e (y)\}. \]
Similarly, we can prove that \(t_{A_{\beta \alpha}}^e (x \gamma y) \geq \min \{t_{A_{\beta \alpha}}^e (x), t_{A_{\beta \alpha}}^e (y)\} \}
\[= \min \{f_{A_{\beta \alpha}}^e (x), f_{A_{\beta \alpha}}^e (y)\}. \]
Hence \(A_{\beta \alpha}^e\) is a vague \(\Gamma\)-semiring of \(R.\)
Conversely suppose that \(A_{\beta \alpha}^e\) is a vague \(\Gamma\)-semiring of \(R.\)
Let \(x, y \in R; \gamma \in \Gamma.\)
Now, \(t_A(x + y) = \frac{1}{\beta}(t_{A_{\beta \alpha}}^e (x + y) - \alpha) \geq \frac{1}{\beta}(\min \{t_{A_{\beta \alpha}}^e (x), t_{A_{\beta \alpha}}^e (y)\} - \alpha) = \frac{1}{\beta}(\min \{t_{A_{\beta \alpha}}^e (x) - \alpha, t_{A_{\beta \alpha}}^e (y) - \alpha\} = \min \{\frac{1}{\beta}(t_{A_{\beta \alpha}}^e (x) - \alpha), \frac{1}{\beta}(t_{A_{\beta \alpha}}^e (y) - \alpha)\} = \min \{t_A(x), t_A(y)\} \}
and
\[f_A(x+y) = \frac{1}{\beta}(f_{A_{\beta\alpha}}(x+y)+\alpha) \leq \frac{1}{\beta}(\max\{f_{A_{\beta\alpha}}(x), f_{A_{\beta\alpha}}(y)\} + \alpha) = \frac{1}{\beta}(\max\{f_{A_{\beta\alpha}}(x) + \alpha, f_{A_{\beta\alpha}}(y) + \alpha\}) = \max\{\frac{1}{\beta}(f_{A_{\beta\alpha}}(x) + \alpha), \frac{1}{\beta}(f_{A_{\beta\alpha}}(y) + \alpha)\} = \max\{f_A(x), f_A(y)\}. \]

Similarly we can prove that \(t_A(x\gamma y) \geq \min\{t_A(x), t_A(y)\} \) and \(f_A(x\gamma y) \leq \max\{f_A(x), f_A(y)\}. \)

Hence \(A \) is a vague \(\Gamma \)-semiring of \(R \).

The following two theorems follows theorem:3.5.

Theorem 3.6: Let \(A = (t_A, f_A) \) be a vague set of \(R \). Then \(A \) is a left(resp. right) vague ideal of \(R \) if and only if the vague magnified translation of \(A, A_{\beta\alpha}^c \) is left(right) vague ideal of \(R \).

Theorem 3.7: Let \(A = (t_A, f_A) \) be a vague set of \(R \). Then \(A \) is a vague bi-ideal of \(R \) if and only if the vague magnified translation of \(A, A_{\beta\alpha}^c \) is vague bi-ideal of \(R \).

Theorem 3.8: If \(A \) is a left(resp. right) vague ideal of \(R \), then \(A_{\beta\alpha}^c \) is a vague bi-ideal of \(R \).

Proof. : Let \(x, y, z \in R; \gamma, \eta \in \Gamma \).

1. \(t_{A_{\beta\alpha}^c}(x+y) = \beta t_A(x+y) + \alpha \geq \beta \min\{t_A(x), t_A(y)\} + \alpha = \min\{\beta t_A(x) + \alpha, \beta t_A(y) + \alpha\} = \min\{t_{A_{\beta\alpha}^c}(x), t_{A_{\beta\alpha}^c}(y)\}. \)
2. \(t_{A_{\beta\alpha}^c}(x\gamma y) = \beta t_A(x\gamma y) + \alpha \geq \beta t_A(y) + \alpha \) (resp. \(\beta t_A(x) + \alpha \)) = \(t_{A_{\beta\alpha}^c}(y) \) (resp. \(t_{A_{\beta\alpha}^c}(x) \)) \(\geq \min\{t_{A_{\beta\alpha}^c}(x), t_{A_{\beta\alpha}^c}(y)\}. \)
3. \(t_{A_{\beta\alpha}^c}(x\gamma yz) = \beta t_A(x\gamma yz) + \alpha \geq \beta t_A(z) + \alpha \) (resp. \(\beta t_A(x) + \alpha \)) = \(t_{A_{\beta\alpha}^c}(z) \) (resp. \(t_{A_{\beta\alpha}^c}(x) \)) \(= \min\{t_{A_{\beta\alpha}^c}(x), t_{A_{\beta\alpha}^c}(y)\}. \)

Similarly we can prove \(f_{A_{\beta\alpha}^c}(x+y) \leq \max\{f_{A_{\beta\alpha}^c}(x), f_{A_{\beta\alpha}^c}(y)\} \), \(f_{A_{\beta\alpha}^c}(x\gamma y) \leq \max\{f_{A_{\beta\alpha}^c}(x), f_{A_{\beta\alpha}^c}(y)\} \) and \(f_{A_{\beta\alpha}^c}(x\gamma yz) \leq \max\{f_{A_{\beta\alpha}^c}(x), f_{A_{\beta\alpha}^c}(z)\}. \)

Hence \(A_{\beta\alpha}^c \) is a vague bi-ideal of \(R \).

Theorem 3.9: The vague magnified translation of the intersection of an arbitrary collection of vague bi-ideals of \(R \) is a vague bi-ideal of \(R \) if it is not empty.

Proof. : Let \(A \) be the intersection of arbitrary collection of vague bi-ideals of \(R \).

We have arbitrary collection of vague bi-ideals of \(R \) is a vague bi-ideal of \(R \).

Hence from theorem:3.7, \(A_{\beta\alpha}^c \) is a vague bi-ideal of \(R \).
Hence \(A = f \)

Similarly we can prove \(B \geq \inf = \inf \).

Again \(\min \geq \sup = \sup \).

Now, \(t_A(x_1a_y2p_3x) \geq \sup \{ t_A(x_1a_y2p_3x), t_B(x_5q_y1a_y2x) \} \)

\(= \sup \{ \beta t_A(x_1a_y2p_3x) + \alpha, \beta t_B(x_5q_y1a_y2x) + \alpha \} \)

\(= \sup \{ \min \{ t_A(x) + \alpha, \beta t_B(x) + \alpha \} \} \)

\(= t_A(\alpha) \cap \beta t_B(\alpha) \).

Again \(f_A(\alpha) \cap \beta f_B(x) \)

\(= \inf \{ \max \{ f_A(x_1a_y2p_3x), f_B(x_5q_y1a_y2x) \} \} \)

\(= \inf \{ \max \{ \beta f_A(x_1a_y2p_3x) - \alpha, \beta f_B(x_5q_y1a_y2x) - \alpha \} \} \)

\(= \max \{ f_A(x), f_B(x) \} \)

\(= f_A(\alpha) \cap \beta f_B(x) \).

Hence \(A \geq A \cap B \).

Similarly we can prove \(B \geq A \).

Combining these two, we get \(A(\cap B) \cap (B \cap A) \geq A \cap B \).

\[\square \]

Theorem 3.10: Let \(R \) be a regular and intra regular \(\Gamma \)-semiring. Then
1. \(A \cap B \subseteq A \cap B \)
2. \((A \cap B) \cap (B \cap A) \)

where \(A = (t_A, f_A), B = (t_B, f_B) \) are vague bi-ideals of \(R \).

Proof. : Let \(x \in R \).

Since \(R \) is regular and intra regular, we have

\[x = x_1a_y2x \]

That implies \(x = x_1a_y2x \)

\[= x_1a_y2(p_3xq_4x_5q_1a_y2x) \]

\[= (x_1a_y2p_3x)q_4(x_5q_y1a_y2x). \]

Now, \(t_A(x_1a_y2p_3x) \geq \min \{ t_A(x), t_A(x) \} = t_A(x) \) and \(t_B(x_5q_y1a_y2x) \geq \min \{ t_B(x), t_B(x) \} = t_B(x) \).

Now, \(t_A(\alpha) \cap \beta t_B(\alpha) \) be a vague set of \(R \).

\[= \inf \{ \max \{ f_A(x_1a_y2p_3x), f_B(x_5q_y1a_y2x) \} \} \]

\(= \inf \{ \max \{ \beta f_A(x_1a_y2p_3x) - \alpha, \beta f_B(x_5q_y1a_y2x) - \alpha \} \} \)

\(= \max \{ f_A(x), f_B(x) \} \)

\(= f_A(\alpha) \cap \beta f_B(x) \).

Hence \(A \geq A \).

Similarly we can prove \(B \geq A \).

Combining these two, we get \(A(\cap B) \cap (B \cap A) \geq A \cap B \).

\[\square \]

Theorem 3.11: Let \(A = (t_A, f_A) \) be a vague set of \(R \). Then \(A \) is a vague quasi ideal of \(R \) if and only if the vague magnified translation of \(A, A \) is vague quasi ideal of \(R \).

Proof. : Suppose \(A \) is a vague quasi ideal of \(R \).

Let \(x, y \in R \).

Now, \(t_A(x + y) \geq \min \{ t_A(x), t_A(y) \} \) and \(f_A(x + y) \leq \max \{ f_A(x), f_A(y) \} \)
Now, \(t_{(A_{\beta\alpha}^c, \Gamma \delta) \cap (\delta \Gamma A_{\beta\alpha}^c})(x) = \min \{t_{A_{\beta\alpha}^c, \Gamma \delta}(x), t_{\delta \Gamma A_{\beta\alpha}^c}(x)\} \)
\[= \min \{\sup \{\min \{t_{A_{\beta\alpha}^c}(a), t_{\delta}(b)\}\}, \sup \{\min \{t_{\delta}(a), t_{A_{\beta\alpha}^c}(b)\}\}/x = a\gamma b\} \]
\[= \min \{\beta t_A(a) + \alpha, \beta t_A(b) + \alpha\} \]
\[= \beta \min \{t_A(a), t_A(b)\} + \alpha \]
\[= \beta t_{(\Lambda \Gamma \delta) \cap (\delta \Gamma A)}(x) + \alpha \]
\[\leq \beta t_A(x) + \alpha \]
\[= t_{A_{\beta\alpha}^c}(x). \]
Therefore \((A_{\beta\alpha}^c, \Gamma \delta) \cap (\delta \Gamma A_{\beta\alpha}^c) \subseteq A_{\beta\alpha}^c. \)
Hence \(A_{\beta\alpha}^c \) is a vague quasi ideal of \(R. \)

Conversely suppose that \(A_{\beta\alpha}^c \) is a vague quasi ideal of \(R. \)
Let \(x, y \in R. \)
Then \(t_A(x + y) \geq \min \{t_A(x), t_A(y)\} \) and \(f_A(x + y) \leq \max \{f_A(x), f_A(y)\}. \)
Now, \(t_{(\Lambda \Gamma \delta) \cap (\delta \Gamma A)}(x) = \min \{t_{\Lambda \Gamma \delta}(x), t_{\delta \Gamma A}(x)\} \)
\[= \min \{\sup \{\min \{t_A(a), t_{\delta}(b)\}\}, \sup \{\min \{t_{\delta}(a), t_{A_{\beta\alpha}^c}(b)\}\}/x = a\gamma b\} \]
\[= \min \{\beta t_A(a), t_A(b)\} \]
\[= \beta t_{A_{\beta\alpha}^c}(x) - \alpha \]
\[= t_A(x). \]
Therefore \((\Lambda \Gamma \delta) \cap (\delta \Gamma A) \subseteq A. \)
Hence \(A \) is a vague quasi ideal of \(R. \)

\[\Box \]

Theorem 3.12: Let \(A \) be a left(resp. right) vague ideal of a left(right) zero \(\Gamma \)-semiring \(R. \)Then \(A_{\beta\alpha}^c \) is a constant vague set.

Proof. : Let \(x, y \in R; \gamma \in \Gamma. \)
Since \(R \) is a left zero \(\Gamma \)-semiring, we have \(x\gamma y = x \) and \(y\gamma x = y. \)
Now, \(t_{A_{\beta\alpha}^c}(x) = \beta t_A(x) + \alpha = \beta t_A(x\gamma y) + \alpha \geq \beta t_A(y) + \alpha \)
Again \(t_{A_{\beta\alpha}^c}(y) = \beta t_A(y) + \alpha = \beta t_A(y\gamma x) + \alpha \geq \beta t_A(x) + \alpha \)
Therefore \(t_{A_{\beta\alpha}^c}(x) = t_{A_{\beta\alpha}^c}(y) \)
Similarly, \(f_{A_{\beta\alpha}^c}(x) = f_{A_{\beta\alpha}^c}(y) \)
Thus \(A_{\beta\alpha}^c \) is a constant vague set.
Similarly we can prove other case also.

\[\Box \]
Acknowledgements

The authors are grateful to Prof. K.L.N.Swamy for his valuable suggestions and discussions on this work.

References

