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Abstract: Fixed point iterative procedures are the backbones of fractal geometry. In existing

literature Julia sets, Mandelbrot sets and their variants have been studied using one - step,

two - step, three - step and four - step iterative process. Recently, M. Abbas and T. Nazir

[12] introduced a new iterative process (a four-step iterative process) which is faster than all

of Picard, Mann and Agarwal processes. In this paper, we obtain further generalizations of

Julia and Mandelbrot sets using this faster iterative process for quadratic, cubic and higher

degree polynomials. Further, we analyze that few Julia and Mandelbrot sets took the shape

of Lord Ganesha (name of Hindu God), Dragon and Urn.

AMS Subject Classification: 37F45, 37F50

Key Words: Julia set, Mandelbrot set, four-step feedback process, escape criterion, complex

polynomials.

1. Introduction

Complex analytic dynamics attains a landmark in the field of fractal theory
during the time of great French mathematician Gaston Julia. Julia set is of
vital importance in the study of the complex dynamics of functions because it
is a place where the chaotic behavior of complex functions occur [10]. In 1975,
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Mandelbrot extended the work of Gaston Julia and introduced Mandelbrot set.
During that time, various Julia and Mandelbrot sets have been introduced for
quadratic [3, 21, 24, 10], cubic [21, 1, 2, 11, 22] and higher degree polynomials
[26] using Picard iterative process (a one step feedback process) [21].

Many researchers have studied Julia and Mandelbrot sets from different
aspects. In 2009, D. Rochon [9] studied generalized Mandelbrot sets in bicom-
plex plane. Later on the work of Rochon was extended by Wang [25] jointly
with others and carried further analysis of generalized Julia and Mandelbrot
sets. Also, they have studied the fractal structure and discontinuity law of the
generalized Julia sets generated from the extended complex mapping zn + c,
where n ∈ R [25]. Further, Julia and Mandelbrot sets have been studied under
the effect of noises [19, 4, 14, 15, 27]. In 2004, Rani and Kumar [17, 18] intro-
duced the superior iterate and created superior Julia and Mandelbrot sets for
quadratic [17, 18] and cubic [17, 18] polynomials. Later on, they also presented
Julia and Mandelbrot sets for higher [13, 16] degree complex polynomials. Fur-
ther, in 2008, Rani and Negi [5] studied the midgets of Mandelbrot sets. In
2011, Singh, Mishra and Sinkala [23] presented a complete literature review of
superior fractals existing in the literature, see also[20].

Recently, Ashish et al. [8] used Noor iterative process (an example of four-
step feedback process) for creating new Julia and Mandelbrot sets for quadratic,
cubic and higher degree polynomials. Further they have shown anti Julia,
Multicorns [6] and cubic Julia sets [7] using Noor iterative process.

In this paper, we create Julia and Mandelbrot sets using a new faster it-
erative process [12], which is an example of a four-step feedback process. In
Section 2, we give some definitions, which are the basis of our work. In Section
3, we discuss escape criterions for quadratic, cubic and nth degree polynomi-
als under the new iteration process. Several Julia and Mandelbrot sets have
been presented in Sections 4 and 5 respectively. Finally, the paper has been
concluded in Section 6.

2. Preliminaries

In 2014, M. Abbas and T. Nazir [12] introduced the following new iterative
process which is faster than all of Picard, Mann and Agarwal et al. processes
and is independent of these iterative processes.

Definition 2.1. Let us consider a sequence {xn} of iterates for initial
point x0 ∈ X such that

{xn+1 : xn+1 = (1− αn)Tyn + αnTzn;
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yn = (1− βn)Txn + βnTzn;

zn = (1− γn)xn + γnTxn;

n = 0, 1, 2, ..., }

where αn, βn, γn ∈ [0, 1] and {αn}, {βn}, {γn} are sequences of positive numbers.
For the sake of simplicity, we take αn = α, βn = β and γn = γ .

Definition 2.2. (Julia Set). The filled in Julia set of the function Q is
defined as

K(Q) = {z ∈ C : Qk(z)does not tend to infinity},

where C is the complex space, Qk(z) is kth iterate of function Q and K(Q)
denotes the filled Julia set. The Julia set of the function Q is defined to be the
boundary of K(Q), i.e.,

J(Q) = αK(Q),

where J(Q) denotes the Julia set. The set of points whose orbits are bounded
under the Picard orbit Qc(z) = z2 + c is called the Julia set. We choose the
initial point 0, as 0 is the only critical point of Qc [21] .

Definition 2.3. (Mandelbrot Set). The Mandelbrot set M consists of all
parameters c for which the filled Julia set of Qc is connected, that is

M = {c ∈ C : K(Qc)is connected}.

In fact, M contains an enormous amount of information about the structure of
Julia sets. The Mandelbrot set M for the Quadratic Qc(z) = z2 + c is defined
as the collection of all c ∈ C for which the orbit of the point 0 is bounded, that
is

M = {c ∈ C;n = 0, 1, 2, ...}is bounded.

We choose the initial point 0 as 0 is the only critical point of Qc [21].

3. Escape Criterions for Complex Polynomials using Faster

Iterative Process

The escape criterion plays a vital role in the generation and analysis of Julia
sets, Mandelbrot sets and their variants. We need the following escape criterions
for the quadratic, cubic and higher degree polynomials.
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3.1. Escape Criterions for Quadratic Polynomials

Throughout this section, we assume that T (xn) = Q′′
c (z), T (zn) = Q′

c(z) and
T (yn) = Qc(z) .

Theorem 3.1. Suppose | z |≥| c |> 2/α, | z |≥| c |> 2/β and | z |≥| c |>
2/γ, where 0 < α < 1, 0 < β < 1 and 0 < γ < 1 and c is a complex number.
Define

z1 = αQc(z) + (1− α)z ,

z2 = αQc(z1) + (1− α)z1 ,

... ,

... ,

... ,

zn = αQc(zn−1) + (1− α)zn−1 ,

where Qc(z) can be a quadratic, cubic or biquadratic polynomial in terms of γ
and n = 2, 3, ... then | zn |→ ∞ as n → ∞ .

Proof. For Q
′′

c (z) = z2 + c, we consider

| Q′
c(z) | =| (1− γ)z + γQ′′

c (z) |

=| γz2 + (1− γ)z + γc |

≥| γz2 + (1− γ)z | − | γc |

≥| z | (| γz + (1− γ) |)− γ | z | (since | z |≥| c |)

| Q′
c(z) | ≥| z | (| γz | −1). (1)

Also

| Qc(z) | =| (1− β)Q′′
c (z) + βQ′

c(z) |

=| (1− β)(z2 + c) + β | z | (| γz | −1) |

=| βγ | z |2 +(1− β)z2 + (1− β)c− β | z ||

≥ βγ | z |2 + | (1− β)z2 | −(1− β) | z | −β | z |

≥ βγ | z |2 +(1− β) | z2 | − | z | +β | z | −β | z |

≥| z | [(βγ − β + 1) | z | −1]

i.e. | Qc(z) | ≥| z | [(βγ − β + 1) | z | −1] . (2)

Now, we have

zn = (1− α)Tyn + αTzn



NEW JULIA AND MANDELBROT SETS FOR... 165

| zn | =| (1− α)Qc(z) + αQ′
c(z) |

| z1 | =| (1− α)Qc(z) + αQ′
c(z) | . (3)

On substituting (3.1) and (3.2) in (3.3), we get

| z1 | =| (1− α)[| z | [(βγ − β + 1) | z | −1]] + α | z | (γ | z | −1) |

=| (| z | −α | z |)[(βγ − β + 1) | z | −1] + αγ | z |2 −α | z |) |

≥| βγ | z |2 −β | z |2 + | z |2 −αβγ | z |2 +αβ | z |2 −α | z |2

− | z | +α | z | +αγ | z |2 −α | z ||

≥| z | [βγ | z | −β | z | + | z | −αβγ | z |

+ αβ | z | −α | z | −1 + αγ | z |]

≥| z | [(αβ + βγ + αγ − αβγ − α− β + 1) | z | −1]

i.e. | z1 | ≥| z | [(αβ + βγ + αγ − αβγ − α− β + 1) | z | −1] (4)

Since | z |≥| c |> 2/α, | z |≥| c |> 2/β and | z |≥| c |> 2/γ, so that
| z |> 2/αβγ > 2/(αβ + βγ + αγ − αβγ − α − β + 1). Therefore there exists
λ > 0, such that (αβ+βγ+αγ−αβγ−α−β+1) | z | −1 > 1+λ, consequently

| z1 |> (1 + λ) | z | .

In particular,| zn |>| z |. So we may apply the same argument repeatedly
to find

| zn |> (1 + λ)n | z | .

Thus, the orbit of z tends to infinity. This completes the proof.

Corollary 3.2. Suppose that | c |> 2/α, | c |> 2/β and | c |> 2/γ , then
the orbit O(Qc, 0, α, β, γ) escapes to infinity.

The proof of the escape criterion actually gives us a little more information.
In the proof, we used the only fact that | z |>| c | and | c |> 2/α, | c |> 2/β and
also | c |> 2/γ. Hence we have the following refinement of the escape criterion:

Corollary 3.3. (Escape Criterion). Let | z |> max{| c |, 2/α, 2/β, 2/γ},
then | zn |> (1 + λ)n | z | as | zn |→ ∞ as n → ∞.

We observe that if | zk |> max{| c |, 2/α, 2/β, 2/γ} for some k ≥ 0, then we
may apply Corollary 3.2 to | zk | to have the following result.
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Corollary 3.4. Let for some k ≥ 0, we have | zk |> max{| c |, 2/α, 2/β, 2/γ}.
Then | zk+1 |> (1 + λ)n | zk | so that | zn |→ ∞ as n → ∞.

Note that this corollary gives us an algorithm for computing the filled Julia
set of quadratics for any complex constant c. For any point z which satisfies
| z |≤| c |, we find out the orbit of z. If, for any n, | zn | lies outside the circle of
radius max{| c |, 2/α, 2/β, 2/γ}, then we say that the orbit escapes to infinity
that means z is not in the filled Julia set. On the other hand, if | zn | never
exceeds this bound, then z is by definition in Julia set.

3.2. Escape Criterion for Cubic Polynomials

We consider the following form of a cubic polynomial as it is conjugate to all
the cubic polynomials:

Cc(z) = z3 + c, where c are complex numbers.

Also, throughout this section, we assume that T (xn) = C
′′

c (z), T (zn) =
C

′

c(z) and T (yn) = Cc(z).

Theorem 3.5. Suppose | z |≥| c |> (2/α)1/2 , | z |≥| c |> (2/β)1/2 and
| z |≥| c |> (2/γ)1/2, where 0 < α < 1, 0 < β < 1 and 0 < γ < 1 and c is a
complex number. Define

z1 = αCc(z) + (1− α)z ,

z2 = αCc(z1) + (1− α)z1 ,

... ,

... ,

... ,

zn = αCc(zn−1) + (1− α)zn−1 ,

where Cc(z) is a polynomial in terms of γ and n = 2, 3, ... then | zn |→ ∞ as
n → ∞ .

Proof. For C
′′

c (z) = z3 + c, we have considered

| C ′
c(z) | =| (1− γ)z + γC ′′

c (z) |

=| γz3 + (1− γ)z + γc |

≥ γ | z |3 −(1− γ) | z | −γ | c |

i.e. | C ′
c(z) | ≥| z | (γ | z |2 −1). (5)
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Also

| Cc(z) | =| (1− β)C ′′
c (z) + βC ′

c(z) |

≥| (1− β)(z3 + c) + β | z | (γ | z |2 −1) |

≥ (1− β) | z |3 −(1− β) | c | +βγ | z |2 −β | z |

≥| z | [(βγ − β + 1) | z |2 −1]

i.e. | Cc(z) | ≥| z | [(βγ − β + 1) | z |2 −1] . (6)

Now, we have

| zn | =| (1− α)Cc(z) + αC ′
c(z) |

| z1 | =| (1− α)Cc(z) + αC ′
c(z) | . (7)

Using (3.5) and (3.6), we get

| z1 | ≥| (1− α[| z | ((βγ − β + 1) | z |2 −1)] + α[| z | (γ | z |2 −1)] |

≥| z | [(αβ + βγ + αγ − αβγ − α− β + 1) | z |2 −1]

i.e. | z1 | ≥| z | [(αβ + βγ + αγ − αβγ − α− β + 1) | z |2 −1] (8)

Since | z |≥| c |> (2/α)1/2, | z |≥| c |> (2/β)1/2 and | z |≥| c |> (2/γ)1/2, so
that | z |> (2/αβγ)1/2 > (2/(αβ + βγ + αγ − αβγ − α− β + 1))1/2. Therefore
there exists λ > 0, such that (αβ+βγ+αγ−αβγ−α−β+1) | z |2 −1 > 1+λ,
consequently

| z1 |> (1 + λ) | z | .

In particular,| zn |>| z |. So we may apply the same argument repeatedly
to find

| zn |> (1 + λ)n | z | .

Thus, the orbit of z tends to infinity. This completes the proof.

Corollary 3.6. (Escape Criterion). Let

| z |> max{| c |, (2/α)1/2 , (2/β)1/2, (2/γ)1/2},

then | zn |> (1 + λ)n | z | as | zn |→ ∞ as n → ∞.
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3.3. Escape Criterion for n
th Degree Polynomials

Now, we discuss the general escape criterion for polynomials of the form

Gc(z) = zn + c, where c is a complex numbers.

Also taking T (xn) = G
′′

c (z), T (zn) = G
′

c(z) and T (yn) = Gc(z).

Theorem 3.7. Let Gc(z) = zn + c, n = 1, 2, 3... be a general polynomial,
where 0 < α < 1, 0 < β < 1 and 0 < γ < 1 and c is a complex number. Define

z1 = αGc(z) + (1− α)z ,

z2 = αGc(z1) + (1− α)z1 ,

... ,

... ,

... ,

zn = αGc(zn−1) + (1− α)zn−1 ,

where n = 2, 3, ... then max(| c |, (2/α)1/n−1 , (2/β)1/n−1, (2/γ)1/n−1) is the
general escape criterion.

Proof. Using induction method on n,
For n = 1, Gc(z) = z + c,

| z |> max(| c |, 0, 0, 0)

For n = 2, Gc(z) = z2 + c,

| z |> max(| c |, 2/α, 2/β, 2/γ)

and for n = 3, Gc(z) = z3 + c,

| z |> max(| c |, (2/α)1/2 , (2/β)1/2, (2/γ)1/2)

Now, for n + 1, let Gc(z) = zn+1 + c and | z |≥| c |> (2/α)1/n, | z |≥| c |>
(2/β)1/n and | z |≥| c |> (2/γ)1/n. Then

| G′
c(z) | =| (1− γ)z + γG′′

c (z) |, where G′′
c (z) = zn+1 + c

=| (1− γ)z + γ(zn+1 + c) |

≥ γ | z |n+1 −(1− γ) | z | −γ | z | (since | z |≥| c |)

=| z | (γ | zn | −1),
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i.e. | G′
c(z) | ≥| z | (γ | zn | −1). (9)

Therefore

| Gc(z) | =| (1− β)G′′
c (z) + βG′

c(z) |

≥| (1− β)(zn+1 + c) + β | z | (γ | zn | −1) |

≥ (1− β) | z |n+1 −(1− β) | z | +βγ | z |n+1 −β | z |

≥| z | [(βγ − β + 1) | z |n −1]

i.e. | Gc(z) | ≥| z | [(βγ − β + 1) | z |n −1]. (10)

Since zn = (1− α)Gc(zn−1) + αG′
c(zn−1), we obtain

| z1 | =| (1− α)Gc(z) + αG′
c(z) |

=| (1− α) | z | [(βγ − β + 1) | z |n −1] + α | z | (γ | zn | −1) |

≥| (| z | −α | z |)[βγ | z |n −β | z |n + | z |n −1] + αγ | z |n+1 −α | z ||

≥| z | [(αβ + βγ + αγ − αβγ − β − α+ 1) | z |n −1],

| z1 | ≥| z | [(αβ + βγ + αγ − αβγ − β − α+ 1) | z |n −1]. (11)

Since | z |> (2/α)1/n, | z |> (2/β)1/n, and | z |> (2/γ)1/n, so that | z |>
(2/αβγ)1/n > (2/(αβ + βγ + αγ − αβγ − α− β − γ + 1))1/n.
Hence there exits a λ > 1, such that | z1 |> (1+λ) | z |. Applying the inequality
n times , we find | zn |> (1 + λ)n | z |. Hence the result.

Corollary 3.8. (Escape Criterion). Suppose

| zk |> max{| c |, (2/α)1/k−1, (2/β)1/k−1, (2/γ)1/k−1},

for some k ≥ 0, then | zk |> λ | zk−1 | and | zn |→ ∞ as | n |→ ∞.

4. Julia Sets

In this section, various Julia sets have been generated for quadratic and cubic
polynomials using new faster iteration process .
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4.1. Julia sets for Quadratic Polynomials

Following results have been observed from the graphical representation (see on
page no. 15) of quadratic Julia sets:

1. It is observed that Figs 1-3, took the shape of Dragon Julia sets which
has reflectional symmetry along x-axis.

2. The Dragon Julia sets get fattier with decrease in the parameters α, β
and γ and fixing the value of parameter c.

3. Further, Figs 4-6 shows connected Julia sets which have the reflectional
symmetry about x-axis and y-axis.

4. Julia set in Fig. 7, shows the disconnectivity of orbits of Julia sets.

4.2. Julia Sets for Cubic Polynomial

In this section we study few cubic Julia sets. It is interesting to see that in Figs
10-12 (see on Page 16), cubic Julia sets took the shape of Lord Ganesha (name
of a Hindu God). Further, it is observed that cubic Julia set becomes more
connected (i.e. fattier) by decreasing the parameters α, β and γ and fixing the
value of parameter c.

5. Mandelbrot Sets

5.1. Mandelbrot Sets for Quadratic Polynomials

In this section we present few Mandelbrot sets using faster iteration process
for quadratic, cubic and higher order polynomials. Following results have been
analyzed from the graphical representation of Mandelbrot sets: Figs 16-24 (see
on Page no. 17) shows the graphical representation of the quadratic Mandelbrot
sets generated in computational software Mathematica. Here, we observed that
the quadratic Mandelbrot sets have reflectional symmetry along x-axis (called
line of symmetry). Further from Figs 16-18 (see on Page no. 17), it was analyzed
that when any two parameters out of α, β and γ are fixed then Mandelbrot
sets get fattier with increase in the third parameter and becomes slimmer with
decrease in the third parameter. From Figs 19-21 (see on Page no. 17), it was
observed that when the value of parameter beta is increased, the lobes of the
Mandelbrot sets get fattier.
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5.2. Mandelbrot Sets for Cubic and Higher Order Polynomials

In case of cubic polynomials, it was observed that there is a reflectional sym-
metry along x-axis and y-axis (see Figs 25-28 on Page no. 18). Further, we
show that Figs 25-27 took the shape of fascinating Coupled Urn. As we de-
crease the parameters α, β and γ they become more decorated Coupled Urns.
In case of higher order polynomials, we observe that the polynomial zn + c,
n > 2 generates the Mandelbrot sets that have (n − 1) lobes and also have
reflectional (along x-axis and y-axis) and rotational symmetry (along center)
(see Figs 30-32 on Page no. 18).

6. Conclusions

In this paper, a new faster iterative process have been studied for generalizations
of Julia and Mandelbrot sets for complex quadratic, cubic and higher order
polynomials. In Section 3, first we have presented new escape criterions for
complex quadratic, cubic and higher order polynomials and then new Julia and
Mandelbrot sets have been generated. From the graphical representations of
Julia sets we have analyzed that few quadratic and cubic Julia sets took the
shape of Dragon and Lord Ganesha (Hindu God name) respectively. Further,
some Mandelbrot sets also took the shape of fascinating Urn.
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