DEVELOPMENT OF SIZE-BIASED
MUKHERJEE-ISLAM DISTRIBUTION

Sabir Ali Siddiqui¹ §, Shradha Dwivedi², Peeyush Dwivedi³, Irfan Siddiqui⁴

¹Department of Mathematics and Sciences
CAAS, Dhofer University
Salalah, SULTANATE OF OMAN

²Mathematics Unit
FP, Dhofer University
Salalah, SULTANATE OF OMAN

³Department of Business Studies
College of Technology
Salalah, SULTANATE OF OMAN

⁴Department of Management Studies
Sinhagad College of Engineering
Pune, INDIA

Abstract: In the present article, we derived a new Size-biased distribution from Mukherjee-Islam distribution. Flexibility of the model is derived by its moments, moment generating function (mgf) and characteristic function. Other important properties like Fisher’s information matrix and Shannon’s entropy are also derived which gives the measure of uncertainty in the system. Maximum likelihood estimator (MLE) and Baye’s estimator of size-biased distribution are obtained and in the last, test of size biasedness is done.

Key Words: Mukherjee-Islam distribution, size-biased Mukherjee-Islam Distribution (SB-MID), Shannon’s entropy, Fisher’s information matrix, non-informative priors
1. Introduction

This section gives the introduction of size-biasing, Mukherjee-Islam distribution and size-biased Mukherjee-Islam distribution.

1.1. Size-Biasing

Size-biasing is the method to introduce a weight on parent distribution in the form of variables. That is why size biased distributions sometimes known as weighted distributions also. Suppose X is a non-negative variable with its pdf $f(x, \theta)$, where θ is a natural parameter. X^* is the weighted version of X and its distribution related to that of X, is called weighted distribution. The distribution of X^* is weighted by the value, or size of X, that is why say that X^* has the X size-biased distribution. If a random x is selected for observation, which is an observation on X^*, not on X.

Definition 1. Suppose X is discrete distribution, then its pmf, after size biasing will be

$$dF^* = \frac{x f(x, \theta)}{\theta}.$$ \(1\)

Definition 2. Suppose X is continuous distribution, then its pdf after size biasing will be

$$f^* = \frac{xf(x, \theta)}{\mu}, \quad x > 0.$$ \(2\)

Here μ is the first moment of $f(x, \theta)$:

$$\mu = \int_{0}^{\infty} xf(x, \theta)dx.$$ \(3\)

This form of distribution was first introduced by Fisher in [1]. Later used by Richard Arratia and Larry Goldstein in [3].

1.2. Mukherjee-Islam Distribution

The cdf of Mukherjee-Islam distribution (see [2]) of a random variable X is defined by

$$F(x) = \frac{x^p}{\theta^p}.$$ \(4\)
= 0 \text{ otherwise, where } p, \theta > 0, \theta \geq x > 0. \quad (4)

Here scale and shape parameters are \(\theta \) and \(p \), respectively.

The pdf in the equation above is

\[
f(x) = \frac{px^{p-1}}{\theta^p}, \tag{5}
\]

where \(p, \theta > 0, \theta \geq x > 0 \).

The function

\[
R(x) = 1 - \frac{x^p}{\theta^p}, \tag{6}
\]

where \(p, \theta > 0, \theta \geq x > 0 \) and the function

\[
h(x) = \frac{px^{p-1}}{1 - \frac{x^p}{\theta^p}} \tag{7}
\]

are the Reliability and Hazard rate functions.

1.3. Size-Biased Mukherjee-Islam Distribution (SBMID)

SBMID can be obtained by applying weights \(x^c \) on Mukherjee-Islam distribution, where \(c = 1 \), since \(\mu'_1 = E(x) = \int_0^{\infty} xf(x, \theta) \).

Now, for Mukherjee-Islam distribution, \(x \) ranges between 0 to \(\theta \), as it is clear from equations (5) and (6). Therefore, the first moment of Mukherjee-Islam distribution is

\[
\mu'_1 = E(x) = \int_0^{\infty} xf(x, \theta),
\]

\[
\mu_1 = \frac{\theta p}{p + 1}. \tag{8}
\]

From equation (1) and equation (6), we receive

\[
f^*(x, \theta) = \frac{px^{p-1}}{\frac{\theta^p}{\theta^p}} = \frac{(p + 1)x^p}{\theta^{p+1}},
\]

or we can re-write

\[
f^*(x, \theta) = f(x, \theta, p + 1) = \frac{(p + 1)x^p}{\theta^{p+1}}.
\]
Now, it is easy to see
\[
\int_{0}^{\theta} \frac{(p + 1)x^{p}}{\theta^{p+1}} = 1.
\]

Hence \(f(x, \theta, p + 1) \) represents the pdf of SBMID:
\[
f^{*}(x, \theta) = f(x, \theta, p + 1) = \frac{(p + 1)x^{p}}{\theta^{p+1}}
\]
\[
= 0,
\]
otherwise \(\theta > 0, p > 0, 0 < x \leq \theta \).

2. Properties of Size-Biased Mukherjee-Islam Distribution (SBMID)

Here, we derived some characteristics like moments, moment generating function mgf and characteristic function of SBMID.

2.1. Mean, Variance and Moments

The \(r \)-th moments of SBMID, by equation (10), is
\[
\mu_{r} = E(x) = \int_{0}^{\theta} x^{r} f(x, \theta, p + 1) dx
\]
\[
= \int_{0}^{\theta} \frac{(p + 1)x^{p+r}}{\theta^{p+1}} dx,
\]
\[
= \frac{(p + 1)\theta^{r}}{p + r + 1}.
\]

Remark. It is clear, see equation (12), that the sequence of moments of SBMID is the same as the sequence of moments of MI distribution, but shifted by “one”.

The mean and the variance of the SBMID are given as
\[
\text{mean} = \mu_{1} = \frac{\theta(p + 1)}{p + 2},
\]
\[
\text{variance} = \mu_{2} = \frac{\theta^{2}(p + 1)(1-2p)}{(p + 2)^{2}(p + 3)}.
\]
2.2. Moment Generating Function (mgf)

The Moment generating function of SBMID is defined as:

\[M_{xt} = E(e^{tx}) = \int_{0}^{\theta} e^{tx} f(x, \theta, p + 1) dx \]

\[= \int_{0}^{\theta} e^{tx} \frac{(p + 1)x^p}{\theta p + 1} dx \]

\[M_{xt} = E(e^{tx}) = \frac{(p + 1)\theta^p (-\theta t)^p (\lceil (p + 1), -\theta t \rceil - \lceil (p + 1) \rceil)}{\theta p + 1 t} \]

\[M_{xt} = E(e^{tx}) = \frac{(p + 1)(-\theta t)^p (\lceil (p + 1), -\theta t \rceil - \lceil p + 1 \rceil)}{\theta t} \] \quad (13)

where, \(t < 0, p > -1 \)

2.3. Characteristic Function

The characteristic function of SBMID is given as:

\[\Phi_{xt} = E(e^{itx}) = \int_{0}^{\theta} e^{itx} f(x, \theta, p + 1) dx \]

\[= \int_{0}^{\theta} e^{itx} \frac{(p + 1)x^p}{\theta p + 1} dx \]

\[\Phi_{xt} = E(e^{itx}) = (p + 1)(-i\theta t)^p (\lceil (p + 1), -i\theta t \rceil - (\lceil (p + 1), -i\theta t \rceil)) \] \quad (14)

where, \(t < 0, p > -1 \)

3. Shannon’s Entropy of Size-Biased Mukherjee-Islam Distribution (SBMID)

Shannon’s entropy or the measure of uncertainty of a system has two definitions:

Definition 1: For a discrete random variable \(f \), entropy is defined by,

\[H_q(f) = -\sum_{i=1}^{n} p(f = a) \log(p(f = a)) \] \quad (15)

it is obvious that \(H_q(f) \geq 0 \).
Definition 2: Entropy of a continuous variable with pdf f can be defined as:

$$H(f) = -\int_{0}^{\infty} f(x)\log f(x) = E(-\log(x)) \quad (16)$$

above is true when integral exists: Shannon’s entropy of size-biased Mukherjee-Islam distribution (where $0 < x \leq \theta$) can be given as:

$$H[f(x, \theta, p + 1)] = E[-\log f(x, \theta, p + 1)]$$
$$= E[-\log \left(\frac{(p + 1)x^p}{\theta^{p+1}}\right)]$$
$$= E[(p + 1) \log \theta - \log(p + 1) - p \log(x)]$$

$$H[f(x, \theta, p + 1)] = (p + 1) \log \theta - \log(p + 1) - p E(\log(x)) \quad (17)$$

$$E(\log(x)) = \int_{0}^{\theta} \log(x) f(x, \theta, p + 1) \, dx$$
$$= \int_{0}^{\theta} \log(x) \left(\frac{(p + 1)x^p}{\theta^{p+1}}\right); \quad 0 < x \leq \theta, \quad \theta > 0$$
$$= \frac{(p + 1)}{\theta^{p+1}} \int_{0}^{\theta} \log(x) x^p \, dx$$
$$= \frac{(p + 1)}{\theta^{p+1}} \frac{\theta^{p+1} [(p + 1) \log(\theta) - 1]}{(p + 1)^2}; \quad p > -1$$

$$E(\log(x)) = \left[\log(\theta) - \frac{1}{p + 1}\right] \quad (18)$$

Now by equ (18) and eqn (19) we have,

$$H[f(x, \theta, p + 1)] = (p + 1) \log \theta - \log(p + 1) - p \left[\log(\theta) - \frac{1}{p + 1}\right]$$

$$H[f(x, \theta, p + 1)] = \log \frac{\theta}{p + 1} + \frac{p}{p + 1} \quad (19)$$

The above equation (19) depicts the Shannon’s entropy of SBMID.
4. Fisher’s Information Matrix of Size-Biased Mukherjii-Islam Distribution (SBMID)

For a random variable X, Fisher Information about the parameter θ is given by,

$$I(\theta) = E\left[\frac{\partial}{\partial \theta} \log(f(x, \theta))\right]^2$$

If $\log f(x, \theta)$ is twice differential wrt θ, Fisher’s information is given by,

$$I(\theta) = E\left[\frac{\partial^2}{\partial^2 \theta} \log(f(x, \theta))\right]$$

Now pdf of SBMID is given by:

$$f(x, \theta, p + 1) = \frac{(p + 1)x^p}{\theta^{p+1}}$$

Here θ and p are scale and shape parameters respectively.

Taking \log on both sides of above pdf, we have

$$\log f(x, \theta, p + 1) = p \log(x) + \log(p + 1) - (p + 1) \log\theta \quad (20)$$

Differentiating eqn (15) partially w.r.t. θ and p, we get

$$\frac{\partial}{\partial \theta} f(x, \theta, p + 1) = \frac{-(p + 1)}{\theta} \quad (21)$$

$$\frac{\partial^2}{\partial^2 \theta^2} f(x, \theta, p + 1) = \frac{(p + 1)}{\theta^2} \quad (22)$$

$$\frac{\partial^2}{\partial \theta \partial p} f(x, \theta, p + 1) = \frac{-1}{\theta} \quad (23)$$

$$\frac{\partial}{\partial p} f(x, \theta, p + 1) = \log(x) + \frac{1}{p + 1} - \log(\theta) \quad (24)$$

$$\frac{\partial^2}{\partial p^2} f(x, \theta, p + 1) = \frac{-1}{(p + 1)^2} \quad (25)$$

$$\frac{\partial^2}{\partial p \partial \theta} f(x, \theta, p + 1) = \frac{-1}{\theta} \quad (26)$$

Taking expectation of the equations(22), (23), (25)and(26) on both sides, we get

$$-E\left[\frac{\partial^2}{\partial \theta^2} f(x, \theta, p + 1)\right] = \frac{-(p + 1)}{\theta^2}; \quad I(1, 1)$$
\[-E[\frac{\partial^2}{\partial \theta \partial p} f(x, \theta, p + 1)] = \frac{1}{\theta}; \quad I(2, 1)\]
\[-E[\frac{\partial^2}{\partial p \partial \theta} f(x, \theta, p + 1)] = \frac{1}{\theta}; \quad I(1, 2)\]
\[-E[\frac{\partial^2}{\partial p^2} f(x, \theta, p + 1)] = \frac{1}{(p + 1)^2}; \quad I(2, 2)\]

Now, Fisher’s Information matrix of SBMID is given as:

\[
I(\theta, p + 1) = \begin{bmatrix}
-E[\frac{\partial^2}{\partial \theta^2} f(x, \theta, p + 1)] & -E[\frac{\partial^2}{\partial \theta \partial p} f(x, \theta, p + 1)] \\
-E[\frac{\partial^2}{\partial p \partial \theta} f(x, \theta, p + 1)] & -E[\frac{\partial^2}{\partial p^2} f(x, \theta, p + 1)]
\end{bmatrix}
\]

\[
I(\theta, p + 1) = \begin{bmatrix}
\frac{-(p+1)}{\theta^2} & \frac{1}{\theta} \\
\frac{1}{\theta} & \frac{1}{(p+1)^2}
\end{bmatrix}
\]

Equation (27) gives the Fisher’s information matrix of SBMID.

5. Estimation

Here Estimation of parameters of SBMID the maximum likelihood estimates(MLEs) and the Baye’s estimator with Uniform prior.

5.1. Maximum Likelihood Estimators

Suppose \(X_1, X_2, X_3, ...X_N\) is a sample of size n, then likelihood function of SBMID is given by:

\[
L(x, \theta, p + 1) = \prod_{i=1}^{n} f(x, \theta, p + 1)
\]
\[
L(x, \theta, p + 1) = \prod_{i=1}^{n} \frac{(p + 1)x^p}{\theta^{p+1}}
\]
\[
L(x, \theta, p + 1) = \frac{(p + 1)^n}{\theta^{n(p+1)}} \prod_{i=1}^{n} x_i^p
\]

or,

\[
logL^*(x, \theta, p + 1) = n xlog(p + 1) + p \sum_{i=1}^{n} logx_i - n (p + 1) log(\theta)
\]
Now differentiate $\log L^*(x, \theta, p + 1)$ w.r.t. θ and p, we get
\begin{align*}
\frac{\partial L^*}{\partial \theta} &= -\frac{n(p + 1)}{\theta} \\
\frac{\partial L^*}{\partial p} &= -\frac{n}{(p + 1)} + \sum_{i=1}^{n} \log x_i - n \log \theta
\end{align*} \tag{30} \tag{31}

Equating equation (30) and (31) to zero, we get MLEs of SBMI distribution.
\begin{align*}
\hat{p} &= -1 \\
\hat{\theta} &= e^{\frac{\sum_{i=1}^{n} x_i}{n}} \\
\hat{\theta} &= e^\bar{x}; \text{where} \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{32} \tag{33} \tag{34}
\end{align*}

In equation (32) and (34), we get MLEs.

5.2. Bayesian Estimator of SBMID by Uniform Prior

Likelihood function of SBMID is:
\[L(x, \theta, p + 1) = \frac{(p + 1)^n}{\theta^n(p + 1)} \prod_{i=1}^{n} x_i^p \] \tag{35}

since $0 < x \leq \theta$, we assume Uniform prior about θ, when p is known. Uniform prior $g(\theta) = 1$, and
\begin{align*}
\Pi(x) &= \frac{Lg(\theta)}{\int_0^\theta Lg(\theta) d\theta} \\
\Pi(x) &= \frac{(p + 1)^n}{\theta^n(p + 1)} \prod_{i=1}^{n} x_i^p \int_0^\theta \frac{(p + 1)^n}{\theta^n(p + 1)} \prod_{i=1}^{n} x_i^p d\theta \tag{36} \tag{37}
\end{align*}
is the posterior.

Now, Bayes’s estimator of θ is:
\begin{align*}
\hat{\theta} &= \int_0^\theta \Pi(x) d\theta \\
\hat{\theta} &= \int_0^\theta \frac{(p + 1)^n}{\theta^n(p + 1)} \prod_{i=1}^{n} x_i^p \int_0^\theta \frac{(p + 1)^n}{\theta^n(p + 1)} \prod_{i=1}^{n} x_i^p d\theta \\
\hat{\theta} &= [1-n(p+1)]\theta \tag{38}
\end{align*}
6. Test for Size-Biasedness of Size-Biased Mukherjee-Islam Distribution (SBMID)

Let $X_1, X_2, X_3, ... X_n$ is random sample of size n drawn from size-bias Mukherjee-Islam distribution. We test the hypothesis, $H_0 = f(x, \theta, p)$ against $H_1 = f(x, \theta, p + 1)$. To check whether sample of size n is drawn from the Mukherjee-Islam distribution or size-biased Mukherjee-Islam distribution, the following test is used.

$$\Delta = \frac{H_1}{H_0} = \prod_{i=1}^{n} \left[\frac{f(x, \theta, p + 1)}{f(x, \theta, p)} \right]$$

$$\Delta = \frac{H_1}{H_0} = \prod_{i=1}^{n} \left[\frac{(p+1)x^p}{px^{p-1}} \right]$$

$$\Delta = \frac{H_1}{H_0} = \left[\frac{(p + 1)}{p\theta} \right] n \prod_{i=1}^{n} x_i$$

Null hypothesis will be rejected, if we have

$$\left[\frac{(p + 1)}{p\theta} \right] n \prod_{i=1}^{n} x_i > k$$

or equivalently, we reject the Null hypothesis where,

$$\Delta^* = \prod_{i=1}^{n} x_i > k^*,$$

where, $k^* = k \left[\frac{(p + 1)}{p\theta} \right] n > 0$

7. Conclusion

The aim of this paper is to introduce a new size-biased distribution that we called here SBMID, this distribution is based on Mukherjee-Islam original distribution. Thereafter we discussed its structural properties, that includes mean, variance, moments of the distribution. The generating functions are also derived. Shannon’s entropy and Fisher’s information matrix has been calculated. We have also obtained estimates of parameters using classical and Baye’s method.
References

