SOMEWHAT e-\mathcal{I}-CONTINUOUS AND SOMEWHAT e-\mathcal{I}-OPEN FUNCTIONS VIA IDEALS

Wadei AL-Omeri1§, T. Noiri2

1Mathematical Sciences
Faculty of Science and Technology
Ajloun National University
P.O. Box 43, Ajloun, 26810, JORDAN

2Shiokita-Cho, Hinagu, Yatsushiro-Shi
Kumamoto-Ken
869-5142, JAPAN

Abstract: In this paper, new classes of functions are introduced and studied by making use of e-\mathcal{I}-open sets and e-\mathcal{I}-closed sets. Relationship between the new classes and other classes of functions are established besides giving examples, counterexamples, properties and characterizations.

AMS Subject Classification: 54A05

Key Words: e-\mathcal{I}-open, e-\mathcal{I}-closed, somewhat e-\mathcal{I}-continuous, somewhat e-\mathcal{I}-open, e-\mathcal{I}-dense, e-\mathcal{I}-separable

1. Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski [13] and Vaidyanathaswamy [19]. Jankovic and Hamlett [12] investigated further...
properties of ideal topological spaces. In 1992, Jankovic and Hamlett [11] introduced the notion of I-open sets in ideal topological spaces. Abd El-Monsef et al. [1] investigated I-open sets and I-continuous functions. In this paper, using the notion of e-I-open sets defined in [2] see also [3], [4], the concepts of somewhat e-I-continuous functions and somewhat e-I-open functions are introduced and studied. Some characterizations and properties for somewhat e-I-continuity and somewhat e-I-openness are obtained besides giving examples and counterexamples.

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies the following conditions: $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$; $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. A topological space (X, τ) with an ideal \mathcal{I} is called an ideal topological space and is denoted by (X, τ, \mathcal{I}). Given an ideal topological space (X, τ, \mathcal{I}) on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(\cdot)^* : \wp(X) \rightarrow \wp(X)$, called the local function [18, 12] of A with respect to τ and \mathcal{I}, is defined as follows: for $A \subseteq X$,

$$A^*(\mathcal{I}, \tau) = \{ x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x) \}$$

where $\tau(x) = \{ U \in \tau \mid x \in U \}$. It is known in [12] that $\text{Cl}^*(A) = A \cup A^*(\mathcal{I}, \tau)$ is a Kuratowski closure operator. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I}, \tau)$. X^* is often a proper subset of X. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be R-I-open (resp. R-I-closed) [20] if $A = \text{Int}(\text{Cl}^*(A))$ (resp. $A = \text{Cl}^*(\text{Int}(A))$). A point $x \in X$ is called a $\delta - I$-cluster point of A if $\text{Int}(\text{Cl}(U)) \cap A \neq \emptyset$ for each open set U containing x. The family of all $\delta - I$-cluster points of A is called the $\delta - \mathcal{I}$-closure of A and is denoted by $\delta \text{Cl}_I(A)$. The $\delta - I$-interior of A is the union of all R-I-open sets of X contained in A and is denoted by $\delta \text{Int}_I(A)$. A is said to be $\delta - I$-closed if $\delta \text{Cl}_I(A) = A$ [20].

Definition 1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be:

1. I-open [1] if $A \subset \text{Int}(A^*)$.
2. semi-I-open [10] if $A \subset \text{Cl}(\delta \text{Int}_I(A))$.
3. e-I-open if [2] $A \subset \text{Cl}(\delta \text{Int}_I(A)) \cup \text{Int}(\delta \text{Cl}_I(A))$.

Remark 2. In the following diagram we denote by arrows the implications between the open sets and the above three relations. It is known that (1) \mathcal{I}-openness and openness are independent [1, 6], (2) every \mathcal{I}-open set is semi-\mathcal{I}-
open [9], and (3) every open set is \(e-I \)-open[2].

\[
\begin{align*}
R-I\text{-open} & \longrightarrow \text{semi}^\ast-I\text{-open} \\
\downarrow & \\
on \longrightarrow & \ e-I\text{-open}
\end{align*}
\]

Definition 3. [8] A function \(f : (X, \tau) \longrightarrow (Y, \sigma) \) is said to be somewhat-continuous provided that if for \(U \in \sigma \) and \(f^{-1}(U) \neq \emptyset \) there exists an open set \(V \) in \(\tau \) such that \(V \neq \emptyset \) and \(V \subset f^{-1}(U) \).

Definition 4. A function \(f : (X, \tau, I) \longrightarrow (Y, \sigma) \) is said to be somewhat-\(I \)-continuous (resp. somewhat \(\text{semi}^\ast-I \)-continuous) if for any \(U \in \sigma \) such that \(f^{-1}(U) \neq \emptyset \) there exists an \(I \)-open (resp. \(\text{semi}^\ast-I \)-open) set \(V \) in \(X \) such that \(V \neq \emptyset \) and \(V \subset f^{-1}(U) \).

Definition 5. [8] A function \(f : (X, \tau) \longrightarrow (Y, \sigma) \) is said to be somewhat-open provided that if \(U \in \tau \) and \(U \neq \emptyset \), then there exists an open set \(V \) in \(\sigma \) such that \(V \neq \emptyset \) and \(V \subset f(U) \).

Definition 6. A function \(f : (X, \tau) \longrightarrow (Y, \sigma, I) \) is said to be somewhat-\(I \)-open (resp. somewhat \(\text{semi}^\ast-I \)-open) provided that if \(U \in \tau \) and \(U \neq \emptyset \), then there exists an \(\text{semi}^\ast-I \)-open set \(V \) in \(Y \) such that \(V \neq \emptyset \) and \(V \subset f(U) \).

2. Somewhat \(e-I \)-Continuous Functions

Definition 7. Let \((X, \tau, I)\) be an ideal topological space and \((Y, \sigma)\) be any topological space. A function \(f : (X, \tau, I) \longrightarrow (Y, \sigma) \) is said to be somewhat \(e-I \)-continuous provided that if \(U \in \sigma \) and \(f^{-1}(U) \neq \emptyset \), then there exists an \(e-I \)-open set \(V \) in \(X \) such that \(V \neq \emptyset \) and \(V \subset f^{-1}(U) \).

Theorem 8. If \(f : (X, \tau, I) \longrightarrow (Y, \sigma) \) is somewhat continuous, then it is somewhat \(e-I \)-continuous.

Proof. Trivial

Theorem 9. Every somewhat \(\text{semi}^\ast-I \)-continuous function is somewhat \(e-I \)-continuous.

Proof. Let \(f : (X, \tau, I) \longrightarrow (Y, \sigma) \) be a somewhat \(\text{semi}^\ast-I \)-continuous function. Let \(U \) be any open set in \(Y \) such that \(f^{-1}(U) \neq \emptyset \). Since \(f \) is somewhat
semi*-I-continuous, there exists a semi*-I-open set V in X such that V \neq \emptyset and V \subset f^{-1}(U)$. Since every semi*-I-open set is e-I-open, there exists an e-I-open set V such that $V \neq \emptyset$ and $V \subset f^{-1}(U)$, which implies that f is somewhat e-I-continuous. \hfill \Box

Remark 10. The converses of the above theorem, need not be true in general as shown by the following example.

Example 11. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$, $I = \{\emptyset, \{a\}\}$, $\sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$. Let $f : (X, \tau, I) \rightarrow (Y, \sigma)$ be an identity function. Then f is somewhat e-I-continuous but it is neither somewhat continuous nor somewhat semi*-I-continuous. Since the inverse image of \{c\} in (Y, σ) is an e-I-open but it is neither open nor semi*-I-open.

Theorem 12. If $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is a somewhat e-I-continuous surjection and $g : (Y, \sigma) \rightarrow (Z, \zeta)$ is somewhat continuous, then $g \circ f : (X, \tau, I) \rightarrow (Z, \zeta)$ is e-I-continuous.

Proof. Let W be any open set of (Z, ζ) and $(g \circ f)^{-1}(W) \neq \emptyset$. Then $g^{-1}(W) \neq \emptyset$. Since g is somewhat continuous, there exists $V \in \sigma$ such that $\emptyset \neq V \subset g^{-1}(W)$. Since f is surjective, $\emptyset \neq f^{-1}(V) \subset f^{-1}(g^{-1}(W))$. Since f is somewhat e-I-continuous, there exists an e-I-open set U in (X, τ) such that $\emptyset \neq U \subset f^{-1}(V)$. Therefore, we have $\emptyset \neq U \subset (g \circ f)^{-1}(W))$. This show that $g \circ f$ is somewhat e-I-continuous. \hfill \Box

Theorem 13. Let $f : (X, \tau, I) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \zeta)$ be any two functions. If f is somewhat e-I-continuous and g is continuous, then $g \circ f$ is somewhat e-I-continuous.

Proof. Let $U \in \zeta$ and $(g \circ f)^{-1}(U) \neq \emptyset$. Then $g^{-1}(U) \neq \emptyset$. Since $U \in \zeta$ and g is continuous $g^{-1}(U) \in \sigma$. Since $f^{-1}(g^{-1}(U)) \neq \emptyset$ and f is somewhat e-I-continuous, there exists an e-I-open set V in X such that $\emptyset \neq V \subset g^{-1}(U) = (g \circ f)^{-1}(U)$. Then $g \circ f$ is somewhat e-I-continuous. \hfill \Box

Remark 14. In Theorem 13, if f is a continuous function and g is a somewhat e-I-continuous function, then it is not necessarily true that $g \circ f$ is somewhat e-I-continuous. Since every continuous function is somewhat e-I-continuous, the composition of somewhat e-I-continuous functions need not be somewhat e-I-continuous. The following example serves this purpose.

Example 15. Let $X = Y = Z = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, $I = \{\emptyset, \{b\}\}$, $\sigma = \{\emptyset, X, \{a\}, \{b, c\}\}$, $\zeta = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $J = \{\emptyset, \{a\}\}$. Let $f : (X, \tau, I) \rightarrow (Y, \sigma, I)$ and $g : (Y, \sigma, J) \rightarrow (Z, \zeta)$ be
the identity functions. Then clearly f is continuous and g is somewhat e-\mathcal{I}-continuous but $g \circ f$ is not somewhat e-\mathcal{I}-continuous. Since $\{c\} \in \zeta$ and $(g \circ f)^{-1}(U) = (g \circ f)^{-1}(\{c\}) = \{c\}$ not somewhat e-\mathcal{I}-open, $g \circ f$ is not somewhat e-\mathcal{I}-continuous.

Definition 16. A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be e-\mathcal{I}-dense if $\text{Cl}^e(S) = X$. In other words if there is no proper e-\mathcal{I}-closed set M in X such that $S \subset M \subset X$.

Theorem 17. Let $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ be a surjective function. Then the following are equivalent:

1. f is somewhat e-\mathcal{I}-continuous;

2. If M is a closed subset of Y such that $f^{-1}(M) \neq X$, then there is a proper e-\mathcal{I}-closed subset D of X such that $D \supset f^{-1}(M)$;

3. If S is an e-\mathcal{I}-dense subset of X, then $f(S)$ is a dense subset of Y.

Proof. (1)\Rightarrow(2): Let M be a closed subset of Y such that $f^{-1}(M) \neq X$. Then $Y - M$ is an open set in Y such that $f^{-1}(Y - M) = X - f^{-1}(M) \neq \emptyset$. By hypothesis (1) there exists an e-\mathcal{I}-open set V in X such that $V \neq \emptyset$ and $V \subset f^{-1}(Y - M) = X - f^{-1}(M)$. This means that $X - V \supset f^{-1}(M)$ and $X - V = D$ is a proper e-\mathcal{I}-closed set in X. This proves (2).

(2)\Rightarrow(3): Let S be an e-\mathcal{I}-dense set in X. Suppose that $f(S)$ is not dense in Y. Then there exists a proper closed set M in Y such that $f(S) \subset M \subset Y$. Clearly $f^{-1}(M) \neq X$. Hence by (2) there exists a proper e-\mathcal{I}-closed set D such that $S \subset f^{-1}(M) \subset D \subset X$. This contradicts fact that S is e-\mathcal{I}-dense in X.

(3)\Rightarrow(2): Suppose that (2) is not true. This means there exists a closed set M in Y such that $f^{-1}(M) \neq X$. But there is no proper e-\mathcal{I}-closed set D in X such that $f^{-1}(M) \subset D$. This means that $f^{-1}(M)$ is e-\mathcal{I}-dense in X. But by (3) $f(f^{-1}(M)) = M$ must be dense in Y, which is contradiction to the choice of M.

(2)\Rightarrow(1): Let $U \in \sigma$ and $f^{-1}(U) \neq \emptyset$. Then $Y - U$ is closed and $f^{-1}(Y - U) = X - f^{-1}(U) \neq X$. By hypothesis of (2) there exists a proper e-\mathcal{I}-closed set D of X such that $D \supset f^{-1}(Y - U)$. This implies that $X - D \subset f^{-1}(U)$ and $X - D$ is e-\mathcal{I}-open and $X - D \neq \emptyset$. □

Theorem 18. Let (X, τ, \mathcal{I}) be any ideal topological space and (Y, σ) any topological space. If A is an open set in X and $f : (A, \tau/A, \mathcal{I}/A) \rightarrow (Y, \sigma)$ is a somewhat e-\mathcal{I}-continuous function such that $f(A)$ is dense in Y, then any extension $F : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ of f is somewhat e-\mathcal{I}-continuous.
Proof. Let U be any open set in (Y, σ) such that $F^{-1}(U) \neq \emptyset$. Since $f(A) \subset Y$ is dense in Y and $U \cap f(A) \neq \emptyset$, it follows that $F^{-1}(U) \cap A \neq \emptyset$. That is $f^{-1}(U) \cap A \neq \emptyset$. Hence by hypothesis on f, there exists an $e-I$-open set V in A such that $V \neq \emptyset$ and $V \subset f^{-1}(U) \subset F^{-1}(U)$ which implies F is somewhat $e-I$-continuous.

Theorem 19. Let (X, τ, I) and (Y, σ, J) be any two ideal topological spaces, $X = A \cup B$ where A and B are open subsets of X and $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ be a function such that f/A and f/B are somewhat $e-I$-continuous. Then f is somewhat $e-I$-continuous.

Proof. Let U be any open set in (Y, σ, J) such that $f^{-1}(U) \neq \emptyset$. Then $(f/A)^{-1}(U) \neq \emptyset$ or $(f/B)^{-1}(U) \neq \emptyset$ or both $(f/A)^{-1}(U) \neq \emptyset$ and $(f/B)^{-1}(U) \neq \emptyset$.

Case (1) Suppose $(f/A)^{-1}(U) \neq \emptyset$.

Since f/A is somewhat $e-I$-continuous, there exists an $e-I$-open set V in A such that $V \neq \emptyset$ and $V \subset (f/A)^{-1}(U) \subset f^{-1}(U)$. Since V is $e-I$-open in A and A is open in X, V is $e-I$-open in X. Thus f is somewhat $e-I$-continuous.

Case (2) the proof is similar with Case (1).

Case (3) Suppose $(f/A)^{-1}(U) \neq \emptyset$ and $(f/B)^{-1}(U) \neq \emptyset$.

This follows from both the Cases (1) and (2). Thus f is somewhat $e-I$-continuous.

Definition 20. An ideal topological space (X, τ, I) is said to be $e-I$-separable if there exists a countable subset B of X which is $e-I$-dense in X.

Theorem 21. If $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is a somewhat $e-I$-continuous surjective function and X is $e-I$-separable, then Y is separable.

Proof. Let $f : X \rightarrow Y$ be a somewhat $e-I$-continuous surjection such that X is $e-I$-separable. Then by definition there exists a countable subset B of X which is $e-I$-dense in X. Then by Theorem 17, $f(B)$ is dense in Y. Since B is countable, $f(B)$ is also a countable set which is dense in Y, which indicates that Y is separable.
3. e-\mathcal{I}-Weakly Equivalent Topologies

Definition 22. Let \(X \) be a set and \(\tau \) and \(\sigma \) be topologies for \(X \). Then \(\tau \) is said to be weakly equivalent to \(\sigma \) [8] provided that if \(U \in \tau \) and \(U \neq \emptyset \), then there is an open set \(V \) in \((X, \sigma)\) such that \(V \neq \emptyset \) and \(V \subset U \) and if \(U \in \sigma \) and \(U \neq \emptyset \), then there is an open set \(V \) in \((X, \tau)\) such that \(V \neq \emptyset \) and \(V \subset U \).

Definition 23. Let \((X, \tau)\) and \((X, \sigma)\) be topological spaces with same ideal \(\mathcal{I} \). Then \(\tau \) is said to be \(e-\mathcal{I} \)-weakly equivalent to \(\sigma \) provided that if \(U \in \tau \) and \(U \neq \emptyset \), then there is an \(e-\mathcal{I} \)-open set \(V \) in \((X, \sigma, \mathcal{I})\) such that \(V \neq \emptyset \) and \(V \subset f(U) \) and if \(U \in \sigma \) and \(U \neq \emptyset \), then there is an \(e-\mathcal{I} \)-open set \(V \) in \((X, \tau, \mathcal{I})\) such that \(V \neq \emptyset \) and \(V \subset f(U) \).

Theorem 24. Let \(f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma_1) \) be a somewhat \(e-\mathcal{I} \)-continuous surjective function and let \(\sigma_2 \) be a topology for \(Y \). If \(\sigma_2 \) is weakly equivalent to \(\sigma_1 \), then the function \(f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma_2) \) is somewhat \(e-\mathcal{I} \)-continuous.

Proof. Since \(\sigma_2 \) is weakly equivalent to \(\sigma_1 \), the identity function \(i : (Y, \sigma_1) \rightarrow (Y, \sigma_2) \) is somewhat-continuous. Therefore, by Theorem 12,

\[
f = f \circ i : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma_2)
\]

is somewhat \(e-\mathcal{I} \)-continuous.

\[\square\]

Theorem 25. Let \(f : (X, \tau_1, \mathcal{I}) \rightarrow (Y, \sigma) \) be a somewhat-continuous function and let \(\tau_2 \) be a topology for \(X \). If \(\tau_2 \) is \(e-\mathcal{I} \)-weakly equivalent to \(\tau_1 \), then the function \(f : (X, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma) \) is somewhat \(e-\mathcal{I} \)-continuous.

Proof. Since \(\tau_2 \) is \(e-\mathcal{I} \)-weakly equivalent to \(\tau_1 \), the identity function \(i : (X, \tau_2, \mathcal{I}) \rightarrow (X, \tau_1, \mathcal{I}) \) is somewhat \(e-\mathcal{I} \)-continuous. Therefore, by Theorem 12, \(f = f \circ i : (X, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma) \) is somewhat \(e-\mathcal{I} \)-continuous.

\[\square\]

4. Somewhat \(e-\mathcal{I} \)-Open Functions

Definition 26. A function \(f : (X, \tau) \rightarrow (Y, \sigma, \mathcal{I}) \) is said to be somewhat \(e-\mathcal{I} \)-open provided that for \(U \in \tau \) and \(U \neq \emptyset \) there exists an \(e-\mathcal{I} \)-open set \(V \) in \(Y \) such that \(V \neq \emptyset \) and \(V \subset f(U) \).

Theorem 27. If a function \(f : (X, \tau) \rightarrow (Y, \sigma, \mathcal{I}) \) is somewhat open, then it is somewhat \(e-\mathcal{I} \)-open.
Theorem 28. Every somewhat semi*-I-open function is somewhat e-I-open.

Proof. Let \(f : (X, \tau) \rightarrow (Y, \sigma, I) \) be a somewhat semi*-I-open function. Let \(U \in \tau \) and \(U \neq \emptyset \). Since \(f \) is somewhat semi*-I-open, there exists a semi*-I-open set \(V \) in \(X \) such that \(V \neq \emptyset \) and \(V \subset f(U) \). Since every semi*-I-open set is e-I-open, there exist an e-I-open set \(V \) such that \(V \neq \emptyset \) and \(V \subset f(U) \), which implies that \(f \) is somewhat e-I-open. \(\square \)

Remark 29. The converses of the above theorems, need not be true in general as shown by the following example.

Example 30. Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\} \), \(I = \{\emptyset, \{a\}\} \), and \(\sigma = \{\emptyset, X, \{a\}, \{b, c\}\} \). Then the identity function \(f : (X, \tau) \rightarrow (Y, \sigma, I) \) is somewhat e-I-open but it is neither somewhat semi*-I-open nor somewhat open. The image of \(\{c\} \in \tau \) is e-I-open but it is neither semi*-I-open nor somewhat open.

Theorem 31. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is an somewhat-open function and \(g : (Y, \sigma) \rightarrow (Z, \zeta, I) \) is a somewhat e-I-open function, then \(g \circ f : (X, \tau) \rightarrow (Z, \zeta, I) \) is somewhat e-I-open.

Proof. Suppose that \(U \in \tau \) and \(U \neq \emptyset \). Since \(f \) is somewhat-open, there exists an open set \(G \) of \((Y, \sigma) \) such that \(\emptyset \neq G \) and \(G \subset f(U) \). Since \(g \) is somewhat e-I-open, there exists an e-I-open set \(V \in \zeta \) such that \(\emptyset \neq V \subset g(G) \subset (g \circ f)(U) \). This implies that \(g \circ f \) is somewhat e-I-open. \(\square \)

Theorem 32. Let \(f : (X, \tau) \rightarrow (Y, \sigma, I) \) be a bijective function. Then the following are equivalent:

1. \(f \) is somewhat e-I-open;
2. If \(M \) is a closed set of \(X \) such that \(f(M) \neq Y \), then there is an e-I-closed set \(D \) of \(Y \) such that \(D \neq Y \) and \(D \supset f(M) \).

Proof. (1) \(\Rightarrow \) (2): Let \(M \) be a closed set of \(X \) such that \(f(M) \neq Y \). Then \(X - M \) is an open set in \(X \) and \(X - M \neq \emptyset \). Since \(f \) is somewhat e-I-open, there exists an e-I-open set \(V \) in \(X \) such that \(\emptyset \neq V \) and \(V \subset f(X - M) \). Put \(D = Y - V \). Clearly \(D \) is e-I-closed in \(Y \) and we claim that \(D \neq Y \). For if \(D = Y \), then \(V = \emptyset \) which is a contradiction. Since \(V \subset f(X - M) \) and \(f \) is bijective, \(D = Y - V \supset Y - [f(X - M)] = f(M) \).

(2) \(\Rightarrow \) (1): Let \(U \) be any nonempty open set in \(X \). Put \(M = X - U \). Then \(M \) is a proper closed set of \(X \) and \(f(M) \neq Y \). Therefore, by (2) there is an
e-I-closed subset D of Y such that $D \neq Y$ and $f(M) \subset D$. Put $V = Y - D$. Clearly V is an e-I-open set and $V \neq \emptyset$. Further, $V = Y - D \subset Y - f(M) = Y - [Y - f(U)] = f(U)$.

Theorem 33. If $f : (X, \tau) \to (Y, \sigma, I)$ is a somewhat e-I-open function and A is an open set of X, then $f/A : (A, \tau/A) \to (Y, \sigma, I)$ is also somewhat e-I-open.

Proof. Let $U \in \tau/A$ such that $U \neq \emptyset$. Since U is open in A and A is open in (X, τ), U is open in (X, τ). By hypothesis, $f : (X, \tau) \to (Y, \sigma, I)$ is somewhat e-I-open and there exists an e-I-open set V in Y such that $\emptyset \neq V \subset f(U)$. Thus for any open set U in $(A, \tau/A)$ with $U \neq \emptyset$, there exists an e-I-open set V in Y such that $\emptyset \neq V \subset f(U)$ which implies that f/A is somewhat e-I-open.

Theorem 34. Let (X, τ) be a topological space, (Y, σ, I) be an ideal topological space and $X = A \cup B$, where A and B are open sets of X. If $f : (X, \tau) \to (Y, \sigma, I)$ is a function such that f/A and f/B are somewhat e-I-open, then f is somewhat e-I-open.

Proof. Let U be any open set of (X, τ) such that $U \neq \emptyset$. Since $X = A \cup B$, there are three Cases (1) $A \cap U \neq \emptyset$, (2) $B \cap U \neq \emptyset$ or (3) both $A \cap U \neq \emptyset$ and $B \cap U \neq \emptyset$.

Case (1). Since $A \cap U \subset \tau/A$ and f/A is somewhat e-I-open, there exists an e-I-open set V in Y such that $\emptyset \neq V \subset f(U)$. This shows that f is somewhat e-I-open. The other cases are similarly proved.

References

