A NOTE ON INNER AUTOMORPHISM ON BANACH ALGEBRAS

A. Zivari-Kazempour, M. Firouzeh
Department of Mathematics
University of Ayatollah Borujerdi
Borujerd, IRAN

Abstract: In this paper we prove that every unital Banach algebra A is commutative if and only if $\text{Inn}(A) = \{I\}$, where I is the identity map on A. Some related result are given as well.

AMS Subject Classification: 46L05, 46H25
Key Words: inner automorphism, bounded approximate identity, Banach algebra

1. Introduction

Let A be a Banach algebra. It is well-known, on the second dual space A'' of A, there are two multiplications, called the first and second Arens products which make A'' into a Banach algebra (see [1], [3]). By definition, the first Arens product □ on A'' is induced by the left A-module structure on A. That is, for each $\Phi, \Psi \in A''$, $f \in A'$ and $a, b \in A$, we have

$$\langle \Phi \Box \Psi, f \rangle = \langle \Phi, \Psi \cdot f \rangle, \quad \langle \Psi \cdot f, a \rangle = \langle \Psi, f \cdot a \rangle, \quad \langle f \cdot a, b \rangle = \langle f, ab \rangle.$$

Similarly, the second Arens product \Diamond on A'' is defined by considering A as a right A-module. The Banach algebra A is said to be Arens regular if $\Phi \Box \Psi = \ldots$
Φ♦Ψ on the whole of A''. For example, each C^*-algebra is Arens regular and for locally compact group G, the group algebra $L^1(G)$ is Arens regular if and only if G is finite [7]. Some results about the Arens regularity of Banach algebras obtained in [6]. We denote the canonical embedding of A into A'' by k, so

$$\langle k(a), \lambda \rangle = \langle \hat{a}, \lambda \rangle = \langle \lambda, a \rangle,$$

$(a \in A, \lambda \in A')$.

Clearly, $a \cdot \Phi = a \square \Phi$ and $\Phi \cdot a = \Phi \square a$, for all $a \in A$ and $\Phi \in A''$.

An automorphism on Banach algebra A is an isomorphism of A onto A. The set of automorphisms of A is denoted $Aut(A)$. Note that $Aut(A)$ is a Banach algebra under function composition.

Let A be a unital Banach algebra and let $a \in Inv(A)$, where $Inv(A)$ is the set of all invertible elements of A. Let $f_a : A \rightarrow A$ be a mapping defined by $f_a(x) = a^{-1}xa$, for all $x \in A$. Clearly, f_a is an automorphism on A. Each such automorphism is called an inner automorphism on A. We denote by $Inn(A)$, the set of all inner automorphism on A.

A bounded net $(e_\alpha)_{\alpha \in I}$ in A is a bounded approximate identity (BAI for short) if, for each $a \in A$, $ae_\alpha \rightarrow a$ and $e_\alpha a \rightarrow a$.

In this note for every unital Banach algebra, we show that the identity map I is the only inner automorphism on A if and only if A is commutative. Also we investigate some results about the inner automorphism on Arens regular Banach algebras and C^*-algebras.

The proof of the following result contained in [7].

Theorem 1. Let G be an infinite locally compact group. Then neither $L^1(G)$ nor $M(G)$ is Arens regular.

2. Main Results

Proposition 2. Let A be a unital Banach algebra. Then $\varphi : A \rightarrow Aut(A)$ given by $\varphi(a) = f_a$ is an anti-homomorphism onto $Inn(A)$.

Proof. Obviously, φ maps onto $Inn(A)$. Let $a, b \in A$, then for all $x \in A$,

$$(\varphi(a)\varphi(b))(x) = (f_a \circ f_b)(x) = (ba)^{-1}x(ba) = f_{ba}(x) = \varphi(ba)(x).$$

Thus, $\varphi(ba) = \varphi(a)\varphi(b)$. So, φ is a anti-homomorphism.
Theorem 3. Let \(A \) be a unital Banach algebra. Then
\[
A = \text{lin}(\text{Inv}(A)).
\]

Proof. Let \(e \) be a unit element of \(A \), and let \(a \in A \) such that \(\|a\| < 1 \). Then by Theorem 1.2.2 of [5], \(e - a \in \text{Inv}(A) \), and so the equality \(a = -(e - a) + e \) implies that \(a \in \text{Inv}(A) \). Therefore for all \(a \in A \) with \(\|a\| < 1 \), \(A = \text{lin}(\text{Inv}(A)) \). Now let \(\|a\| \geq 1 \). Put \(b = \frac{a}{2\|a\|} \), then \(\|b\| < 1 \). Then by the above argument \(b \in \text{Inv}(A) \), which imply that \(a \) is invertible. Therefore \(A = \text{lin}(\text{Inv}(A)) \), for all \(a \in A \). This complete the proof. \(\square \)

Since the second dual of every Arens regular Banach algebra with BAI, is unital [2], so we get the following result.

Corollary 4. Let \(A \) be an Arens regular Banach algebra with BAI. Then
\[
A'' = \text{lin}(\text{Inv}(A'')).
\]

The next result is a characterization of inner automorphism.

Theorem 5. Let \(A \) be a unital Banach algebra. Then \(A \) is commutative if and only if \(\text{Inn}(A) = \{I\} \), where \(I \) is the identity map on \(A \).

Proof. Suppose that \(A \) is commutative and let \(f_a \) be a arbitrary inner automorphism on \(A \). Then for all \(x \in A \),
\[
f_a(x) = a^{-1}xa = x = I(x).
\]
Thus, \(\text{Inn}(A) = \{I\} \), where \(I \) is the identity map on \(A \).

For the converse, suppose that \(I \) is the only inner automorphism on \(A \), so there exist \(a \in \text{Inv}(A) \) such that \(I = f_a \). Then for all \(x \in A \),
\[
x = I(x) = f_a(x) = a^{-1}xa.
\]
Thus, \(ax = xa \) for all \(x \in A \), and \(a \in \text{Inv}(A) \). Now let \(y \in A \) be arbitrary. Then by Theorem 3,
\[
y = \sum_{i=1}^{n} \lambda_i a_i,
\]
where \(a_i \) belongs in \(\text{Inv}(A) \). Therefore
\[
xy = x(\sum_{i=1}^{n} \lambda_i a_i) = (\sum_{i=1}^{n} \lambda_i a_i)x = yx.
\]
Thus, \(A \) is commutative. \(\square \)
Examples 6. a) Suppose that
\[A = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a, b \in \mathbb{C} \right\}. \]
Then \(A \) is unital and commutative Banach algebra, hence by above Theorem the identity map \(I \) is the only inner automorphism on \(A \), that is \(Inn(A) = \{ I \} \).
b) Let \(G \) be a locally compact abelian group and \(A = L^1(G) \) be its group algebra. Suppose that \(G \) is discrete, then \(Inn(A) = \{ I \} \).

As an immediate corollary we have the following.

Corollary 7. Let \(A \) be an Arens regular Banach algebra with a BAI. Then the following statement are equivalent.

1. \(A \) is commutative.
2. \(A'' \) is commutative.
3. \(Inn(A'') = \{ I'' \} \), where \(I'' \) is the identity map on \(A'' \).

Moreover, if \(A \) is unital, then (1), (2) and (3) are equivalent with

4. \(Inn(A) = \{ I \} \), where \(I \) is the identity map on \(A \).

Since every \(C^* \)-algebra is Arens regular and has a BAI, so we have the next result.

Corollary 8. Let \(A \) be a commutative \(C^* \)-algebra. Then \(Inn(A'') = \{ I'' \} \), where \(I'' \) is the identity map on \(A'' \).

Let \(G \) be an infinite locally compact abelian group and let \(A = M(G) \), the Banach algebra of all bounded complex-valued regular Borel measures on \(G \). Then \(A \) is unital and commutative, so \(Inn(A) = \{ I \} \), where \(I \) is the identity map on \(A \). Note that \(A'' \) is unital but it is not commutative, therefore \(Inn(A'') \neq \{ I'' \} \), by Corollary 7. Thus, the Arens regularity of Banach algebra \(A \) in Corollary 7 is essential.

Theorem 9. Let \(A \) be a unital Banach algebra. Let \(p_1 \in Aut(A) \), and suppose that for every homomorphism \(T \) of \(A \) into a unital Banach algebra \(B \), there exists \(p_2 \in Aut(B) \) such that \(p_2 \circ T = T \circ p_1 \). Then

1. If \(T \) is surjective and \(p_1 \in Inn(A) \), then \(p_2 \in Inn(B) \).
2. If \(T \) is injective and \(p_2 \in Inn(B) \), then \(p_1 \in Inn(A) \).
Proof. We prove (1) that the assertion (2) can be proved similarly. Suppose that T is surjective and $p_1 \in \text{Inn}(A)$. Then there exist $a \in \text{Inv}(A)$ such that $p_1 = f_a$. By assumption for every $y \in B$ there exist $x \in A$ such that $T(x) = y$. Hence

$$p_2(y) = p_2(T(x)) = T(p_1(x)) = T(a^{-1}xa) = T^{-1}(a)yT(a),$$

which proves that $p_2 \in \text{Inn}(B)$.

Theorem 10. Let A be a unital Banach algebra and let $p \in \text{Aut}(A)$. Then $p \in \text{Inn}(A)$ if and only if $p'' \in \text{Inn}(A'')$, where p'' is the second adjoint of p.

Proof. Suppose that $p'' \in \text{Inn}(A'')$. Since the canonical embedding $k : A \rightarrow A''$ is monomorphism and $p'' \circ k = k \circ p$, hence by Theorem 9, $p \in \text{Inn}(A)$.

For the converse, let $p \in \text{Inn}(A)$, so there exist $a \in \text{Inv}(A)$ such that $p = f_a$. Let $\Phi \in A''$ be arbitrary. Then by Goldstine’s Theorem there exist bounded net $(x_\alpha) \subseteq A$ that $x_\alpha \rightarrow \Phi$ in the w^*-topology of A''. Then

$$p''(\Phi) = f''_a(\Phi) = f''_a(w^* - \lim_{\alpha} x_\alpha) = w^* - \lim_{\alpha} f_a(x_\alpha) = a^{-1} \cdot \Phi \cdot a.$$

Thus, $p'' \in \text{Inn}(A'')$.

We denote by A^{op} the opposite algebra of A, so that A^{op} is the same linear space as A, but the product is \diamond, where $a \diamond b = ba$.

Proposition 11. Let A be a unital Banach algebra. Then $\text{Inn}(A) = \text{Inn}(A^{op})$.

Proof. Suppose that $p \in \text{Inn}(A)$, so there exist $a \in \text{Inv}(A)$ such that $p = f_a$. Then for all $x \in A$,

$$p(x) = f_a(x) = a^{-1}xa = a \circ x \circ a^{-1}.$$

Take $b = a^{-1}$. Then $p = f_b$, which proves that $p \in \text{Inn}(A^{op})$. The converse is similar.

Let $A = K(c_0)$, the operator algebra of all compact linear operators on the sequence space c_0. Then by Example 2.5 of [4] A has a BAI, (A'', \Box) is unital but (A'', \Diamond) is not unital. Note that A false to be Arens regular. However, $\text{Inn}(A'', \Box) \neq \text{Inn}(A'', \Diamond)$.

Corollary 12. Suppose that A is a unital Banach algebra which is commutative. Then $\text{Inn}(A'', \Box) = \text{Inn}(A'', \Diamond)$.
Proof. Since \(\mathcal{A} \) is commutative, we have \((\mathcal{A}''', \Diamond) = (\mathcal{A}'', \Box)^{\text{op}} \). Thus, the result follows from Proposition 11. \(\square \)

References