International Journal of Pure and Applied Mathematics

Volume 107 No. 3 2016, 759-771

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu **doi:** 10.12732/ijpam.v107i3.22

SOFT CLOSURE OPERATORS, SOFT TOPOLOGIES AND SOFT QUASI-UNIFORMITIES

Yong Chan Kim

Department of Mathematics Gangneung-Wonju University Gangneung, Gangwondo, 210-702, KOREA

Abstract: In this paper, we study the notions of soft closure operators in complete residuated lattices. We investigate the relations among soft topologies, soft closure operators and soft L-quasi-uniformities in complete residuated lattices. We give their examples.

AMS Subject Classification: 03E72, 06A15, 06F07, 54A05

Key Words: complete residuated lattice, soft quasi-uniformities, soft topologies, soft closure operators, uniformly continuous soft map, continuous soft maps

1. Introduction

Hájek [4] introduced a complete residuated lattice which is an algebraic structure for many valued logic. It is an important mathematical tool for algebraic structures [5,7-9]. Recently, Molodtsov [11] introduced the soft set as a mathematical tool for dealing information as the uncertainty of data in engineering, physics, computer sciences and many other diverse field. Presently, the soft set theory is making progress rapidly [1,3]. Pawlak's rough set [12,13] can be viewed as a special case of soft rough sets [3]. The topological structures of soft sets have been developed by many researchers [2,7-9,14-17].

Ko [7] introduced a fuzzy soft $F:A\to L^U$ as an extension as the soft $F:A\to P(U)$ where L is a complete residuated lattice. Ko [7-9] introduced the soft topological structures, L-fuzzy quasi-uniformities and soft L-fuzzy topogenous orders in complete residuated lattices.

Received: April 10, 2016 © 20 Published: April 22, 2016

© 2016 Academic Publications, Ltd. url: www.acadpubl.eu

In this paper, we study the notions of soft closure operators in complete residuated lattices. We investigate the relations among soft topologies, soft closure operators and soft L-quasi-uniformities in complete residuated lattices. We give their examples.

2. Preliminaries

Definition 1. [4,5] An algebra $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a complete residuated lattice if it satisfies the following conditions:

- (C1) $L = (L, \leq, \vee, \wedge, 1, 0)$ is a complete lattice with the greatest element 1 and the least element 0;
 - (C2) $(L, \odot, 1)$ is a commutative monoid;
 - (C3) $x \odot y \le z$ iff $x \le y \to z$ for $x, y, z \in L$.

In this paper, we assume that $(L, \leq, \odot, \rightarrow)$ is a complete residuated lattice.

Lemma 2. [4,5] For each $x, y, z, x_i, y_i, w \in L$, we have the following properties.

- (1) $1 \to x = x$, $0 \odot x = 0$,
- (2) If $y \leq z$, then $x \odot y \leq x \odot z$, $x \to y \leq x \to z$ and $z \to x \leq y \to x$,
- $(3) \ x \odot y \le x \land y \le x \lor y,$
- $(4) \ x \odot (\bigvee_i y_i) = \bigvee_i (x \odot y_i),$
- (5) $x \to (\bigwedge_i y_i) = \bigwedge_i (x \to y_i),$
- (6) $(\bigvee_i x_i) \to y = \bigwedge_i (x_i \to y),$
- $(7) x \to (\bigvee_i y_i) \ge \bigvee_i (x \to y_i),$
- (8) $(\bigwedge_i x_i) \to y \ge \bigvee_i (x_i \to y),$
- $(9)\ (x\odot y)\to z=x\to (y\to z)=y\to (x\to z),$
- (10) $x \odot (x \to y) \le y$ and $x \to y \le (y \to z) \to (x \to z)$,
- $(11) (x \to y) \odot (z \to w) \le (x \odot z) \to (y \odot w),$
- (12) $x \to y \le (x \odot z) \to (y \odot z)$ and $(x \to y) \odot (y \to z) \le x \to z$.

Definition 3. [7-9] Let X be an initial universe of objects and E the set of parameters (attributes) in X. A pair (F, A) is called a *fuzzy soft set* over X, where $A \subset E$ and $F: A \to L^X$ is a mapping. We denote S(X, A) as the family of all fuzzy soft sets under the parameter A.

Definition 4. [7-9] Let (F, A) and (G, A) be two fuzzy soft sets over a common universe X.

- (1) (F, A) is a fuzzy soft subset of (G, A), denoted by $(F, A) \leq (G, A)$ if $F(a) \leq G(a)$, for each $a \in A$.
 - (2) $(F, A) \wedge (G, A) = (F \wedge G, A)$ if $(F \wedge G)(a) = F(a) \wedge G(a)$ for each $a \in A$.
 - (3) $(F, A) \vee (G, A) = (F \vee G, A)$ if $(F \vee G)(a) = F(a) \vee G(a)$ for each $a \in A$.
 - (4) $(F, A) \odot (G, A) = (F \odot G, A)$ if $(F \odot G)(a) = F(a) \odot G(a)$ for each $a \in A$.
 - (6) $\alpha \odot (F, A) = (\alpha \odot F, A)$ for each $\alpha \in L$.

Definition 5. [7-9] Let S(X,A) and S(Y,B) be the families of all fuzzy soft sets over X and Y, respectively. The mapping $f_{\phi}: S(X,A) \to S(Y,B)$ is a soft mapping where $f: X \to Y$ and $\phi: A \to B$ are mappings.

(1) The image of $(F, A) \in S(X, A)$ under the mapping f_{ϕ} is denoted by $f_{\phi}((F, A)) = (f_{\phi}(F), B)$, where

$$f_{\phi}(F)(b)(y) = \begin{cases} \bigvee_{a \in \phi^{-1}(\{b\})} f^{\rightarrow}(F(a))(y), & \text{if } \phi^{-1}(\{b\}) \neq \emptyset, \\ 0, & \text{otherwise.} \end{cases}$$

(2) The inverse image of $(G,B) \in S(Y,B)$ under the mapping f_{ϕ} is denoted by $f_{\phi}^{-1}((G,B)) = (f_{\phi}^{-1}(G),A)$ where

$$f_\phi^{-1}(G)(a)(x) = f^\leftarrow(G(\phi(a)))(x), \ \forall a \in A, x \in X.$$

- (3) The soft mapping $f_{\phi}: S(X,A) \to S(Y,B)$ is called injective (resp. surjective, bijective) if f and ϕ are both injective (resp. surjective, bijective).
- **Lemma 6.** [7-9] Let $f_{\phi}: S(X,A) \to S(Y,B)$ be a soft mapping. Then we have the following properties. For $(F,A), (F_i,A) \in S(X,A)$ and $(G,B), (G_i,B) \in S(Y,B)$,
 - (1) $(G,B) \ge f_{\phi}(f_{\phi}^{-1}((G,B)))$ with equality if f is surjective,

(2) $(F,A) \leq f_{\phi}^{-1}(f_{\phi}((F,A)))$ with equality if f is injective,

(3)
$$f_{\phi}^{-1}(\bigvee_{i \in I}(G_i, B)) = \bigvee_{i \in I} f_{\phi}^{-1}((G_i, B)),$$

(4)
$$f_{\phi}^{-1}(\bigwedge_{i \in I}(G_i, B)) = \bigwedge_{i \in I} f_{\phi}^{-1}((G_i, B)),$$

- (5) $f_{\phi}(\bigvee_{i\in I}(F_i,A)) = \bigvee_{i\in I} f_{\phi}((F_i,A)),$
- (6) $f_{\phi}(\bigwedge_{i \in I}(F_i, A)) \leq \bigwedge_{i \in I} f_{\phi}((F_i, A))$ with equality if f is injective,
- (7) $f_{\phi}^{-1}((G_1, B) \odot (G_2, B)) = f_{\phi}^{-1}((G_1, B)) \odot f_{\phi}^{-1}((G_2, B)),$
- (8) $f_{\phi}((F_1, A) \odot (F_2, A)) \leq f_{\phi}((F_1, A)) \odot f_{\phi}((F_2, A))$ with equality if f is injective.

Definition 7. [7-9] A map $\tau \subset S(X,A)$ is called a soft topology on X if it satisfies the following conditions.

(ST1) $(0_X, A), (1_X, A) \in \tau$, where $0_X(a)(x) = 0, 1_X(a)(x) = 1$ for all $a \in A, x \in X$,

(ST2) If
$$(F, A), (G, A) \in \tau$$
, then $(F, A) \odot (G, A) \in \tau$,

(ST3) If
$$(F_i, A) \in \tau$$
 for each $i \in I$, $\bigvee_{i \in I} (F_i, A) \in \tau$.

The triple (X, A, τ) is called a soft topological space.

Let (X, A, τ_X) and (Y, B, τ_Y) be soft topological spaces. A soft map f_{ϕ} : $(X, A, \tau_X) \to (Y, B, \tau_Y)$ is called a continuous soft map if $f_{\phi}^{-1}(G, B) \in \tau_X$, for all $(G, B) \in \tau_Y$.

Definition 8. [7-9] A subset $\mathbf{U} \subset S(X \times X, A)$ is called a soft L-quasi-uniformity on X iff it satisfies the properties.

- (SU1) $(1_{X\times X}, A) \in \mathbf{U}$.
- (SU2) If $(V, A) \leq (U, A)$ and $(V, A) \in \mathbf{U}$, then $(U, A) \in \mathbf{U}$.
- (SU3) For every $(U, A), (V, A) \in \mathbf{U}, (U, A) \odot (V, A) \in \mathbf{U}$.
- (SU4) If $(U, A) \in \mathbf{U}$ then $(1_{\triangle}, A) \leq (U, A)$ where

$$1_{\triangle}(a)(x,y) = \begin{cases} 1, & \text{if } x = y \\ 0, & \text{if } x \neq y, \end{cases}$$

(SU5) For every $(U, A) \in \mathbf{U}$, there exists $(V, A) \in \mathbf{U}$ such that $(V, A) \circ (V, A) \leq (U, A)$ where

$$((V, A) \circ (V, A))(a)(x, y) = (V(a) \circ V(a))(x, y) = \bigvee_{z \in X} (V(a)(z, x) \odot V(a)(x, y)), \quad \forall \ x, y \in X, a \in A.$$

The triple (X, A, \mathbf{U}) is called a soft L-quasi-uniform space.

Let (X, A, \mathbf{U}_X) and (Y, B, \mathbf{U}_Y) be soft quasi-uniform spaces. A soft map $f_{\phi}: (X, A, \mathbf{U}_X) \to (Y, B, \mathbf{U}_Y)$ is called an uniformly continuous soft map if $(f \times f)_{\phi}^{-1}(V, B) \in \mathbf{U}_X$, for all $(V, B) \in \mathbf{U}_Y$.

3. Soft Closure Operators, Soft Topologies and Soft Quasi-Uniformities

Definition 9. A mapping $cl: S(X,A) \to S(X,A)$ is called a soft closure operator if it satisfies the following conditions:

- (C1) $cl(0_X, A) = (0_X, A),$
- (C2) $cl(F, A) \ge (F, A)$,
- (C3) If $(F, A) \leq (G, A)$, then $cl(F, A) \leq cl(G, A)$,
- $(C4) \ cl(cl(F, A)) = (F, A),$
- (C5) $cl((F, A) \odot (G, A)) \le cl(F, A) \odot cl(G, A)$.

The triple (X, A, cl) is called a soft closure space.

Let (X, A, cl_X) and (Y, B, cl_Y) be soft closure spaces and $f_{\phi}: (X, A) \to (Y, B)$ be a map. Then f_{ϕ} is called a closure soft map if, for each $(F, A) \in S(X, A)$,

$$cl_Y(f_\phi(F,A)) \ge f_\phi(cl_X(F,A)).$$

Theorem 10. Let (X, A, \mathbf{U}) be a soft quasi-uniform space. Define $cl^r_{\mathbf{U}}, cl^l_{\mathbf{U}}: S(X, A) \to S(X, A)$ as follows

$$cl_{\mathbf{U}}^{r}(F,A)(y) = \bigwedge_{(U,A)\in\mathbf{U}} (\bigvee_{x\in X} (U,A)(y,x)\odot(F,A)(x)),$$

$$cl_{\mathbf{U}}^{l}(F,A)(y) = \bigwedge_{(U,A)\in\mathbf{U}} (\bigvee_{x\in X} (U,A)(x,y)\odot(F,A)(x)).$$

Then, for $cl \in \{cl_{\mathbf{I}}^r, cl_{\mathbf{I}}^l\}$, we have following properties:

- (1) $cl(0_X, A) = (0_X, A)$ and $cl(F, A) \le cl(G, A)$ for $(F, A) \le (G, A)$.
- $(2) (F, A) \le cl(F, A).$
- (3) cl(cl(F, A)) = cl(F, A).
- (4) If L satisfies $a \odot \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \odot b_i)$, then $cl((F, A) \odot (G, A)) \le cl(F, A) \odot cl(G, A)$.

Proof. (1) Since $(U, A)(y, x) \odot (0_X, A)(x) = (0_X, A)(y)$, $cl(0_X, A) = (0_X, A)$. Other case it is trivial.

(2) For
$$(U, A) \in \mathbf{U}$$
, since $(1_{\triangle}, A) \leq (U, A)$ from (SU4),

$$\bigvee_{x \in X} (U, A)(y, x) \odot (F, A)(x))$$

$$\geq \bigvee_{x \in X} (1_{\triangle}, A)(y, x) \odot (F, A)(x) = (F, A)(x).$$

Hence $cl_{\mathbf{H}}^r(F,A) \geq (F,A)$.

(3)

$$\begin{split} cl^r_{\mathbf{U}}(F,A)(y) &= \bigwedge_{(U,A)\in\mathbf{U}}(\bigvee_{x\in X}(U,A)(y,x)\odot(F,A)(x))\\ &\geq \bigwedge_{(U_1,A)\in\mathbf{U}}(\bigvee_{x\in X}\bigvee_{z\in X}(U_1,A)(y,z)\\ &\odot(U_1,A)(z,x)\odot(F,A)(x)) \text{ (by (SU5))}\\ &\geq \bigwedge_{(U_1,A)\in\mathbf{U}}(\bigvee_{z\in X}(U_1,A)(y,z)\odot\\ &\bigwedge_{(U_1,A)\in\mathbf{U}}\bigvee_{x\in X}(U_1,A)(z,x)\odot(F,A)(x))\\ &= \bigwedge_{(U_1,A)\in\mathbf{U}}(\bigvee_{z\in X}(U_1,A)(y,z)\odot cl^r_{\mathbf{U}}(F,A)(z))\\ &= cl^r_{\mathbf{U}}(cl^r_{\mathbf{U}}(F,A))(y). \end{split}$$

$$(4) cl_{\mathbf{U}}^{r}((F,A) \odot (G,A))(y) = \bigwedge_{U \in \mathbf{U}}(\bigvee_{x \in X}(U,A)(y,x) \odot (F,A)(x) \odot (G,A)(x)) = \bigwedge_{U_{1} \odot U_{2} \in \mathbf{U}}(\bigvee_{x \in X}(U_{1},A)(y,x) \odot (U_{2},A)(y,x) \odot (F,A)(x) \odot (G,A)(x)) \leq \bigwedge_{U_{1},U_{2} \in \mathbf{U}}(\bigvee_{x \in X}(U_{1},A)(y,x) \odot (U_{2},A)(y,x) \odot (F,A)(x) \odot (G,A)(x)) = \bigwedge_{U_{1} \in \mathbf{U}}(\bigvee_{x \in X}(U_{1},A)(y,x) \odot (F,A)(x)) \odot \bigwedge_{U_{2} \in \mathbf{U}}(\bigvee_{x \in X}(U_{2},A)(y,x) \odot (G,A)(x)) = cl_{\mathbf{U}}^{r}(F,A)(y) \odot cl_{\mathbf{U}}^{r}(G,A)(y).$$

For $cl_{\mathbf{I}\mathbf{I}}^l$, it is similarly proved.

Remark 11. If (L, \odot) is a continuous t-norm, then $a \odot \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \odot b_i)$.

Theorem 12. Let (X, A, \mathbf{U}) be a soft quasi-uniform space and $a \odot \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \odot b_i)$ for $a, b_i \in L$. Define $\tau^r_{\mathbf{U}}, \tau^l_{\mathbf{U}} \subset S(X, A)$ as follows

$$\tau_{\mathbf{U}}^{r} = \{ (F, A) \in S(X, A) \mid cl_{\mathbf{U}}^{r}(F, A) = (F, A) \},$$

$$\tau_{\mathbf{U}}^{l} = \{ (F, A) \in S(X, A) \mid cl_{\mathbf{U}}^{l}(F, A) = (F, A) \}.$$

Then (1) $\tau_{\mathbf{U}}^r$ is a soft topology on X such that $\tau_{\mathbf{U}}^r = \{cl_{\mathbf{U}}^r(F, A) \mid (F, A) \in S(X, A)\}.$

(2) $\tau_{\mathbf{U}}^l$ is a soft topology on X such that $\tau_{\mathbf{U}}^l=\{cl_{\mathbf{U}}^l(F,A)\mid (F,A)\in S(X,A)\}.$

Proof. (1) (ST1) Since $cl_{\mathbf{U}}^{r}(0_{X}, A) = (0_{X}, A)$ and $cl_{\mathbf{U}}^{r}(1_{X}, A) \geq (1_{X}, A)$, then $(0_{X}, A), (1_{X}, A) \in \tau_{\mathbf{U}}^{r}$.

(ST2) Let $(F,A), (G,A) \in \tau^r_{\mathbf{U}}$. Then $cl^r_{\mathbf{U}}(F,A) = (F,A)$ and $cl^r_{\mathbf{U}}(G,A) = (G,A)$. It follows

$$cl_{\mathbf{U}}^{r}((F, A) \odot (G, A)) \leq cl_{\mathbf{U}}^{r}(F, A) \odot cl_{\mathbf{U}}^{r}(G, A)$$

= $(F, A) \odot (G, A)$.

Thus $(F, A) \odot (G, A) \in \tau_{\mathbf{U}}^r$.

(ST3) Let $(F_i, A) \in \tau_{\mathbf{U}}^r$ for each $i \in I$. Then

$$\bigwedge_{U \in \mathbf{U}} \left(\bigvee_{x \in X} (U, A)(y, x) \odot (F_i, A)(x) \right) = (F_i, A)(y).$$

$$\begin{array}{l} \bigwedge_{U \in \mathbf{U}} (\bigvee_{x \in X} (U,A)(y,x) \odot \bigvee_{i \in I} (F_i,A)(x)) \\ = \bigwedge_{U \in \mathbf{U}} \bigvee_{i \in I} (\bigvee_{x \in X} (U,A)(y,x) \odot (F_i,A)(x)) \\ = \bigvee_{i \in I} \bigwedge_{U \in \mathbf{U}} (\bigvee_{x \in X} (U,A)(y,x) \odot (F_i,A)(x)) \\ \leq \bigvee_{i \in I} (F_i,A)(y). \end{array}$$

By Theorem 10(2), $c_{\mathbf{U}}^r(\bigvee_{i\in I}(F_i,A)) = \bigvee_{i\in I}(F_i,A)$. So, $\bigvee_{i\in I}(F_i,A) \in \tau_{\mathbf{U}}^r$. Thus $\tau_{\mathbf{U}}^r$ is a soft topology. Put $\tau = \{cl_{\mathbf{U}}^r(F,A) \mid (F,A) \in S(X,A)\}$. Let $cl_{\mathbf{U}}^r(F,A) \in \tau_{\mathbf{U}}^r$. Since $cl_{\mathbf{U}}^r(cl_{\mathbf{U}}^r(F,A)) = cl_{\mathbf{U}}^r(F,A)$, $cl_{\mathbf{U}}^r(F,A) \in \tau_{\mathbf{U}}^r$. Let $(F,A) \in \tau_{\mathbf{U}}^r$. Since $(F,A) = cl_{\mathbf{U}}^r(F,A)$, $(F,A) \in \tau$. Hence $\tau = \tau_{\mathbf{U}}^r$.

(2) It is similarly proved in (1).

Theorem 13. Let $f_{\phi}:(X,A,\mathbf{U}_X)\to (Y,B,\mathbf{U}_Y)$ be an uniform continuous soft map. Then

- (1) $f_{\phi}: (X, A, \tau_{\mathbf{U}_{Y}}^{r}) \to (Y, B, \tau_{\mathbf{U}_{Y}}^{r})$ is a continuous soft map.
- (2) $f_{\phi}: (X, A, \tau_{\mathbf{U}_X}^l) \to (Y, B, \tau_{\mathbf{U}_Y}^l)$ is a continuous soft map.
- (3) $f_{\phi}(cl_{\mathbf{U}}^r(F,A)) \leq cl_{\mathbf{U}_Y}^r(f_{\phi}(F,A)).$
- (4) $f_{\phi}(cl_{\mathbf{U}}^{l}(F, A)) \leq cl_{\mathbf{U}_{Y}}^{l}(f_{\phi}(F, A)).$

Proof (1) Since $(f \times f)_{\phi}^{-1}(V) \in \mathbf{U}_X$ for each $(V, B) \in \mathbf{U}_Y$, let $(G, B) \in \tau_{\mathbf{U}_Y}$, that is,

$$\bigwedge_{(V,B)\in \mathbf{U}_Y} (\bigvee_{w\in Y} (V,B)(y,w)\odot (G,B)(w)) = (G,B)(y), \forall y\in Y,$$

we have

$$\begin{split} & \bigwedge_{(U,A) \in \mathbf{U}_X} (\bigvee_{x \in X} (U,A)(x,z) \odot f_\phi^{-1}(G,B)(z)) \\ & \leq \bigwedge_{(f \times f)_\phi^{-1}(V,B) \in \mathbf{U}_X} (\bigvee_{x \in X} (f \times f)_\phi^{-1}(V,B)(x,z) \odot f_\phi^{-1}(G,B)(z)) \\ & \leq \bigwedge_{(f \times f)_\phi^{-1}(V,B) \in \mathbf{U}_X} (\bigvee_{x \in X} (V,B)(f(x),f(z)) \odot (G,B)(f(z))) \\ & \leq \bigwedge_{(V,B) \in \mathbf{U}_Y} (\bigvee_{x \in X} (V,B)(f(x),f(z)) \odot (G,B)(f(z))) \\ & \leq (G,B)(f(x)) = f_\phi^{-1}(G,B)(x). \end{split}$$

By Theorem 10(2), $f_{\phi}^{-1}(G, B) \in \tau_{\mathbf{U}_Y}$.

(3)

$$cl_{\mathbf{U}_{Y}}^{r}(f_{\phi}(F,A))(y)$$

$$= \bigwedge_{(V,B)\in\mathbf{U}_{Y}}\bigvee_{w\in Y}((V,B)(y,w)\odot f_{\phi}(F,A)(w))$$

$$\geq \bigwedge_{(V,B)\in\mathbf{U}_{Y}}\bigvee_{x\in X}((V,B)(y,f(x))\odot f_{\phi}(F,A)(f(x)))$$

$$\geq \bigwedge_{(V,B)\in\mathbf{U}_{Y}}\bigvee_{x\in X}\bigvee_{z\in f^{-1}(y)}((V,B)(f(z),f(x))\odot f_{\phi}(F,A)(f(x)))$$

$$\geq \bigwedge_{(V,B)\in\mathbf{U}_{Y}}\bigvee_{x\in X}\bigvee_{z\in f^{-1}(y)}((f\times f)_{\phi}^{-1}(V,B)(z,x)\odot (F,A)(x))$$

$$\geq \bigvee_{z\in f^{-1}(y)}\bigwedge_{(U,A)\in\mathbf{U}_{X}}\bigvee_{x\in X}((U,A)(z,x)$$

$$\odot(F,A)(x)) = f_{\phi}(cl_{\mathbf{U}_{Y}}^{r}(F,A))(y).$$

(2) and (4) are similarly proved as (1) and (3), respectively.

Lemma 14. For every $(F,A),(G,A)\in S(X,A),$ we define $(U_F,A)\in S(X\times X,A)$ by

$$U_F(a)(x,y) = F(a)(x) \rightarrow F(a)(y).$$

then we have the following statements:

$$(1) (1_{X\times X}, A) = (U_{0_X}, A) = (U_{1_X}, A),$$

(2)
$$(1_{\triangle}, A) \leq (U_F, A),$$

(3)
$$(U_F, A) \circ (U_F, A) = (U_F, A),$$

(4)
$$(U_F, A) \odot (U_G, A) \le (U_{F \odot G}, A)$$
.

Proof. (1)

$$1_{X \times X}(a)(x,y) = 1 = U_{0_X}(a)(x,y) = 0_X(a)(x) \to 0_X(a)(y)$$

= $1_X(a)(x) \to 1_X(a)(y) = U_{1_X}(a)(x,y).$

- (2) Since $U_F(a)(x,x) = F(a)(x) \to F(a)(x) = 0, (1_{\triangle}, A) \le (U_F, A)$.
- (3) $(U_F, A) \circ (U_F, A) \leq (U_F, A)$ from

$$(U_F(a) \circ U_F(a))(x,z) = \bigvee_{y \in X} (U_F(a)(x,y) \circ U_F(a)(y,z))$$

= $\bigvee_{y \in X} ((F(a)(x) \to F(a)(y)) \odot (F(a)(y) \to F(a)(z)))$
 $\leq F(a)(x) \to F(a)(z) = U_F(a)(x,z).$

 $(U_F, A) \circ (U_F, A) \geq (U_F, A)$ from

$$(U_F(a) \circ U_F(a))(x,z) = \bigvee_{y \in X} (U_F(a)(x,y) \circ U_F(a)(y,z))$$

$$\geq ((F(a)(x) \to F(a)(x)) \odot (F(a)(x) \to F(a)(z))) = U_F(a)(x,z).$$

(4) By Lemma 2 (12),

$$U_F(a)(x,y) \odot U_G(a)(x,y)$$

$$= (F(a)(x) \to F(a)(y)) \odot (G(a)(x) \to G(a)(y))$$

$$\leq (F(a)(x) \odot G(a)(x) \to F(a)(y) \odot G(a)(y)$$

$$= U_{F \odot G}(a)(x,y).$$

Theorem 15. Let (X, A, τ) be a soft topological space. Define a function $\mathbf{U}_{\tau}: S(X \times X, A) \to L$ by

$$\mathbf{U}_{\tau} = \{(U, A) \in S(X \times X, A) \mid \bigcirc_{i=1}^{n} (U_{G_i}, A) \leq (U, A), (G_i, A) \in \tau\}$$

where the first \bigvee is taken over every finite family $\{U_{(G_i,A)} \mid i=1,...,n\}$. Then:

- (1) \mathbf{U}_{τ} is a soft quasi-uniformity on X.
- $(2) \ \tau \subset \tau_{\mathbf{U}_{\tau}}^{l}.$

Proof (1) (SU1) Since $(1_X, A) \in \tau$, there exists $(U_{1_X}, A) \in S(X \times X, A)$ such that $(U_{1_X}, A) \in \mathbf{U}_{\tau}$.

(SU2) It is trivial.

(SU3) For $(U,A), (V,A) \in \mathbf{U}_{\tau}$, there exist two finite families $\{(F_i,A) \in \tau \mid \odot_{i=1}^m(U_{F_i},A) \leq (U,A)\}$ and $\{(G_j,A) \in \tau \mid \odot_{j=1}^n(U_{G_j},A) \leq (G,A)\}$. Then $(U,A) \odot (V,A) \geq (\odot_{i=1}^m(U_{F_i},A)) \odot (\odot_{j=1}^n(U_{G_j},A))$. So, $(U,A) \odot (V,A) \in \mathbf{U}_{\tau}$.

(SU4) Let $(U, A) \in \mathbf{U}_{\tau}$. Then there exists a finite family $\{(F_i, A) \in \tau \mid \odot_{i=1}^m (U_{F_i}, A) \leq (U, A)\}$. Since $(U_{F_i}, A) \geq (1_{\triangle}, A)$ from Lemma 14(2),

$$(1_{\triangle}, A) \leq \bigcirc_{i=1}^{m} (U_{F_i}, A) \leq (U, A).$$

(SU5) Let $(U,A) \in \mathbf{U}_{\tau}$. Then there exists a finite family $\{(G_i,A) \in \tau \mid \odot_{i=1}^m(U_{G_i},A) \leq (U,A)\}$. Since $(U_{G_i},A) \circ (U_{G_i},A) = (U_{G_i},A)$ for each $i \in \{1,...,m\}$ from Lemma 14(3), we have $(\odot_{i=1}^m(U_{G_i},A) \circ (\odot_{i=1}^m(U_{G_i},A)) \leq \odot_{i=1}^m(U_{G_i},A)$ from

$$\bigvee_{y \in X} ((\bigcirc_{i=1}^m U_{G_i}(a)(x,y)) \odot (\bigcirc_{i=1}^m U_{G_i}(a)(y,z)))
= \bigvee_{y \in X} ((\bigcirc_{i=1}^m (G_i(a)(x) \to G_i(a)(y)) \odot (\bigcirc_{i=1}^m (G_i(a)(y) \to G_i(a)(z))))
= \bigvee_{y \in X} ((\bigcirc_{i=1}^m (G_i(a)(x) \to G_i(a)(y)) \odot (G_i(a)(y) \to G_i(a)(z))))
\leq \bigcirc_{i=1}^m (G_i(a)(x) \to G_i(a)(z)).$$

Put $(V, A) = \bigoplus_{i=1}^{m} (U_{G_i}, A)$. Then $(V, A) \in \mathbf{U}_{\tau}$ with $(V, A) \circ (V, A) \leq (U, A)$. Hence \mathbf{U}_{τ} is a soft quasi-uniformity on X.

(2) Let $(F, A) \in \tau$. Then $(U_F, A) \in \mathbf{U}_{\tau}$. Since

$$\bigwedge_{U \in \mathbf{U}} (\bigvee_{y \in X} (U, A)(y, x) \odot (F, A)(y))
\leq \bigvee_{y \in X} ((U_F, A)(y, x) \odot (F, A)(y))
= \bigvee_{y \in X} (((F, A)(y) \to (F, A)(x)) \odot (F, A)(y)) \leq (F, A)(x).$$

Hence $(F, A) \in \tau_{\mathbf{U}_{\tau}}^l$.

Theorem 16. Let $f_{\phi}: (X, A, \tau_X) \to (Y, B, \tau_Y)$ be a continuous soft map. Then $f_{\phi}: (X, A, \mathbf{U}_{\tau_X}) \to (Y, B, \mathbf{U}_{\tau_Y})$ is an uniformly continuous soft map.

Proof. We have

$$(f \times f)_{\phi}^{-1}(U_G, B)(a)(x, y) = (U_G, B)(\phi(a))(f(x), f(y))$$

$$= G(\phi(a))(f(x)) \to G(\phi(a))(f(y)) = f_{\phi}^{-1}(G)(a)(x) \to f_{\phi}^{-1}(G)(a)(y)$$

$$= U_{f_{\phi}^{-1}(G)}(a)(x, y).$$

Let $(U,B) \in \mathbf{U}_{\tau_Y}$. Then there exists a finite family $\{(G_i,B) \in \tau_Y \mid \odot_{i=1}^m(U_{G_i},B) \leq (U,B)\}$.

Since $\odot_{i=1}^m(U_{G_i}, B) \leq (U, B)$, we have

$$(f \times f)_{\phi}^{-1}(\odot_{i=1}^{m}(U_{G_{i}},B)) = \odot_{i=1}^{m}(f \times f)_{\phi}^{-1}((U_{G_{i}},B))$$

= $\odot_{i=1}^{m}(U_{f_{\phi}^{-1}(G_{i})},B) \leq (f \times f)_{\phi}^{-1}((U,B)).$

So, $(f \times f)_{\phi}^{-1}((U, B)) \in \mathbf{U}_{\tau_X}$.

Example 17. Let $X = \{h_i \mid i = \{1, ..., 4\}\}$ with h_i =house and $E_Y = \{e, b, w, c, i\}$ with e=expensive,b= beautiful, w=wooden, c= creative, i=in the green surroundings.

Let $(L = [0, 1], \odot, \rightarrow)$ be a complete residuated lattice defined by

$$x\odot y=x\wedge y,\quad x\to y=\left\{\begin{array}{ll}1,&\text{if }x\leq y,\\y,&\text{otherwise.}\end{array}\right.$$

Let $X = \{x, y, z\}$ be a set and $W(e), W(b) \in S(X \times X, A)$ such that

$$W(e) = \begin{pmatrix} 1 & 0.5 & 0.5 \\ 0.7 & 1 & 0.8 \\ 0.4 & 0.4 & 1 \end{pmatrix} W(b) = \begin{pmatrix} 1 & 0.6 & 0.7 \\ 0.4 & 1 & 0.4 \\ 0.5 & 0.6 & 1 \end{pmatrix}$$

Define $U = \{(U, A) \in S(X \times X, A) \mid (U, A) \ge (W, A)\}.$

- (1) Since $W(e) \circ W(e) = W(e)$ and $W(b) \circ W(b) = W(b)$, **U** is a soft quasi-uniformity on X.
 - (2) We have $\tau^r_{\mathbf{U}} = \{ cl^r_{\mathbf{U}}(F, A) \mid (F, A) \in S(X, A) \}$ where

$$cl_{\mathbf{U}}^{r}(F,A)(e) = \begin{pmatrix} F(e)(x) \lor (0.5 \land F(e)(y)) \lor (0.5 \land F(e)(z)) \\ (0.7 \land F(e)(x)) \lor F(e)(y) \lor (0.8 \land F(e)(z)) \\ (0.4 \land F(e)(x)) \lor (0.4 \land F(e)(y)) \lor F(e)(z) \end{pmatrix}$$

$$cl_{\mathbf{U}}^{r}(F,A)(b) = \begin{pmatrix} F(b)(x) \lor (0.6 \land F(b)(y)) \lor (0.7 \land F(b)(z)) \\ (0.4 \land F(b)(x)) \lor F(b)(y) \lor (0.4 \land F(b)(z)) \\ (0.5 \land F(b)(x)) \lor (0.6 \land F(b)(y)) \lor F(b)(z) \end{pmatrix}$$

We have $\tau_{\mathbf{U}}^l = \{ cl_{\mathbf{U}}^l(F, A) \mid (F, A) \in S(X, A) \}$ where

$$cl_{\mathbf{U}}^{l}(F,A)(e) = \begin{pmatrix} F(e)(x) \lor (0.7 \land F(e)(y)) \lor (0.4 \land F(e)(z)) \\ (0.5 \land F(e)(x)) \lor F(e)(y) \lor (0.4 \land F(e)(z)) \\ (0.5 \land F(e)(x)) \lor (0.8 \land F(e)(y)) \lor F(e)(z) \end{pmatrix}$$

$$cl_{\mathbf{U}}^{l}(F,A)(b) = \begin{pmatrix} F(b)(x) \lor (0.4 \land F(b)(y)) \lor (0.5 \land F(b)(z)) \\ (0.6 \land F(b)(x)) \lor F(b)(y) \lor (0.6 \land F(b)(z)) \\ (0.7 \land F(b)(x)) \lor (0.4 \land F(b)(y)) \lor F(b)(z) \end{pmatrix}$$

(3) Let $\tau = \{(0_X, A), (1_X, A), (F, A)\}$ a soft topology where

$$F(e) = (0.4, 0.5.0.6), \quad F(b) = (0.7, 0.4.0.9),$$

$$U_F(e) = \begin{pmatrix} 1 & 1 & 1 \\ 0.4 & 1 & 1 \\ 0.4 & 0.5 & 1 \end{pmatrix} U_F(b) = \begin{pmatrix} 1 & 0.4 & 1 \\ 1 & 1 & 1 \\ 0.7 & 0.4 & 1 \end{pmatrix}$$

Define $\mathbf{U}_{\tau} = \{(U, A) \in S(X \times X, A) \mid (U, A) \geq (U_F, A)\}$. Since $(U_F, A) \circ (U_F, A) = (U_F, A)$, \mathbf{U} is a soft quasi-uniformity.

We have $\tau_{\mathbf{U}_{\tau}}^{l} = \{cl_{\mathbf{U}_{\tau}}^{l}(G, A) \mid (G, A) \in S(X, A)\}$ where

$$cl_{\mathbf{U}_{\tau}}^{l}(G,A)(e) = \begin{pmatrix} G(e)(x) \lor (0.4 \land G(e)(y)) \lor (0.4 \land G(e)(z)) \\ G(e)(x) \lor G(e)(y) \lor (0.5 \land G(e)(z)) \\ G(e)(x) \lor G(e)(y) \lor G(e)(z) \end{pmatrix}$$

$$cl_{\mathbf{U}_{\tau}}^{l}(G, A)(b) = \begin{pmatrix} G(b)(x) \vee G(b)(y) \vee (0.7 \wedge G(b)(z)) \\ (0.4 \wedge G(b)(x)) \vee G(b)(y) \vee (0.4 \wedge G(b)(z)) \\ G(e)(x) \vee G(e)(y) \vee G(e)(z) \end{pmatrix}$$

Since $cl_{\mathbf{U}_{\tau}}^{l}(F, A) = (F, A), \, \tau \subset \tau_{\mathbf{U}_{\tau}}^{l}$.

References

- K.V. Babitha, J.J. Sunil, Soft set relations and functions, Compu. Math. Appl., 60 (2010), 1840-1849, doi: 10.1016/j.camwa.2010.07.014.
- [2] N. Cağman, S. Karatas and S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (1) (2011), 351-358. doi: 10.1016/j.camwa.2011.05.016.
- [3] F. Feng, X. Liu, V.L. Fotea, Y.B. Jun, Soft sets and soft rough sets, *Information Sciences*, 181 (2011), 1125-1137, doi: 10.1016/j.ins.2010.11.004.
- [4] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht (1998), doi: 10.1007/978-94-011-5300-3.
- [5] U. Höhle, S.E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston, 1999, doi: 10.1007/978-1-4615-5079-2.
- [6] A.K. Katsaras, On fuzzy uniform spaces, J. Math. Anal. Appl., 101, 1984, 97-113. doi: 10.1016/0022-247x(84)90060-x.

- [7] J.M. Ko, Y.C. Kim, Soft L-topologies and soft L-neighborhood systems, (accepted to) J. Math. Comput. Sci.
- [8] J.M. Ko, Y.C. Kim, Soft L-uniformities and soft L-neighborhood systems, (accepted to) J. Math. Comput. Sci.
- [9] J.M. Ko, Y.C. Kim, Soft L-fuzzy quasi-uniformities and soft L-fuzzy topogenous orders, (submit to) Int. J. of Pure and Applied Math.
- [10] R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl., 82 (1981), 370-385, doi: 10.1016/0022-247x(81)90202-x.
- [11] D. Molodtsov, Soft set theory, Comput. Math. Appl., 37 (1999), 19-31.
- [12] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341-356.
- [13] Z. Pawlak, Rough probability, Bull. Pol. Acad. Sci. Math., 32 (1984), 607-615.
- [14] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786-1799, doi: 10.1016/j.camwa.2011.02.006.
- [15] B. Tanay, M. B. Kandemir, Topological structure of fuzzy soft sets, Comput. Math. Appl., 61 (10) (2011), 2952-2957, doi: 10.1016/j.camwa.2011.03.056.
- [16] Hu Zhao, Sheng-Gang Li, L-fuzzifying soft topological spaces and L-fuzzifying soft interior operators, Ann. Fuzzy Math. Inform., 5 (3) (2013), 493-503.
- [17] İ. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2) (2012), 171-185.