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Abstract: Constant amplitude transforms like Discrete Fourier Transform (DFT), Walsh

transform, nonlinear phase Walsh-like transforms and Gold codes have been successfully used

in many wire-line and wireless communication technologies including code division multiple

access (CDMA), discrete multi-tone (DMT) and orthogonal frequency division multiplexing

(OFDM) types. In this paper, we derive the discrete Fourier Series using orthonormal func-

tions and generalized difference operator with its inverse. Suitable examples are provided to

illustrate the main results.
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1. Introduction

In 1807, Fourier astounded some of his contemporaries by asserting that an ”ar-
bitrary” function could be expressed as a linear combination of sine and cosine
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functions. For a brief but excellent account of the history of this subject and its
impact on the development of mathematics, one can refer [1, 2, 3, 4, 5]. These
linear combinations, now called Fourier series, have become an indispensable
tool in the analysis of certain periodic phenomena (such as vibrations, planetary
and wave motion) which are applied in physics and engineering [6, 7, 8, 9].

In 1989, Miller and Rose [10] introduced the discrete analogue of the Riemann-
Liouville fractional derivative and proved some properties of the fractional dif-
ference operator. The general fractional h-difference Riemann- Liouville opera-
tor and its inverse ∆−ν

h f(t) were mentioned in [11, 12]. As application of ∆−ν
h ,

by taking ν = m (positive integer) and h = ℓ, the sum of the mth partial sums
on nth powers of arithmetic, arithmetic-geometric progressions and products
of n consecutive terms of an arithmetic progression have been derived using
∆−m

ℓ u(k), where ∆ℓu(k) = u(k + ℓ)− u(k) [13].
The basic problems in the theory of discrete Fourier series are described in

the setting of discrete orthogonal functions. Therefore, first we present some
terminology concerning discrete orthogonal function and then we develop the
theory of discrete Fourier series. Throughout this paper, we assume that the

interval I = [a, b], a < b, ℓ =
b− a

N
, i =

√
−1 and N is a positive integer.

2. Preliminaries

An nth root of unity is a complex number satisfying the equation

zN = 1, N = 0, 1, 2, ... . (1)

If z holds equation (1) but zm 6= 1; 0 < m < N − 1, then z is defined as a
primitive N th root of unity. The complex number z0 = ej(2π/N), where j2 = −1,
is the primitive N th root of unity with the smallest positive argument. The
other primitive N th roots of unity are expressed as

zn = ej(2π/N)n, n = 1, 2, 3, ..., N − 1, (2)

where n and N are co-prime. All N th roots of unity satisfy the unique summa-
tion property of a geometric series expressed as

N−1
∑

k=0

zkn = ∆−1zkn

∣

∣

∣

N

k=0
=

zNn − 1

zn − 1
=

{

1 N = 1,

0 N > 1.
(3)

A periodic with period of N, constant modulus, complex discrete-time sequence
er(k) is defined as

er(k) = (zr)
k = ej(2π/N)rk, r, k = 0, 1, 2, ..., N − 1. (4)
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This complex sequence over a finite discrete time interval in a geometric series
is expressed according to equation (3) as follows.

N−1
∑

k=0

er(k) = ∆−1er(k)
∣

∣

∣

N

k=0
= ∆−1ej(2πr/N)k

∣

∣

∣

N

k=0
=

{

N if r = mN,

0 if r 6= mN.
(5)

This mathematical property is utilized with the factorization into two or-
thogonal exponential functions, where one defines the Discrete Fourier Trans-
form(DFT) {en(k)} satisfying

∆−1en(k)e
∗
m(k)

∣

∣

∣

N

k=0
= ∆−1ej(2π/N)(n−m)(k)

∣

∣

∣

N

k=0
=

{

N if n−m = r = mN,

0 if n−m = r 6= mN,

(6)
where m,n are integers and the notation (∗) represents the complex conjugate
of a function. The equation (6) motivates us to define the generalized discrete
orthonormal system and Fourier series by replacing ∆ by ∆ℓ and en(k) by un(k).

Definition 2.1. [14] Let u(k), k ∈ [0,∞), be a real or complex valued
function and ℓ ∈ (0,∞). Then, the generalized difference operator ∆ℓ on u(k)
is defined as

∆ℓu(k) = u(k + ℓ)− u(k), (7)

and the inverse of ∆ℓ denoted by ∆−1
ℓ is defined as

if ∆ℓv(k) = u(k), then v(k) = ∆−1
ℓ u(k) + c, (8)

where c is a constant.

Example 2.2. [14] If we denote k
(n)
ℓ = k(k − ℓ) · · · (k − (n − 1)ℓ) and

k = k
(0)
ℓ , then we have

∆−1
ℓ k

(n)
ℓ =

k
(n+1)
ℓ

(n+ 1)ℓ
+ c. (9)

Theorem 2.3. [14] For k ∈ [a, b] if ℓ =
b− a

N
, then we have

∆−1
ℓ u(k)

∣

∣

∣

b

a
=

N
∑

r=1

u(b− rℓ) =

N−1
∑

r=0

u(a+ rℓ). (10)
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Lemma 2.4. Let p be real and ℓ > 0. If 1 6= cos pℓ, then

∆−1
ℓ sin pk =

sin p(k − ℓ)− sin pk

2(1− cos pℓ)
(11)

and

∆−1
ℓ cos pk =

cos p(k − ℓ)− cos pk

2(1 − cos pℓ)
. (12)

Proof. Replacing u(k) by sin pk and cos pk in (7), we get

∆ℓ sin pk = (cos pℓ− 1) sin pk + sin pℓ cos pk, (13)

∆ℓ cos pk = (cos pℓ− 1) cos pk − sin pℓ sin pk. (14)

Since ∆ℓ is linear, i.e., c∆ℓu(k) = ∆ℓcu(k) and (cos pℓ − 1) and sin pℓ are
constants, multiplying (13) by (cos pℓ− 1), (14) by sin pℓ and then subtracting
the second from the first one, we obtain

∆ℓ[(cos pℓ− 1) sin pk − sin pℓ cos pk] = (2− 2 cos pℓ) sin pk. (15)

Now (11) follows from (8) and dividing (15) by (2− 2 cos pℓ).
Similarly, multiplying (13) by sin pℓ, (14) by (cos pℓ − 1) and then adding

them, we arrive

∆ℓ[sin pℓ sin pk − (cos pℓ− 1) cos pk] = (2− 2 cos pℓ) cos pk. (16)

Now, (12) follows from (8) and dividing (16) by (2− 2 cos pℓ).

Definition 2.5. Let u(k) and v(k) be complex valued functions defined

on [a, b] and ℓ =
b− a

N
. The discrete inner product of u and v with respect to

ℓ is defined as

(u, v)ℓ = ℓ∆−1
ℓ u(k)v∗(k)

∣

∣

∣

b

a
= ℓ

N−1
∑

r=0

u(a+ rℓ)v∗(a+ rℓ). (17)

The number ‖u‖(ℓ) = (u, u)
1/2
ℓ =

{

ℓ
N−1
∑

r=0
|u(a+ rℓ)|

}1/2

is the L2
ℓ− norm of

u. We denote L2
ℓ(I) as the set of all complex valued functions u(k) which are

bounded on I and ‖u‖ℓ < ∞.
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3. Discrete Orthogonal Systems of Functions

The function u(k) =
1

k
(2)
ℓ

, where k
(2)
ℓ = k(k− ℓ), is not bounded on [0, 2ℓ], since

u(ℓ) =
1

ℓ
(2)
ℓ

=
1

ℓ(ℓ− ℓ)
= ∞. Hence, we consider only bounded functions on

I = [a, b].

Definition 3.1. Let Sℓ = {φ0, φ1, φ2, ..., φm} be a collection of bounded
complex valued functions defined on I. If (φn, φm)ℓ = 0 whenever m 6= n, the
collection Sℓ is said to be a discrete orthogonal system on I with respect to ℓ.
If in addition, each un has norm 1, then Sℓ is said to be an orthonormal system.

Example 3.2. Let I = [0, 2π], ℓ =
π

N
and N is a positive integer.

Consider the system of functions Sℓ = {φ0, φ1, φ2, ..., φN}, where

φ0(k) =
1√
2π

, φ2n−1(k) =
cosnk√

π
, φ2n(k) =

sinnk√
π

, n = 1, 2, 3, ..., N (18)

From (11) and (12) for n = 1, 2, 3, ..., N , we have

∆−1
ℓ sinnk

∣

∣

∣

2π

0
=

sinn(k − ℓ)− sinnk

2(1− cosnℓ)

∣

∣

∣

2π

0
= 0

and

∆−1
ℓ cosnk

∣

∣

∣

2π

0
=

cosn(k − ℓ)− cosnk

2(1 − cosnℓ)

∣

∣

∣

2π

0
= 0.

When n is multiple of 2π we find that,

∆−1
ℓ sinnk

∣

∣

∣

2π

0
= sinn(2π − ℓ) + sinn(2π − 2ℓ) + · · ·+ sinn(2π − 2π) = 0.

From (8), we have ∆−1
ℓ 1 = ∆−1

ℓ k
(0)
ℓ =

k
(1)
ℓ

ℓ
.

Definition 2.5 yields the following relations:

‖φ0‖2ℓ = (φ0, φ0)ℓ = ℓ∆−1
ℓ

1√
2π

· 1√
2π

∣

∣

∣

2π

0
=

ℓ

2π
∆−1

ℓ (1)
∣

∣

∣

2π

0
=

ℓ

2π

k
(1)
ℓ

ℓ

∣

∣

∣

2π

0
= 1.

(19)

If φn =
cosnk√

π
, then we have
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‖φn‖2ℓ = (φn, φn)ℓ = ℓ∆−1
ℓ

cos2 nk√
π
√
π

∣

∣

∣

2π

0
=

ℓ

π
∆−1

ℓ

(

1 + cos 2nk

2

)

∣

∣

∣

2π

0

=
ℓ

π
∆−1

ℓ

1

2

∣

∣

∣

2π

0
+

ℓ

2π
∆−1

ℓ cos 2nk
∣

∣

∣

2π

0
= 1 + 0 = 1. (20)

Similarly, if φn =
sinnk√

π
, then we have

‖φn‖2ℓ = (φn, φn)ℓ = ℓ∆−1
ℓ

sin2 nk√
π
√
π

∣

∣

∣

2π

0
= 1. (21)

(φn, φm)ℓ = ℓ∆−1

ℓ

cosnk√
π

· cosmk√
π

∣

∣

∣

2π

0

=
ℓ

2π
∆−1

ℓ
(cos(m+ n)k + cos(m− n)k)

∣

∣

∣

2π

0

= 0.

(22)

Also, we obtain

(φn, φm)ℓ = ℓ∆−1
ℓ

sinnk√
π

· sinmk√
π

∣

∣

∣

2π

0
= 0 (23)

and

(φn, φm)ℓ = ℓ∆−1
ℓ

sinnk√
π

· cosmk√
π

∣

∣

∣

2π

0
= 0. (24)

From (19)-(24), the system Sℓ is a discrete orthonormal system on I.

Note. Since

∆−1
ℓ cosnk

∣

∣

∣

2π

0
=

cosn(k − ℓ)− cosnk

2(1− cosnℓ)

∣

∣

∣

2π

k=0
= 0,

if nℓ 6= m2π,

sinn(k − ℓ)− sinnk
∣

∣

∣

2π

k=0
= 0

and

cosn(k − ℓ)− cosnk
∣

∣

∣

2π

k=0
= 0,

for all nℓ, we take ∆−1
ℓ sinnk

∣

∣

∣

2π

0
= ∆−1

ℓ cosnk
∣

∣

∣

2π

0
= 0 for all n = 1, 2, 3, ..., N ,

where ℓ =
ℓ

N
.

Example 3.3. Let ℓ =
π

N
, I = [0, 2π]. Then Sℓ =

{

un(k) =
eink√
2π

}

,

n = 0, 1, 2, ..., N , is an orthonormal system of complex valued functions on I of
period 2π.
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Proof. Now, from Definition 2.5, we have

‖φn‖2ℓ = (φn, φn)ℓ = ℓ∆−1
ℓ

eink√
2π

e−ink

√
2π

∣

∣

∣

2π

0
= 1 (25)

and

(φn, φm)ℓ = ℓ∆−1
ℓ

eink√
2π

e−imk

√
2π

∣

∣

∣

2π

0
=

ℓ

2π

ei(n−m)k − 1

ei(n−m)ℓ − 1

∣

∣

∣

2π

0
= 0

textif m 6= n ∈ {1, 2, 3, ..., N}. (26)

Therefore, orthonormality of Sℓ follows from (25) and (26).

Theorem 3.4. Let {φ0, φ1, φ2, ...} be an orthonormal system on I. Define
two sequences of functions {sn} and {tn} on I as follows :

{

sn(k)
}

=
{

n
∑

q=0

cqφq(k)
}

, {tn(k)} =
{

n
∑

q=0

bqφq(k)
}

, (27)

where cq = (u, φq)ℓ for q = 0, 1, 2, ... and b0, b1, b2, ... are arbitrary complex
numbers. Then for each n, we have

‖u− sn‖(ℓ) ≤ ‖u− tn‖(ℓ) . (28)

Moreover, the equality holds in (28) if and only if bq = cq for q = 0, 1, 2, ..., n.

Proof. First, we shall prove that

‖u− tn‖2(ℓ) = ‖u‖2(ℓ) −
n
∑

q=0

|cq|2 +
n
∑

q=0

|bq − cq|2 . (29)

From the linearity of ∆−1
ℓ and (17), we have

‖u− tn‖2(ℓ) = (u− tn, u− tn)ℓ = (u, u)ℓ − (u, tn)ℓ − (tn, u)ℓ + (tn, tn)ℓ. (30)

Using the linearity of ∆−1
ℓ , the orthonormality of φn and (17), we obtain

(tn, tn)ℓ =

n
∑

q=0

|bq|2 , (u, tn)ℓ =

n
∑

q=0

bq ĉq, (tn, u)ℓ =

n
∑

q=0

b̂qcq,

where ĉq and b̂q are complex conjugates of cq and bq respectively.
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Now (29) is derived from (30) and the following relation

n
∑

q=0

|bq − cq|2 =
n
∑

q=0

(bq − cq)(b̂q − ĉq) =
n
∑

q=0

|bq|2 −
n
∑

q=0

bq ĉq −
n
∑

q=0

b̂qcq +
n
∑

q=0

|cq|2 .

Taking bq = cq in (29), we get

‖u− sn‖2(ℓ) = ‖u‖2(ℓ) −
n
∑

q=0

|cq|2 . (31)

Now, (28) follows from (29), (31) and
n
∑

q=0
|bk − ck|2 ≥ 0.

4. Discrete Fourier Series of a Function Relative to

an Orthonormal System

Definition 4.1. Let Sℓ = {φ0, φ1, φ2, ..., φM} be an orthonormal system

on I, ℓ =
b− a

2N
and assume that u is a complex valued bounded function on I.

The notation

u(k)ℓ ≈
M
∑

n=0

cnφn(k) (32)

will mean that the numbers c0, c1, c2, ... are given by the formula

cn = (u, φn)ℓ = ℓ∆−1
ℓ (u(k)φ∗

n(k))
∣

∣

∣

b

a
, n = 0, 1, 2, ... (33)

The series in (32) is called the Discrete Fourier Series of u relative to Sℓ and the
numbers c0, c1, c2, ... are called the Discrete Fourier Coefficients of u relative to
Sℓ.

Example 4.2. If I = [0, 2π], ℓ =
π

N
and Sℓ is the orthonormal system

of trigonometric functions described in (18), then the series obtained by (32) is
called discrete Fourier series generated by u. In this case, we can write (32) in
the form

u(k)ℓ ≈
a0

2
+

N
∑

n=1

(an cosnk + bn sinnk), (34)
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the coefficients being given below.

a0 =
ℓ

π
∆−1

ℓ (u(k)
∣

∣

∣

2π

0
=

ℓ

π

[ 2π
ℓ
]

∑

r=1

u(2π − rℓ), (35)

an =
ℓ

π
∆−1

ℓ (u(k) cos nk)
∣

∣

∣

2π

0
=

ℓ

π

[ 2π
ℓ
]

∑

r=1

u(2π − rℓ) cos(2π − rℓ), (36)

and

bn =
ℓ

π
∆−1

ℓ u(k) sin nk
∣

∣

∣

2π

0
=

ℓ

π

[ 2π
ℓ
]

∑

r=1

u(2π − rℓ) sin(2π − rℓ). (37)

The coefficients described in (35)-(37) can be obtained either by closed form or
summation form of ∆−1

ℓ u(k) depending on u(k) and when N → ∞ the Discrete
Fourier Series converges to Fourier Series.

To obtain orthonormal system and Discrete Fourier Series we develop cer-
tain results of ∆−1

ℓ on trigonometric functions with u(k).

Lemma 4.3. Let ℓ 6= 0, k > 0 and pℓ 6= m2π. Then we have

∆−1
ℓ sin(pk + β) =

sin(p(k − ℓ) + β)− sin(pk + β)

2(1 − cos pℓ)
(38)

and

∆−1
ℓ cos(pk + β) =

cos(p(k − ℓ) + β)− cos(pk + β)

2(1− cos pℓ)
. (39)

Proof. Replacing pk by pk + β in (2.4) and (12 completes the proof of the
lemma.

Definition 4.4. If
∑

r∈Z

|u(rℓ)|2 | < ∞ , where Z = {0,±1,±2, ..., }, then

we say that f ∈ Lℓ(−∞,∞) and we denote
∑

r∈Z

|u(rℓ)|2 = ∆−1
ℓ u(k)

∣

∣

∣

∞

−∞
.

Remark 4.5. Here, we take ∆−1
ℓ sinnk

∣

∣

∣

2π

0
= ∆−1

ℓ cosnk
∣

∣

∣

2π

0
= 0, when

nℓ = 2mπ.
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Theorem 4.6. If u(k) ∈ L(I) and ℓ =
b− a

2N
, then we have

lim
p→∞

ℓ∆−1
ℓ u(k) cos pk

∣

∣

∣

b

a
= 0. (40)

Proof. u(k) ∈ L(I) implies |u(k)| ≤ M for all k ∈ I.

Since, ∆−1
ℓ cos pk =

cos p(k − ℓ)− cos pk

2(1 − cos pℓ)
,

∣

∣

∣

∣

lim
p→∞

ℓ∆−1
ℓ u(k) cos pk

∣

∣

∣

b

a

∣

∣

∣

∣

≤ℓM

∣

∣

∣

∣

lim
p→∞

∆−1
ℓ cos pk

∣

∣

∣

b

a

∣

∣

∣

∣

≤ℓM lim
p→∞

∣

∣

∣

∣

4

2(1− cos pℓ)

∣

∣

∣

∣

≤ℓM
2

p2ℓ2

2! +
(

p6ℓ6

6! − p4ℓ4

4!

)

+
(

p10ℓ10

10! − p8ℓ8

8!

)

...
. (41)

Now (40) follows by taking p → ∞.

Theorem 4.7. If u(k) ∈ Lℓ(−∞,∞), then we have

ℓ∆−1
ℓ u(k)

(

1− cos pk

k

)

∣

∣

∣

∞

−∞
= ℓ∆−1

ℓ

(

u(k)− u(−k)

k

)

∣

∣

∣

∞

0
. (42)

Proof. Since
1− cos pk

k
= 0 at k = 0 and it is bounded for all k,

ℓ∆−1
ℓ u(k)

(

1− cos pk

k

)

∣

∣

∣

∞

−∞

exists as u ∈ Lℓ(−∞,∞).
By Theorem (4.6), as u is bounded, we have

ℓ∆−1
ℓ u(k) cos pk

∣

∣

∣

∞

0
= 0. (43)

Now, we have

ℓ∆−1
ℓ u(k)

(

1− cos pk

k

)

∣

∣

∣

∞

−∞
=ℓ∆−1

ℓ u(k)

(

1− cos pk

k

)

∣

∣

∣

∞

0

+ ℓ∆−1
ℓ u(k)

(

1− cos pk

k

)

∣

∣

∣

0

−∞
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=ℓ∆−1
ℓ u(k)

(

1− cos pk

k

)

∣

∣

∣

∞

0

+ ℓ∆−1
ℓ u(−k)

(

1− cos pk

−k

)

∣

∣

∣

∞

0

=ℓ∆−1
ℓ [u(k) − u(−k)]

(

1− cos pk

k

)

∣

∣

∣

∞

0
.

From (43) we get the required result.

Theorem 4.8. Let sℓ = {φ0, φ1, φ2, ..., φM} be a system of discrete or-
thonormal functions defined on I, assume that, f is bounded complex-valued

function defined on I and suppose that u(k)ℓ ≈
M
∑

n=0
cnφn(k). Then for n ≤ M ,

(a) The series
M
∑

n=0
|cn|2 converges and satisfies the inequality

M
∑

n=0

|cn|2 ≤ ‖u‖2(ℓ) (Discrete Bessel’s inequality), (44)

(b) The equation

M
∑

n=0

|cn|2 = ‖u‖2(ℓ) (Discrete Parseval’s formula) (45)

holds if and only if ‖u− sM‖(ℓ) = 0, where {sn} is the sequence of partial sums

defined by sn(k) =
M
∑

q=0
cqφq(k).

Proof. We take bq = cq in (29) and observe that the left member is non-

negative. Therefore
n
∑

q=0
|cq|2 ≤ ‖u‖2(ℓ). This establishes (a).

To prove (b), we again put bk = ck in (29) to obtain

‖u− sn‖2(ℓ) = ‖u‖2ℓ −
n
∑

q=0

|cq| .

Part (b) follows at once from this equation.
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Theorem 4.9. Assume that {φ0, φ1, ..., φn, ..., φM} is a system of discrete

orthonormal functions on I, N is very large and ℓ =
b− a

2N
is very small. Let

{cn} be any sequence of complex numbers such that
∑ |cq|2 converges. Then

there is a function u bounded on I such that:

(a)(u, φq)(ℓ) = cq for each q ≥ 0, and

(b) ‖u‖2ℓ =
M
∑

q=0
|cq|2.

Proof. Since {φq} is discrete orthonormal, we have

‖cqφq‖2(ℓ) ≤ |cq|2 ‖φq‖2(ℓ) ≤ |cq|2 (46)

Take u(k) =
M
∑

q=0
cqφq(k), k ∈ I.

Now

(u, φq)ℓ = (cqφq, φq)(ℓ) = cq(φq, φq)(ℓ) = cq ‖φq‖(ℓ) = cq.

Proof of Part (b) follows from (45)

5. Conclusion

When ℓ → 0, the Discrete Fourier Series and Discrete Fourier Transforms be-
come usual Fourier Series and the Fourier Transforms. If

∫

(·)dx is not exist,
then we can replace

∫

(·) by ℓ∆−1
ℓ (·) and we can get several applications using

discrete Fourier transform and its series using summation form of ∆−1
ℓ .
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