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Abstract: We consider a system described by the linear heat equation with adiabatic

boundary conditions which is perturbed periodicaly. This p erturbation is nonlinear and is

characterized by a one-parameter family of quadratic maps. T he system, depending on the

parameters, presents very complex behaviour. We introduce a symbolic framework to analyze

the system and resume its most important features.
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1. Introduction and Preliminaries

We consider an ideal system consisting on the temperature changes on a wire
with adiabatic endpoints. When the system is isolated evolves continuously,
determined by the linear heat equation, and in this regime wehave the explicit
time dependent solution. We consider that the system is not permanently iso-
lated, instead is periodically perturbed. When the perturbation disappears the
system evolves again continuously and the process repeats itself after constant
time intervals. The perturbation is modeled by a nonlinear iterated interval
map in a manner described below in detail.
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The physical context is introduced as a motivation for the study of certain
in�nite dimensional systems which have, nonetheless, muchproperties strongly
related with iteration of interval maps (one dimensional systems). These in�-
nite dimensional dynamical systems, despite its simple de�nition, may present
very complex behaviour showing some features of real turbulence regarding the
balance between coherence versus disorder. In particular,depending on the
parameters, the systems present chaotic behaviour, that is, non-periodic evo-
lution and sensitivity to initial conditions, with exponen tial divergence of two
arbitrary close initial temperature functions. These type of systems were �rst
introduced in [1]. On the other hand, iteration in function spaces were pre-
viously studied in the papers of Severinoet al. [2], [3] and [4], Sharkovsky [5]
and Vinagre et al. [6]. It is considered a certain spaceA and an operator Tf ,
induced by an interval map f , so that for ' 2 A we haveTf (' ) = f � ' . The
particular feature of the system (A ; Tf ), for certain choices of the mapf , is that
the number of di�erent critical values will always grow with the iteration of Tf ,
for almost all initial conditions. This is an essential aspect of the notion of ideal
turbulence introduced by Sharkovsky [7] and [8]. In fact, systems such (A ; Tf );
for certain choices off , presents ideal turbulence and its main characteristic is
a cascade process which produce structures of arbitrarily small scale, meaning
that in the limit the functions, under iteration, become fra ctal functions or even
stochastic functions, depending on the ergodic propertiesof the map f .

On the contrary, for the system presented here and in our previous work
[1], the number of critical points does not grow exponentially. During an initial
transient time interval the number of critical points do gro w exponentially,
however, quickly the system attains a balance between the creation of new
critical points due to the interval map e�ect, and the destru ction of critical
points due to the dissipative e�ect of the heat equation.

In the present work we introduce a discretization of the state space and
search for evolution rules similar to cellular automata, or eventually substitu-
tional systems. We did not �nd any simple deterministic rule , nevertheless the
symbolic framework introduced here turned out to be very usefull to charac-
terize di�erent aspects of the global dynamics. Namelly, the distribution and
evolution of the critical points and their positions with re spect to the intervals
of monotonicity, which constitutes the basin of atraction of the interval map f �

de�ned below. The introduced codi�cation is precisely based on the atractor of
the quadratic map.

If � is so that the map has positive topological entropy then, although
there are no deterministic rules for the symbolic ow, there is a statistical
structure which depends on the parameters� and � . This statistical structure
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is revealed in the �xed frequence of ocurrence of symbols, not depending on
the initial conditions. We determined an empirical relation which characterizes
this phenomena. If � is less than the Feigenbaum constant, therefore with
zero topological entropy, several unexpect phenomena occurs. Namely, the
existence of atracting periodic orbits for almost every initial conditions, that
is, for almost every initial condition the limit is a periodi c orbit. Moreover, the
referred structure of frequence of symbol occuring is no longer valid and there
is no empirical relation in this case.

Before giving the de�nition in detail of the system, we present some pre-
liminaries and discussion related with previous work.

Consider a m-modal map f in the class C1(I; I ), for a certain interval I ,
and the class of di�erentiable functions

A =
�

' 2 C1([0; 1]) : ' 0(0) = ' 0(1) = 0 ; jcp(' )j < 1
	

;

where jcp(' )j denotes the number of critical points of ' . That is, a function
belongs to the classA if it is di�erentiable, its derivatives at the endpoints are
0 and its number of critical points are �nite. Consider also the operator Tf

de�ned by
Tf : A ! A

' 7! f � ':

Note that this operator is well de�ned since (f � ' )0(0) = ( f � ' )0(1) = 0.
Moreover, if � 2 A and Im (� ) � I; then Im (T k

f � ) � I , for every k 2 N:
Therefore, we obtain a discrete in�nite dimension dynamical system (A ; Tf )
in the sense that we have a setA (with additional structure, a topology or
a metric, for now not speci�ed) and a self map Tf ; which characterizes the
discrete time evolution.

The considered interval maps, modeling the perturbation, belongs to the
well studied quadratic family de�ned by f � (x) = 1 � �x 2, with � 2 (0; 2]. There
is a maximal invariant interval, [ � 1; 1] ; where the relevant dynamics occurs,
that is, the iterates f k

� (x0) := f � (: : : f � (x0)) ( k times) of initial points x0 in
[� 1; 1] will belong to [� 1; 1], for every k. For initial points x0 outside [� 1; 1],
the iterates f k

� (x0), for k 2 N; diverge to in�nity. Therefore, we consider the
one parameter family of operatorsTf � , induced by f � on A. Next, we show an
example with several iterates underTf � of a given initial function � 0:

Example 1. Consider f � (x) = 1 � �x 2, with � = 2 and

� 0 (x) = 0 :2 + 0:1 cos(�x ) � 0:2 cos(2�x ) + 0 :1 cos(3�x ) +

+0 :1 cos(4�x ) � 0:1 cos(5�x ) + 0 :2 cos(6�x ):
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Figure 1: Graphs of (a) � 0 (x) ; (b) � 1 (x) ; (c) � 2 (x) ; (d) � 3 (x) ; (e)
� 4 (x) and (f) � 7 (x) ; with f � (x) = 1 � �x 2; � = 2 and � 0 (x) = 0 :2 +
0:1 cos(�x ) � 0:2 cos(2�x ) + 0 :1 cos(3�x ) + 0 :1 cos(4�x ) � 0:1 cos(5�x ) +
0:2 cos(6�x ):

In the Figure 1, we can see increasing frequencies and the asymptotic be-
haviour expresses the occurrence of ideal turbulence.

2. Symbolic Dynamics for Unimodal Maps

Consider a unimodal mapf in the interval I = [ � 1; 1], with 0 being the unique
critical point where f gets the maximal value. Assume thatf 2 C1(I; I ). We
assign the symbolsL (left) and R (right) to each point x of the subintervals of
monotonicity [ � 1; 0) and (0; 1] ; respectively, and the symbolC to the critical
point 0: This assignment is called theaddressof x and it is denoted by ad(x).
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The address of the pointx; ad (x) ; is thus given by

ad(x) =

8
<

:

L if x < 0;
C if x = 0 ;
R if x > 0:

As usual, we get a correspondence between orbits of points and symbolic
sequences of the alphabetf L; C; R g, the itinerary of x under the map f;

it f (x) := ad(x) ad(f (x)) ad
�
f 2 (x)

�
� � � 2 f L; C; R gN:

Let I S0S1 :::Sk � [� 1; 1] be the interval of points x de�ned by

I S0S1 :::Sk =
�

x 2 I : x 2 I S0 ; f (x) 2 I S1 ; : : : ; f k (x) 2 I Sk

	

= I S0 \ f � 1(I S1 ) : : : f � k (I Sk );

where Sj = ad(f j (x)) ; j = 0 ; 1; : : : ; k; and f � j (I Sj ) denotes the pre-image of
the interval I Sj ; j = 1 ; :::; k:

The kneading sequenceof an unimodal map f is the itinerary of the image
of the critical point, that is

K := it f (f (0)) = K 1K 2 � � � 2 f L; C; R gN

(see [9]).
An admissible sequenceis a sequence inf L; C; R gN which occurs as an

itinerary for some point x 2 [� 1; 1] and an admissible word is some word
occurring in an admissible sequence. Thesequence spaceis the set of all in�nite
admissible sequence inf L; C; R gN and is denoted by �.

In the sequence space �, we de�ne the usual shift map� : � ! � by

� (P1P2P3 : : : ) = P2P3 : : : ;

where P1P2P3 � � � 2 � ; and we have

� (it f (x)) = it f (f (x)) :

Therefore, we obtain the symbolic system (�; � ) associated with the uni-
modal map.
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3. Nonlinear Perturbed Heat Equation

We consider the unit interval representing an ideal wire. The temperature
function at each point x 2 [0; 1] and each time instant t 2 R+

0 is denoted by
 (x; t ). We consider also that the wire is such that the time evolution of the
temperature function is described by the linear heat equation

@ 
@t

= �
@2 
@x2

; (1)

where � is a constant, the di�usion coe�cient . If there is no heat exchange in
the endpoints x = 0 and x = 1, we have adiabatic boundary conditions

@ 
@x

(0; t) =
@ 
@x

(1; t) = 0 : (2)

The initial condition  (x; 0) = � 0 (x) is chosen from the classA . The solution
can be written as follows

 (x; t ) =
1X

n=0

cne� n2 � 2 �t cos (n�x ) ; (3)

where the coe�cients cn , are determined by the initial condition written as a
cosine Fourier series

� 0 (x) =
1X

n=0

cn cos(n�x ): (4)

Suppose the system is perturbed in time instantst1; t2; : : : through a non-
linear process described below. Being the temperature distribution along the
wire initially given by the function  0(x; t ), for t0 < t < t 1, after the pertur-
bation the temperature function is  1(x; t ); for t > t 1. We have continuous
time evolution for t 2 ]t j ; t j +1 [ and discrete time evolution for t = t j . We as-
sume that the perturbation is characterized by an nonlinear map f so that
 j +1 (x; t j +1 ) = f ( j (x; t j +1 )), with  1(x; t 1) = f ( 0(x; t 1)). For simplicity, we
choose the time instants to betk = k 2 N. Therefore, the time evolution of the
system is described by the sequence of functions

f  0;  1;  2; : : : ;  k ; : : :g , (5)

each function  k satisfying the heat equation for x 2 [0; 1] ; t 2 [k; k + 1[ and
k 2 N0, with initial conditions determined by

 k+1 (x; k + 1) = f ( k (x; k + 1)) ; for k 2 N0;

and  0(x; 0) = � 0 (x), a given function from A.
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Example 2. Consider f � (x) = 1 � �x 2, with � = 1 :7548: : : ; � = 0 :00005
and

 0 (x; 0) = 0 :2 + 0:1 cos(�x ) � 0:2 cos(2�x ) + 0 :1 cos(3�x ) +

+0 :1 cos(4�x ) � 0:1 cos(5�x ) + 0 :2 cos(6�x ):

In the Figure 2, we show the evolution of the system describedby the heat
equation, which is perturbed in time instants t = 1 ; 2; 3; 4; 56; 57; 58; 59; 60:

The discrete dynamical system used in this work is the following. We con-
sider the state spaceA, the operator Tf � , and an operator U�;" : A ! A which
gives the time evolution under the unperturbed regime, withdi�usion coe�cient
� . The operator U�;" is de�ned implicitly by

U�;"  (x; t ) :=  (x; t + " ) .

Let us consider the operatorV�;�;" : A ! A de�ned by

V�;�;" := Tf � � U�;" .

Now, since the system is periodically perturbed in natural time instants,
it is su�cient to consider a natural value for " . Therefore, we set" = 1 and
we de�ne V�;� � V�;�; 1. Our discrete dynamical system is, then, de�ned by
the pair (A ; V�;� ). When we iterate a function � 0 (x) in A , under V�;� , the
obtained iterates � k (x) = V k

�;� (� 0 (x)) will correspond to the solution given
by the sequence of functions (5) in the time instants� k (x) =  k (x; k ). If,
for some reason, we need to obtain the temperature function at a non integer
time instant t0 we simply use the solution presented in (3) with initial condition
given by  (x; 0) = V k

�;� (� 0 (x)), where k = [ t0] is the integer part of t0. Then,
we evaluate the function for the time instant t0� k, that is,  (x; t 0� k).

4. The Basin of Attraction of f �

With the aim of characterizing the evolution of the critical points of the iterates
� k = V k

�;� (� 0) through a discretization with topological meaning, we de�ne a
symbolic coding of the evolution of critical points using the basin of attraction
of f � : So, we de�ne a correspondence between each iterate� k and a sequence
of �nite states (colours) ordered according to the position of each critical point
in the basin of attraction.

Let JC be the interval of points x 2 I for which
�
�f 0

� (x)
�
� � 1. Under iteration

of f � every orbit of an initial point in JC will approach the critical orbit. The
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Figure 2: Graphs of (a)  0 (x; 1) ; (b)  1 (x; 2) ; (c)  2 (x; 3) ; (d)
 3 (x; 4) ; (e)  55 (x; 56) ; (f)  56 (x; 57) ; (g)  57 (x; 58) ; (h)  58 (x; 59)
and (i)  59 (x; 60) ; with � = 0 :00005; f � (x) = 1 � �x 2; � = 1 :7548: : :
and  0 (x; 0) = 0 :2 + 0:1 cos(�x ) � 0:2 cos(2�x ) + 0 :1 cos(3�x ) +
0:1 cos(4�x ) � 0:1 cos(5�x ) + 0 :2 cos(6�x ):

same is true for the pre-images of the intervalJC which can be codi�ed through
the address map. That is, we need the following intervals

JS1 :::Sk C := I S1 :::Sk \ f � k
� (JC ) :
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Figure 3: (a) The basin of attraction of f � (x) = 1 � �x 2; when � = 2 ;
and (b) representation of �rst intervals of the basin in (a).

These intervals gives an underlying structure, or grid, which will be our
reference to de�ne the codi�cation of the orbits under the operator V�;� . These
intervals depend on the parameter� and the kneading sequence off � , since if
a sequenceS1:::Sk is non admissible thenJS1 :::Sk C = ? . Moreover, we have to
be careful to use the intervalsJS1 :::Sk C since they eventually overlap.

In next �gures, we present the basin of attraction of f � ; in the �rst one for
� = 2 and in the second for � = 1 :7548: : : and � = 1 :3815: : : ; respectively (the
parameter � = 1 :7548: : : corresponds to a period three and the parameter� =
1:3815: : : corresponds to a period eight). Note that to each colour corresponds
a di�erent level of pre-images (from lighter to darker) regarding to the interval
of attraction, JC . The basin of attraction is given by

� = JC [ JLC [ JRC [ JLLC [ JLRC [ JRRC [ JRLC [ � � � :

Now, we present the construction of the basin of attraction of f � ; when
� = 2 : For other values of the parameter�; the construction is similar.

Let e� 1 = JC ; e� 2 = JLC [ JRC ; e� 3 = JLLC [ JLRC [ JRRC [ JRLC ; : : : ;
in general e� k =

[

S2f L;R gk � 1

JSC (the sets e� 1; e� 2 and e� 3 are represented in

Figure 3 (b)), and let be U1 = U2 = U3 = ? ; : : : ; Uk =
[

S2f L;R gk � 1

JSC ; where
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Figure 4: The basin of attraction of f � (x) = 1 � �x 2; when (a) � =
1:7548: : : and (b) � = 1 :3815: : : :

S 2 f L; R gk� 1 and such that f � (JSC ) \
k� 1[

j =1

e� j 6= ? : Then, considering � k =

e� k � Uk ; the basin of attraction of f � is given by � =
[

k=1

� k :

We can, after a systematic analysis, determine the following

U1 = ? ; U2 = ? ; U3 = ? ;

U4 = JLRLC [ JRRLC ;

U5 = JLLRLC [ JLRRLC [ JLRLLC [ JRRLLC [ JRRRLC [ JRLRLC ;

U6 = JLLLRLC [ JLLRRLC [ JLLRLLC [ JLRRLLC [ JLRRRLC [

[ JLRLRLC [ JLRLRRC [ JLRLLRC [ JLRLLLC [ JRRLLLC [

[ JRRLLRC [ JRRLRRC [ JRRLRLC [ JRRRRLC [ JRRRLLC [

[ JRLRLLC [ JRLRRLC [ JRLLRLC

and

U7 = JLLLLRLC [ JLLLRRLC [ JLLLRLLC [ JLLRRLLC [

[ JLLRRRLC [ JLLRLRLC [ JLLRLRRC [ JLLRLLRC [
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Figure 5: Correspondence between the critical points of 0 (x; 0) = 0 :2+
0:1 cos(�x ) � 0:2 cos(2�x ) + 0 :1 cos(3�x ) + 0 :1 cos(4�x ) � 0:1 cos(5�x ) +
0:2 cos(6�x ) and the sequence of colours obtained by the basin of at-
traction of the quadratic map f � ; with � = 2 :

[ JLLRLLLC [ JLRRLLLC [ JLRRLLRC [ JLRRLRRC [

[ JLRRLRLC [ JLRRRRLC [ JLRRRLRC [ JLRRRLLC [

[ JLRLRLLC [ JLRLRLRC [ JLRLRRLC [ JLRLLRLC [

[ JLRLLRRC [ JLRLLLRC [ JLRLLLLC [ JRRLLLLC [

[ JRRLLLRC [ JRRLLRRC [ JRRLLRLC [ JRRLRRLC [

[ JRRLRLRC [ JRRLRLLC [ JRRRRLLC [ JRRRRLRC [

[ JRRRRRLC [ JRRRLRLC [ JRRRLRRC [ JRRRLLRC [

[ JRRRLLLC [ JRLRLLLC [ JRLRLLRC [ JRLRLRRC [

[ JRLRLRLC [ JRLRRRLC [ JRLRRLLC [ JRLLRLLC [

[ JRLLRRLC [ JRLLLRLC :

Now, we de�ne a symbolic coding, that is, to each �k ; with k = 1 ; : : : ; 7; we

associate the symbolk; and to � �
7[

k=1

� k we associate the symbol 8: Finally, to

each symbol we associate a di�erent colour, from white for symbol 1 to black
for symbol 8:

The Figure 5 shows an example of the correspondence between the critical
points and the sequence of colours.
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5. The Evolution of Critical Points of the Iterates � k = V k
�;� ( � 0) for

Positive Topological Entropy of f �

In the work of Correia et al. [1] was established that, in certain conditions
{ namely positive topological entropy of f � { the iterates, under V�;� , have
an exponential grow of number of critical points up to a certain level. After
attaining a certain number of critical points, which depends on the parameters,
this number oscillates and becomes limited.

As we referred above, the particular characteristic of the system (A ; Tf ),
for certain choices of the mapf , is that the number of di�erent critical values
will always grow with the iteration of Tf , for almost all initial conditions. On
the contrary, for the dynamical system (A ; V�;� ) ; the number of critical points
does not grow exponentially. Indeed, it attains a balance between the creation
of new critical points, due to the interval map e�ect, and the destruction of
critical points, due to the dissipative e�ect of the heat equation.

In what following, we present some examples with the evolution of critical
points using the coding de�ned above. For these examples, weconsider the
following initial conditions

 0 (x) = 0 :2 + 0:1 cos(�x ) � 0:2 cos(2�x ) + 0 :1 cos(3�x ) +

+0 :1 cos(4�x ) � 0:1 cos(5�x ) + 0 :2 cos(6�x );

e 0 (x) = 0 :2 + 0:1 cos(�x ) � 0:2 cos(2�x ) + 0 :1 cos(3�x );

' 0 (x) = 0 :2 + 0:1 cos(�x ) � 0:2 cos(2�x ) + 0 :1 cos(3�x ) +

+0 :1 cos(4�x ) � 0:1 cos(5�x ) + 0 :2 cos(6�x ) +

+0 :1 cos(7�x ) + 0 :2 cos(8�x ) + 0 :2 cos(9�x );

e' 0 (x) = 0 :3 cos(2�x ) + 0 :2 cos(4�x ) � 0:2 cos(6�x ) +

� 0:3 cos(29�x );

� 0 (x) = 0 :07 cos(2�x ) + 0 :07 cos(3�x ) � 0:07 cos(5�x ) +

+0 :07 cos(6�x ) � 0:07 cos(29�x );

e� 0 (x) = 0 :03 cos(2�x ) + 0 :05 cos(3�x ) � 0:07 cos(4�x ) +

+0 :07 cos(5�x ) + 0 :03 cos(7�x );
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� 0 (x) = 0 :45� 0:45 cos(2�x )

and
e� 0 (x) = � 0:75 cos(4�x ):

Consideringf � (x) = 1 � �x 2, with � = 2 ; � = 0 :00005 and 0 (x; 0) =  0 (x)
the symbolic evolution of critical points, for �rst �ve iter ates, is given by

(3; 1; 3; 8; 2; 3; 1)
#

(2; 6; 2; 7; 1; 8; 8; 5; 3)
#

(1; 8; 1; 6; 7; 3; 5; 8; 2)
#

(8; 7; 7; 5; 8; 7; 4; 5; 2; 6; 6; 1)
#

(4; 5; 4; 3; 8; 5; 2; 7; 3; 6; 5; 2; 3; 4; 1; 6; 1; 4)
#

(3; 2; 7; 8; 1; 6; 3; 4; 1; 3; 2; 7; 1; 2; 3; 8; 1; 8; 1; 8; 1; 3; 3; 3; 1; 5; 4)
#

(8; 2; 5; 8; 1; 3; 1; 4; 4; 4; 1; 5; 8; 1; 3; 4; 3; 5; 2; 3; 3; 4; 2; 3; 2; 3; 2; 2; 1)
#

(2; 2; 3; 6; 3; 2; 2; 4; 1; 5; 2; 2; 4; 8; 1; 8; 5; 1; 4; 4; 4; 2; 1; 2; 5; 2; 5; 2; 5; 3):

In Figure 6, and for previous functions and parameters, we show the cor-
responding evolution of critical points of V k

�;� ( 0 (x)) ; with k = 0 ; : : : ; 99: We
present the correspondence between some iterates and the lines of colours.

In Figures 7 and 8, we present similar graphs, for� = 1 :7548: Note that in
the last �gure the symmetry of functions is maintained over t ime.

As we can see in the Table 1, the average number of critical points of the
iterates depends on the di�usion coe�cient � and the parameter � . When we
decrease the di�usion coe�cient �; the average number of critical points, at
which the temperature function stabilizes, increases. Also, when we increase
the parameter �; the average number of critical points increases.

Using the values obtained numerically for the distribution of the critial
points, we are led to the following result.

Numerical Result 1. When � is such that ht (f � ) > 0; the average of
critical points, � (� ) ; does not depend signi�catly on � , only on � . Moreover,
if � 2 [0:0000075; 0:01]; then we have aproximately the rule

� (� ) = C0� C1 ; (6)
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Table 1: The arithmetic mean and the standard deviation for eight
di�erent initial conditions,  0; e 0; ' 0; e' 0; � 0; e� 0; � 0; e� 0; of the number
of critical points. The values are presented for two di�erent values of
parameter � (� = 2 and � = 1 :7548: : :) and for two di�erent values of
the di�usion coe�cient � (� = 0 :00005 and� = 0 :00001).
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with C0 = 0 :25� 0:05 and C1 = � 0:485� 0:015 (see Figure 9).

6. The Evolution of Critical Points of the Iterates � k = V k
�;� ( � 0) for

Topological Entropy of f � Equal to Zero

For the cases in which the quadratic mapf � has topological entropy equal to
zero, that is, that for the cases in � is such that ht (f � ) = 0 ; it is not possible
to present a formula similar to (6), since the number and evolution of critical
points depends strongly on the initial conditions, and the standard deviation is
very high although the growth is low, see Table 2.

In Figures 10 and 11, we present the evolution of critical points of V k
�;� ( 0 (x)) ;

with k = 0 ; : : : ; 99; and the correspondence between some iterates and the lines
of colours, for � = 1 :3815: : : ; which corresponds to a period eight.
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Table 2: The arithmetic mean and the standard deviation for eight
di�erent initial conditions,  0; e 0; ' 0; e' 0; � 0; e� 0; � 0; e� 0; of the number of
critical points. The values are presented for parameter� = 1 :3815: : : ;
which corresponds to period eight forf � ; and for two di�erent values
of the di�usion coe�cient � (� = 0 :00005 and� = 0 :00001).
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Figure 6: Graph of the evolution of critical points of V k
�;� ( 0 (x)) ; with

k = 0 ; : : : ; 99; � = 0 :00005; f � (x) = 1 � �x 2; � = 2 and  0 (x; 0) = 0 :2+
0:1 cos(�x ) � 0:2 cos(2�x ) + 0 :1 cos(3�x ) + 0 :1 cos(4�x ) � 0:1 cos(5�x ) +
0:2 cos(6�x ):
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Figure 7: Graph of the evolution of critical points of V k
�;� ( 0 (x)) ;

with k = 0 ; : : : ; 99; � = 0 :00005; f � (x) = 1 � �x 2; � = 1 :7548: : : and
 0 (x; 0) = 0 :2+0:1 cos(�x ) � 0:2 cos(2�x )+0 :1 cos(3�x )+0 :1 cos(4�x ) �
0:1 cos(5�x ) + 0 :2 cos(6�x ):
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Figure 8: Graph of the evolution of critical points of V k
�;� ( 0 (x)) ;

with k = 0 ; : : : ; 99; � = 0 :00005; f � (x) = 1 � �x 2; � = 1 :7548: : : and
� 0 (x; 0) = 0 :45� 0:45 cos(2�x ):
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Figure 9: Graph of � (� ) = C0� C1 ; with a) C0 = 0 :2 and C1 = � 0:5
and b) C0 = 0 :3 and C1 = � 0:47:
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Figure 10: Graph of the evolution of critical points of V k
�;� ( 0 (x)) ;

with k = 0 ; : : : ; 99; � = 0 :00005; f � (x) = 1 � �x 2; � = 1 :3815: : : and
 0 (x; 0) = 0 :2+0:1 cos(�x ) � 0:2 cos(2�x )+0 :1 cos(3�x )+0 :1 cos(4�x ) �
0:1 cos(5�x ) + 0 :2 cos(6�x ):
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Figure 11: Graph of the evolution of critical points of V k
�;� ( 0 (x)) ;

with k = 0 ; : : : ; 99; � = 0 :00005; f � (x) = 1 � �x 2; � = 1 :3815: : : and
� 0 (x; 0) = 0 :45� 0:45 cos(2�x ):



A SYMBOLIC APPROACH TO... 843

7. Acknowledgements

This work was partially supported by national funds from the FCT { Funda�c~ao
para a Ciência e a Tecnologia, within the project UID/MAT/0 4674/2013.

References

[1] M.F. Correia, C.C. Ramos and S. Vinagre, Nonlinearly per turbed heat equation, Int. J.
of Pure and Applied Math. , 94, No. 2 (2014), 279{296, doi: 10.12732/ijpam.v92i2.10.

[2] R. Severino, A.N. Sharkovsky, J. Sousa Ramos and S. Vinagre,Symbolic Dynamics in
Boundary Value problems, Grazer Math. Ber , 346 (2004), 393{402.

[3] R. Severino, A.N. Sharkovsky, J. Sousa Ramos and S. Vinagre,Topological invariants in
a model of a time-delayed Chua's circuit, Nonlinear Dynamics , 44, (2006), 81{90, doi: :
10.1007/s11071-006-1942-4.

[4] R. Severino, A.N. Sharkovsky, J. Sousa Ramos and S. Vinagre, Computing topo-
logical invariants in boundary value problems reducible to di�erence equations, Pro-
ceedings of the International Conference on Di�erence Equa tions, Special Functions
and Orthogonal Polynomials, World Scienti�c Publishing (2007), 741{751, doi: :
10.1142/97898127707520060.

[5] A.N. Sharkovsky, R. Severino and S. Vinagre, Di�erence Equa tions and Nonlin-
ear Boundary Value Problems for Hyperbolic Systems, Discrete Dynamics and Dif-
ference Equations - Proceedings of the Twelfth International Conference on Di�er-
ence Equations and Applications, World Scienti�c Publishing (2010), 400{409, doi: :
10.1142/97898142876540034.

[6] S. Vinagre, R. Severino and J. Sousa Ramos, Topological invariants in nonlin-
ear boundary value problems, Chaos Solitons Fractals, 25, (2005), 65{78, doi: :
10.1016/j.chaos.2004.11.043.

[7] A.N. Sharkovsky, Ideal Turbulence, Nonlinear Dynamics , 44 (2006), 15{27, doi:
10.1007/s11071-006-1931-7.

[8] A.N. Sharkovsky, Ideal turbulence and problems of its visua lization, Proceedings of the In-
ternational Conference on Di�erence Equations, Special Fu nctions and Orthogonal Poly-
nomials, World Scienti�c Publishing (2007), 617{635, doi: 10.1142/S0218127494000216.

[9] J. Milnor and W. Thurston, On Iterated Maps of the Interval, Proceedings Univ. Maryland
(ed. J. C. Alexander), 1986-1987, Lect. Notes in Math., Springer-Verlag, Berlin, New
York, 1342 (1988), 465{563, doi: 10.1007/BFb0082847).



844


