ON THE HYPERBOLIC WEIGHTED COMPOSITION OPERATORS

Bahmann Yousefi¹, Gholamreza Moghimi² §

¹,²Department of Mathematics
Payame Noor University
P.O. Box 19395-3697, Tehran, IRAN

Abstract: In this present paper, we investigate the hypercyclicity of a hyperbolic weighted composition operator acting on some Banach spaces of holomorphic functions on the open unit ball in \mathbb{C}^N.

AMS Subject Classification: 47B33, 47B38

Key Words: weighted composition operator, hypercyclic operator, Denjoy-Wolff point, parabolic map

1. Introduction

Suppose that \mathcal{X} is a separable Banach space of analytic functions on the open unit ball B_N. The functional of evaluation at λ, $e_\lambda : \mathcal{X} \to \mathbb{C}$ is defined by $e_\lambda(f) = f(\lambda)$ for all $f \in \mathcal{X}$. A complex valued function φ on B_N for which $\varphi\mathcal{X} \subseteq \mathcal{X}$ is called a multiplier of \mathcal{X}. The set of all multipliers of \mathcal{X} is denoted by $M(\mathcal{X})$ and it is well-known that $M(\mathcal{X}) \subseteq H^\infty(B_N)$.

For the algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X}, the weak operator topology (WOT) is the one in which a net A_α converges to A if $A_\alpha x \to Ax$ weakly, $x \in \mathcal{X}$. Also, the strong operator topology (SOT) is the one in which a net A_α converges to A if $A_\alpha x \to Ax$, $x \in \mathcal{X}$.
For $z = (z_1, ..., z_N)$ and $w = (w_1, ..., w_N)$ in \mathbb{C}^N, write $<z, w>$ for the Euclidean inner product $\sum_{j=1}^N z_j \bar{w}_j$ and let $|z| = <z, z>^{1/2}$. With this notation, the unit ball in \mathbb{C}^N is the set $B_N = \{z \in \mathbb{C}^N : |z| < 1\}$ and the unit sphere in \mathbb{C}^N is the set $S_N = \{z \in \mathbb{C}^N : |z| = 1\}$, analogously to the unit disc and circle for $N = 1$. The space $H(B_N)$, is the set of all holomorphic functions on B_N, can be made into a F-space by a complete metric for which a sequence $\{f_n\}$ in $H(B_N)$ converges to $f \in H(B_N)$ if and only if $f_n \rightarrow f$ uniformly on every compact subset of B_N. Each $\varphi \in H(B_N)$ and holomorphic self-map ψ of B_N induces a linear weighted composition operator $C_{\varphi, \psi} : H(B_N) \rightarrow H(B_N)$ by $C_{\varphi, \psi}(f)(z) = \varphi(z)f(\psi(z))$ for every $f \in H(B_N)$ and $z \in B_N$. Indeed, $C_{\varphi, \psi} = M_\varphi C_\psi$ where M_φ denotes the operator of multiplication by φ and C_ψ is a composition operator by means of the definition $C_\psi(f) = f \circ \psi$ for every $f \in H(B_N)$.

A bounded linear operator T on a F-space X is said to be hypercyclic if there exists a vector $x \in X$ for which the orbit $\text{Orb}(T, x) = \{T^n x : n \in \mathbb{N}\}$ is dense in X and in this case we refer to x as a hypercyclic vector for T.

The holomorphic self maps of B_N are divided into classes of elliptic and non-elliptic. The elliptic type is an automorphism and has a fixed point in B_N. It is well known that this map is conjugate to a rotation.

In the following, by ψ_n we denote the nth iterate of ψ.

Theorem 1.1. (see [3]) Suppose ψ is a holomorphic self-map of the open unit ball B_N without interior fixed point. Then there is a point $w \in \partial B_N$ such that $\psi_n \rightarrow w$ and $0 < d(w) \leq 1$ where $d(w) = \lim_{|z| \rightarrow 1^-} \inf \frac{1 - |\psi(z)|^2}{1 - |z|^2}$.

The boundary point w is called the Denjoy-Wolff point of ψ. Recall that a holomorphic self-map ψ of B_N is called hyperbolic whenever $d(w) < 1$. A weighted composition operator $C_{\varphi, \psi}$ is called a hyperbolic weighted composition operator whenever the compositional symbol ψ is hyperbolic.

The next section of the present paper shows that weighted composition operators with non-constant weight function and hyperbolic compositional symbol can be hypercyclic on $H(B_N)$. For some sources see [1–7].

2. Main Result

In this section ψ will denote a holomorphic self-map of B_N and φ is a nonzero holomorphic map on B_N.
Theorem 2.1. Suppose that $\mathcal{X} \subset \mathcal{H}(\mathcal{B}_N)$ is a separable Banach space such that \mathcal{X} contains constants, the multiplication operator by the variable z is a contraction on \mathcal{X}, and for all $\lambda \in B_N$ the functional of evaluation at λ is bounded on \mathcal{X}. Let φ be a nonzero holomorphic map on B_N and ψ be a hyperbolic map of B_N with w the Denjoy-Wolff point such that $\varphi(w) \neq 0$ and $|\varphi(w) - \psi_n(z)| \leq d(w)^{n/2}|w - \psi_n(z)|$ for all n and $z \in B_N$. If $|\varphi \circ \psi_n(z)| \leq |\varphi(w)|$ eventually for all n or $\|\psi\|_{B_N} < 1$, then $C_{\varphi, \psi}$ fails to be hypercyclic, but $C_{\varphi, \psi}$ is hypercyclic whenever φ, ψ are contractive on B_N and φ never vanishes on B_N, and also $|\varphi(w)| = 1$.

Proof. First we show that $M(\mathcal{X}) = \mathcal{H}^\infty(\mathcal{B}_N)$. Let $f \in H^\infty(B_N)$. Then by the Farrell-Rubel-Shields Theorem, there is a sequence $\{p_n\}_n$ of polynomials converging to f pointwise and for all n, $\|p_n\|_{B_N} \leq M$ for some $M > 0$. Since $\|M_z\| \leq 1$ on H, we get $\|M_q\| \leq \|q\|_{B_N}$ for all polynomials q. Hence we obtain $\|M_{p_n}\| \leq M$ for all n. But ball $B(\mathcal{X})$ is compact in the weak operator topology and so by passing to a subsequence if necessary, we may assume that for some $A \in B(\mathcal{X})$, $M_{p_n} \to A$ in the weak operator topology. Using the fact that $M_{p_n}^* \to A^*$ in the weak operator topology and acting these operators on e_λ we get $p_n(\lambda)e_\lambda = M_{p_n}^*e_\lambda \to A^*e_\lambda$ weakly. Since $p_n(\lambda) \to f(\lambda)$, we see that $A^*e_\lambda = f(\lambda)e_\lambda$ from which we can conclude that $A = M_f$ and this implies that $f \in M(\mathcal{X})$. Thus $H^\infty(B_N) \subset M(\mathcal{X})$ and indeed, $M(\mathcal{X}) = \mathcal{H}^\infty(\mathcal{B}_N)$.

Now let K be a compact subset of B_N. By Julia’s Lemma in B_N ([3]), there exists a constant $C > 0$ such that

$$|1 - \psi_n(z), w|^2 \leq C(1 - |\psi_n(z)|^2)$$

for every $z \in K$ and every $n \in \mathbb{N}$. But

$$|1 - \psi_n(z), w|^2 = |w - \psi_n(z)|^2,$$

thus

$$|w - \psi_n(z)|^2 \leq C(1 - |\psi_n(z)|^2)$$

for every $z \in K$ and every $n \in \mathbb{N}$. On the other hand we note that

$$|\varphi(w) - \varphi(\psi_n(z))| \leq d(w)^{n/2}|w - \psi_n(z)|$$

$$= d(w)^{n/2}|1 - \psi_n(z), w|$$

$$\leq c^{1/2}d(w)^{n/2}(1 - |\psi_n(z)|^2)^{1/2}, \quad (*)$$

for all n and $z \in B_N$. Also, note that that

$$\frac{|1 - \psi_n(z), w|^2}{1 - |\psi_n(z)|^2} \leq d(w)^n \frac{|1 - z, w|^2}{1 - |z|^2},$$
for every \(z \in B_N \) and \(n \in \mathbb{N} \). Since \(K \) is compact, then there exists a constant \(\beta > 0 \) such that

\[
4|1 - z, w|^2 < \beta (1 - |z|^2)
\]

for all \(z \) in \(K \). By a method used in [7], we get

\[
1 - |\psi_n(z)|^2 \leq 2|1 - \psi_n(z), w| \leq 4|1 - z, w|^2 d(w)^n < \beta d(w)^n.
\]

Now by using the relation (\(*\)), we obtain

\[
|1 - \frac{1}{\varphi(w)} \varphi(\psi_n(z))| < \frac{c^2 d(w)^n}{|\varphi(w)|} (1 - |\psi_n(z)|^2)^{1/2} \leq \frac{c^2 \beta^{1/2}}{|\varphi(w)|} d(w)^n.
\]

Since \(0 < d(w) < 1 \), \(\prod_{n=0}^{\infty} \frac{1}{\varphi(w) \varphi(\psi_n(z))} \) converges uniformly on \(K \). Define

\[
g(z) = \prod_{n=0}^{\infty} \frac{1}{\varphi(w) \varphi(\psi_n(z))}.
\]

Clearly \(g \) is a nonzero holomorphic function on \(B_N \). If \(|\varphi \circ \psi_n(z)| \leq |\varphi(w)| \) eventually for all \(n \), then we can see that \(g \in H^\infty(B_N) \) and so \(g \in \mathcal{X} \). In the case of \(||\psi||_U < 1 \), note that \(C_{\varphi,\psi}^n g = \varphi(w)^n g \). Thus

\[
g = \varphi(w)^{-n} \prod_{j=0}^{n-1} \varphi(\psi_j) g \circ \psi_n
\]

which implies that \(g \in \mathcal{X} \). Note that since \(C_{\varphi,\psi} g = \varphi(w) g \), \(C_{\varphi,\psi}^* \) fails to be hypercyclic. Also, note that

\[
C_{\varphi,\psi} M_g = M_g (\varphi(w) C_\psi),
\]

and \(g \) has no zero in \(B_N \) whenever \(\varphi \) never vanishes. Thus, \(M_g \) is one to one and has dense range and so \(C_{\varphi,\psi} \) is quasisimilar to \(\varphi(w) C_\psi \). Now if \(|\varphi(w)| = 1 \) and \(C_\psi \) is hypercyclic, then \(\varphi(w) C_\psi \) and so \(C_{\varphi,\psi} \) is also hypercyclic on \(H(B_N) \). This completes the proof. \(\square \)
References

