(\(K, E\))-SOFT UNIFORMITIES AND
L-FUZZY (\(K, E\))-SOFT NEIGHBORHOOD SYSTEMS

Yong Chan Kim\(^1\)\(^\S\), A.A. Ramadan\(^2\)

\(^1\)Department of Mathematics
Gangneung-Wonju University
Gangneung, Gangwondo 210-702, KOREA

\(^2\)Mathematics Department
Faculty of Science
Beni-Suef University
Beni-Suef, EGYPT

Abstract: In this paper, we define (\(K, E\))-soft uniformities in complete residuated lattices. We investigate the relations among (\(K, E\))-soft uniformities, (\(K, E\))-soft topologies and L-fuzzy (\(K, E\))-soft neighborhood systems. We give their examples.

AMS Subject Classification: 03E72, 06A15, 06F07, 54A05
Key Words: complete residuated lattices, fuzzy soft sets, soft map, (\(K, E\))-soft topologies, (\(K, E\))-soft uniformities, L-fuzzy (\(K, E\))-soft neighborhood systems

1. Introduction

Molodtsov [15,16] introduced the theory of soft sets as a new mathematical tool to deal with uncertainties while modeling problems in engineering physics, computer science, economics, social sciences and medical sciences. Maji et al. [12,13] gave the first practical application of soft sets in decision making problems. Many researchers have contributed towards the algebraic structure of soft set theory [1-5,7]. Shabir and Naz [23] introduced the study of soft...

In this paper, we define (K,E)-soft uniformities in complete residuated lattices. We investigate the relations among (K,E)-soft uniformities, (K,E)-soft topologies and L-fuzzy (K,E)-soft neighborhood systems. We give their examples.

2. Preliminaries

Definition 1. [8] A structure $(L, \vee, \wedge, \odot, \rightarrow, 0, 1)$ is called a complete residuated lattice iff it satisfies the following properties:

(L1) $(L, \vee, \wedge, 0, 1)$ is a complete lattice where 0 is the bottom element and 1 is the top element;
(L2) $(L, \odot, 1)$ is a commutative monoid;
(L3) adjointness properties,i.e.

$$x \leq y \rightarrow z \text{ iff } x \odot y \leq z.$$

In this paper, we assume that $(L, \vee, \wedge, \odot, \rightarrow, ^*, 0, 1)$ be a complete residuated lattice.

Lemma 2. [8,9] Let $(L, \vee, \wedge, \odot, \rightarrow, ^*, 0, 1)$ be a complete residuated lattice. For each $x, y, z, x_i, y_i \in L$, the following properties hold.

1. If $y \leq z$, then $x \odot y \leq x \odot z$.
2. If $y \leq z$, then $x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$.
3. $x \rightarrow y = 1$ iff $x \leq y$.
4. $x \rightarrow 1 = 1$ and $1 \rightarrow x = x$.
5. $x \odot y \leq x \wedge y$.
6. $x \odot (\bigvee_{i\in\Gamma} y_i) = \bigvee_{i\in\Gamma} (x \odot y_i)$ and $(\bigvee_{i\in\Gamma} x_i) \odot y = \bigvee_{i\in\Gamma} (x_i \odot y)$.
by,

\[\forall \phi \text{ where } E \]

for each \(f \) and each \(\psi \).

Throughout this paper, \(X \) refers to an initial universe, \(E \) and \(K \) are the sets of all parameters for \(X \), and \(L^X \) is the set of all \(L \)-fuzzy sets on \(X \).

Definition 3. [4] A map \(f \) is called an \(L \)-fuzzy soft set on \(X \), where \(f \) is a mapping from \(E \) into \(L^X \), i.e., \(f_e := f(e) \) is an \(L \)-fuzzy set on \(X \), for each \(e \in E \). The family of all \(L \)-fuzzy soft sets on \(X \) is denoted by \((L^X)^E\). Let \(f \) and \(g \) be two \(L \)-fuzzy soft sets on \(X \).

1. \(f \) is an \(L \)-fuzzy soft subset of \(g \) and we write \(f \subseteq g \) if \(f_e \leq g_e \), for each \(e \in E \). \(f \) and \(g \) are equal if \(f \subseteq g \) and \(g \subseteq f \).
2. The intersection of \(f \) and \(g \) is an \(L \)-fuzzy soft set \(h = f \cap g \), where \(h_e = f_e \wedge g_e \), for each \(e \in E \).
3. The union of \(f \) and \(g \) is an \(L \)-fuzzy soft set \(h = f \cup g \), where \(h_e = f_e \vee g_e \), for each \(e \in E \).
4. An \(L \)-fuzzy soft set \(h = f \circ g \) is defined as \(h_e = f_e \circ g_e \), for each \(e \in E \).
5. The complement of an \(L \)-fuzzy soft sets on \(X \) is denoted by \(f^* \), where \(f^* : E \rightarrow L^X \) is a mapping given by \(f_e^* = (f_e)^* \), for each \(e \in E \).
6. \(f \) is called a null \(L \)-fuzzy soft set and is denoted by \(0_X \), if \(f_e(x) = 0 \), for each \(e \in E \), \(x \in X \).
7. \(f \) is called an absolute \(L \)-fuzzy soft set and is denoted by \(1_X \), if \(f_e(x) = 1 \), for each \(e \in E \), \(x \in X \) and \((1_X)_e(x) = 1 \).

Definition 4. [4] Let \(\varphi : X \rightarrow Y \) and \(\psi : E_1 \rightarrow E_2 \) be two mappings, where \(E_1 \) and \(E_2 \) are parameters sets for the crisp sets \(X \) and \(Y \), respectively. Then \(\varphi_\psi : (L^X)^E_1 \rightarrow (L^Y)^E_2 \) is called a fuzzy soft mapping.

1. For \(f \in (L^X)^E_1 \), the image of \(f \) under the fuzzy soft mapping \(\varphi_\psi \) defined by, \(\forall k \in K, \forall y \in Y \),

\[
\varphi_\psi(f)_{e_2}(y) = \begin{cases}
\bigvee_{x \in \varphi^{-1}\{y\}}(\bigvee_{(e_1)_{e_1}}(f_{e_1}(x))), & \text{if } x \in \varphi^{-1}\{y\}, e_1 \in \psi^{-1}\{e_2\} \\
0, & \text{otherwise}
\end{cases}
\]

2. For \(g \in (L^X)^E_2 \), the pre-image of \(g \) defined by

\[
\varphi_\psi^{-1}(g)_{e}(x) = g_{\psi(e)}(\varphi(x)), \forall e \in E_1, \forall x \in X.
\]
(3) The soft mapping $\varphi_{\psi} : (L^X)^{E_1} \rightarrow (L^Y)^{E_2}$ is called injective (resp. surjective, bijective) if f and ϕ are both injective (resp. surjective, bijective).

Lemma 5. [10] Let $\varphi_{\psi} : (L^X)^{E_1} \rightarrow (L^Y)^{E_2}$ be a soft mapping. Then we have the following properties. For $f, f_i \in (L^X)^{E_1}$ and $g, g_i \in (L^Y)^{E_2},$

1. $g \sqsupseteq \varphi_{\psi}(\varphi_{\psi}^{-1}(g))$ with equality if φ_{ψ} is surjective,
2. $f \sqsubseteq \varphi_{\psi}^{-1}(\varphi_{\psi}(f))$ with equality if φ_{ψ} is injective,
3. if φ_{ψ} is injective,

$$\varphi_{\psi}(f)_{e_2}(y) = \begin{cases} f_{e_1}(x), & \text{if } x \in \varphi_{\psi}^{-1}(y), e_1 \in \psi^{-1}(e_2) \\ 0, & \text{otherwise} \end{cases}$$

4. $\varphi_{\psi}^{-1}(g^*) = (\varphi_{\psi}^{-1}(g))^*,$
5. $\varphi_{\psi}^{-1}(\bigvee_{i \in I} g_i) = \bigvee_{i \in I} \varphi_{\psi}^{-1}(g_i),$
6. $\varphi_{\psi}^{-1}(\bigwedge_{i \in I} g_i) = \bigwedge_{i \in I} \varphi_{\psi}^{-1}(g_i),$
7. $\varphi_{\psi}(\bigvee_{i \in I} f_i) = \bigvee_{i \in I} \varphi_{\psi}(f_i),$
8. $\varphi_{\psi}(\bigwedge_{i \in I} f_i) \sqsubseteq \bigwedge_{i \in I} \varphi_{\psi}(f_i)$ with equality if φ_{ψ} is injective,
9. $\varphi_{\psi}^{-1}(g_1 \circ g_2) = \varphi_{\psi}^{-1}(g_1) \circ \varphi_{\psi}^{-1}(g_2),$
10. $\varphi_{\psi}(f_1 \circ f_2) \sqsubseteq \varphi_{\psi}(f_1) \circ \varphi_{\psi}(f_2)$ with equality if φ_{ψ} is injective.

Lemma 6. [20] Define a binary mapping $S : (L^X)^{E} \times (L^X)^{E} \rightarrow L$ by

$$S(f, g) = \bigwedge_{x \in X} \bigwedge_{e \in E} (f_e(x) \rightarrow g_e(x)) \ \forall \ f, g \in (L^X)^{E}, \ \forall \ e \in E.$$

Then $\forall f, g, h, m, n \in (L^X)^{E}$ the following statements hold.

1. $f \sqsubseteq g$ iff $S(f, g) = 1.$
2. If $f \sqsubseteq g,$ then $S(h, f) \leq S(h, g)$ and $S(f, h) \geq S(g, h).$
3. $S(f, h) \circ S(h, g) \leq S(f, g).$ Moreover, $\bigvee_{h \in (L^X)^{E}} (S(f, h) \circ S(h, g)) = S(f, g)$
4. $S(f, g) \circ S(m, n) \leq S(f \circ m, g \circ n).$
5. If $\varphi_{\psi} : (X, E) \rightarrow (Y, F)$ is a fuzzy soft mapping, then $S(p, q) \leq S(\varphi_{\psi}^{-1}(p), \varphi_{\psi}^{-1}(q)),$ for each $p, q \in (L^Y)^{F}.$

Definition 7. [11] A set $\tau = \{\tau_k \subset P((L^X)^{E}) \mid k \in K\}$ for each $k \in K$ is called a (K, E)-soft topology on X if it satisfies the following conditions for each $k \in K.$

1. $(SO1) \quad 0_X, 1_X \in \tau_k,$
2. $(SO2) \quad \text{If } f, g \in \tau_k, \text{ then } (f \circ g) \in \tau_k.$
3. $(SO3) \quad \text{If } f_i \in \tau_k, \sqcup_{i \in I} f_i \in \tau_k.$
(\(K, E\))-SOFT UNIFORMITIES AND...

The pair \((X, \tau)\) is called a \((K, E)\)-soft topological space. Let \((X, \tau^1)\) be a \((K_1, E_1)\)-soft topological space and \((Y, \tau^2)\) be a \((K_2, E_2)\)-soft topological space. Let \(\varphi : X \to Y\), \(\psi : E_1 \to E_2\) and \(\eta : K_1 \to K_2\) be mappings. Then \(\varphi_\psi,\eta\) from \((X, \tau^1)\) into \((Y, \tau^2)\) is called soft continuous if \(\varphi^{-1}_\psi(f) \in (\tau^2)_k \ \forall f \in (\tau^2)_{\eta(k)}, k \in K_1\).

Definition 8. A set \(U = \{U_k \subset P((L^X \times X)^E) \mid k \in K\}\) is called a \((K, E)\)-soft quasi-uniformity on \(X\) iff the following conditions are fulfilled

1. **(QU1)** \(1_{X \times X} \in U_k\),
2. **(QU2)** If \(\alpha \leq u\) and \(v \in U_k\), then \(u \in U_k\),
3. **(QU3)** For every \(u, v \in U_k\), \(u \circ v \in U_k\),
4. **(QU4)** If \(u \in U_k\) then \(1_\Delta \leq u\) where

\[
(1_\Delta)_e(x, y) = \begin{cases} 1, & \text{if } x = y \\ 0, & \text{if } x \neq y, \end{cases}
\]

5. **(QU5)** For each \(u \in U_k\), there exists \(v \in U_k\) such that \(v \circ v \leq u\) where

\[
(v \circ v)_e(x, y) = \bigvee_{z \in X} v_e(x, z) \odot v_e(z, y), \quad \forall x, y \in X, e \in E.
\]

The pair \((X, U)\) is called a \((K, E)\)-soft quasi-uniform space.

A \((K, E)\)-soft quasi-uniformity \(U\) on \(X\) is said to be stratified if

1. **(S)** if \(u \in U_k\), then \(\alpha \circ u \in U_k\).

A \((K, E)\)-soft quasi-uniformity \(U\) on \(X\) is said to be \((K, E)\)-soft uniformity if

1. **(U)** if \(u \in U_k\), then \(u^{-1} \in U_k\) where \((u^{-1})_e(x, y) = u_e(y, x)\).

Let \((X, U^1)\) be a \((K_1, E_1)\)-soft quasi-uniform space and \((Y, U^2)\) be a \((K_2, E_2)\)-soft quasi-uniform space. Let \(\varphi : X \to Y\), \(\psi : E_1 \to E_2\) and \(\eta : K_1 \to K_2\) be mappings. Then \(\varphi_\psi,\eta\) from \((X, U^1)\) into \((Y, U^2)\) is called soft uniformly continuous if \((\varphi \times \varphi)_\psi^{-1}(v) \in (U^1)_k \ \forall v \in (U^2)_{\eta(k)}, k \in K_1\).

Definition 9. [20] An \(L\)-fuzzy \((K, E)\)-soft neighborhood system on \(X\) is a set \(N = \{N^x \mid x \in X\}\) of mappings \(N^x : K \to L^{(L^X)^E}\) such that for each \(k \in K\):

1. **(SN1)** \(N^x_k(1_X) = 1\) and \(N^x_k(0_X) = 0\),
2. **(SN2)** \(N^x_k(f \odot g) \geq N^x_k(f) \odot N^x_k(g)\) for each \(f, g \in (L^X)^E\),
3. **(SN3)** If \(f \geq g\), then \(N^x_k(f) \leq N^x_k(g)\),
4. **(SN4)** \(N^x_k(f) \leq f_e(x)\) for all \(f \in (L^X)^E\) and \(e \in E\).
5. **(SN5)** \(N^x_k(f) \leq \bigvee \{N^y_k(g) \mid g_e(y) \subseteq N^y_k(f), \ \forall y \in X, e \in E\}\).

The previous axiom can be reformulated in the following way
(SN5) \(\forall f \in (L^X)^E \) and \(x \in X \), \(N_k^x(f) \leq N_k^x(N_k^{-}(f)) \), where \(N_k^{-}(f) \in (L^X)^E \) is defined by

\[
(N_k^{-}(f))_e(y) = N_k^y(f) \quad \forall y \in Y, e \in E.
\]

An \(L \)-fuzzy \((K, E)\)-soft neighborhood system is called stratified if

\[
(N_k^{-}(\alpha \circ f)) \geq \alpha \circ N_k^{-}(f) \quad \text{for all} \quad f \in (L^X)^E \quad \text{and} \quad \alpha \in L.
\]

The pair \((X, N)\) is called an \(L \)-fuzzy \((K, E)\)-soft neighborhood space.

Let \((X, N)\) be an \(L \)-fuzzy \((K_1, E_1)\)-soft neighborhood space and \((Y, M)\) be an \(L \)-fuzzy \((K_2, E_2)\)-soft neighborhood space. Let \(\varphi : X \to Y \), \(\psi : E_1 \to E_2 \) and \(\eta : K_1 \to K_2 \) be mappings. Then \(\varphi \psi, \eta \) from \((X, N)\) into \((Y, M)\) is called soft \(N \)-continuous at every \(x \in X \) if \(M_{\eta(k)}(\varphi^{-1}(f)) \leq N_k^x(\varphi^{-1}(f)) \) \(\forall f \in (L^Y)^{E_2}, k \in K_1 \).

Theorem 10. Let \((X, \tau)\) be a \((K, E)\)-soft topological space. Define a map \(N_k^\tau : X \to L(L^X)^E \) by

\[
(N_k^\tau(f)) = \bigvee \{ \bigwedge_{e \in E} g_e(x) \mid g \sqsubseteq f, g \in \tau_k \}.
\]

Then the following properties hold.

1. \((X, N^\tau)\) is a \(L \)-fuzzy \((K, E)\)-soft neighborhood space.
2. If \(\tau \) is enriched, then \(N^\tau \) is stratified and

\[
(N_k^\tau(f)) = \bigvee \big(\bigwedge_{g \in \tau} \big(\bigwedge_{e \in E} g_e(x) \circ S(g, f) \big) \big).
\]

Theorem 11. Let \((X, U)\) be an \((K, E)\)-soft quasi uniform space. Define two maps \((rN^U)_k^{-}, (rN^U)_k^{+} : X \to L(L^X)^E \) by

\[
(rN^U)_k^{-}(f) = \bigvee_{u \in U_k} S(u[x], f), \quad \forall f \in (L^X)^E, \ x \in X,
\]

\[
(lN^U)_k^{+}(f) = \bigvee_{u \in U_k} S(u[[x]], f), \quad \forall f \in (L^X)^E, \ x \in X,
\]

where \((u[x])e(y) = u_e(y, x)\) and \((u[[x]])e(y) = u_e(x, y)\).

Then
(1) \((X, rN^U)\) is a stratified \(L\)-fuzzy \((K, E)\)-soft neighborhood space.

(2) \((X, lN^U)\) is a stratified \(L\)-fuzzy \((K, E)\)-soft neighborhood space.

(3) \((rN^U)^{(x)_k}(f) = \bigvee \{ \land_{e \in X} g_e(x) \mid u[g] \subseteq f, u \in U_k \} = \bigvee \{ \land_{e \in X} g_e(x) \circ S(u[g], f) \mid u \in U \} \) where

\[(u[g])_e(x) = u_e[g_e](x) = \bigvee_{y \in X} u_e(x, y) \circ g_e(y),\]

(4) \((lN^U)^{(x)_k}(f) = \bigvee \{ g(x) \mid u[[g]] \subseteq f \mid u \in U \} = \bigvee \{ \land_{e \in X} g_e(x) \circ S(u[[g]], f) \mid u \in U \} \) where

\[(u[[g]])_e(x) = u_e[[g_e]](x) = \bigvee_{y \in X} u_e(y, x) \circ g_e(y),\]

Proof. (1) (SN1) For \(u \in U\), by (QU4), \(1_\Delta \subseteq u\). Then

\[(rN^U)^{(x)_k}(0_X) = \bigvee_{u \in U_k} S(u[x], 0_X) \leq \bigvee_{u \in U_k} (u_e(x, x) \to 0) = 0.\]

Hence \((rN^U)^{(x)_k}(0_X) = 0\). Also, \((rN^U)^{(x)_k}(1_X) = 1\), because

\[(rN^U)^{(x)_k}(1_X) \geq \bigwedge_{y \in X} ((1_\Delta)_e(x, y) \to (1_X)_e(y)) = 1.\]

(SN2) By Lemma 6(4), we have

\[(rN^U)^{(x)_k}(f) \circ (rN^U)^{(x)_k}(g) = \bigvee_{u \in U_k} S(u[x], f) \circ \bigvee_{v \in U_k} S(v[x], g) \leq \bigvee_{u \in U_k} S((u \circ v)[x], f \circ g) \leq \bigvee_{w \in U_k} S(w[x], f \circ g) = (rN^U)^{(x)_k}(f \circ g).\]

(SN3) By Lemma 6(3), we have

\[(rN^U)^{(x)_k}(f) = \bigvee_{u \in U_k} S(u[x], f) \leq \bigvee_{u \in U_k} S(u[x], g) = (rN^U)^{(x)_k}(g).\]

(SN4) For \(u \in U\), by (QU4), \(1_\Delta \subseteq u\). We have

\[(rN^{U_k})^{(x)_k}(f) = \bigvee_{u \in U_k} \land_{y \in X} \land_{c \in E} (u_e(y, x) \to f_c(y)) \leq \bigvee_{u \in U_k} (u_e(x, x) \to f_c(x)) \leq f_c(x).\]
\[(SN5)\]
\[
\begin{align*}
(rN^U)_k^x(f) &= \bigvee_{u \in U_k} S(u[x], f) \\
&= \bigvee_{u \in U_k} \bigwedge_{y \in X} \bigwedge_{e \in E} (u_e(y, x) \rightarrow f_e(y)) \\
&\leq \bigvee_{v \in U_k} \bigwedge_{y \in X} \bigwedge_{e \in E} ((v_e \circ v_e)(y, x) \rightarrow f_e(y)) \\
&= \bigvee_{v \in U_k} \bigwedge_{y \in X} \bigwedge_{e \in E} \left((v_e(z, x) \circ v_e(y, z)) \rightarrow f_e(y) \right) \\
&= \bigvee_{v \in U_k} \bigwedge_{y \in X} \bigwedge_{z \in X} (v_e(z, x) \rightarrow (v_e(y, z) \rightarrow f_e(y)) \\
&= \bigvee_{v \in U_k} \bigwedge_{z \in X} (v_e(z, x) \rightarrow \bigwedge_{y \in X} (v_e(y, z) \rightarrow f_e(y)).
\end{align*}
\]

Put \(g_e(z) = \bigwedge_{y \in X} (v_e(y, z) \rightarrow f_e(y)) \). For all \(g_e(z) \leq (rN^U)_k^x(f) \) for each \(z \in X, e \in E, \bigwedge_{e \in E} g_e(x) \leq (rN^U)_k^x(f) \). Thus,
\[
\begin{align*}
(rN^U)_k^x(f) \\
&\leq \bigvee_{v \in U_k} \{ \bigwedge_{z \in X} \bigwedge_{e \in E} (v_e(z, x) \rightarrow g_e(z)) \mid g_e(z) \leq (rN^U)_k^x(f) \} \\
&\leq \bigvee_{v} \{ (rN^U)_k^x(g) \mid g_e(z) \leq (rN^U)_k^x(f) \}.
\end{align*}
\]

Thus, \((X, rN^U)\) is an \(L\)-fuzzy \((K, E)\)-soft neighborhood space.

Since \(\alpha \circ (u[x])_e(y) \circ S(u[x], f) \leq \alpha \circ (u[x])_e(y) \circ ((u[x])_e(y) \rightarrow f_e(y)) \leq \alpha \circ f_e(y) \), we have
\[
\alpha \circ S(u[x], f) \leq S(u[x], \alpha \circ f).
\]

Thus, \(rN^U \) is stratified from:
\[
\begin{align*}
\alpha \circ (rN^U)_k^x(f) &= \alpha \circ \bigvee_{u \in U_k} S(u[x], f) = \bigvee_{u \in U_k} (\alpha \circ S(u[x], f)) \\
&\leq \bigvee_{u \in U_k} (S(u[x], \alpha \circ f)) = (rN^U)_k^x(\alpha \circ f).
\end{align*}
\]

(2) It is similarly proved as (1).

(3) Put \(\gamma = \bigvee \{ \bigwedge_{e \in X} g_e(x) \mid u[g] \subseteq f, u \in U_k \} \). We show that \((rN^U)_k^x(f) = \gamma \) from the following statements.

Let \(g_e(y) = \bigwedge_{x \in X} (u_e(x, y) \rightarrow f_e(x)) \). Then
\[
\begin{align*}
u_e[g_e](z) &= \bigvee_{y \in X} (u_e(z, y) \circ g_e(y)) \\
&= \bigvee_{y \in X} (u_e(z, y) \circ (\bigwedge_{x \in X} (u_e(x, y) \rightarrow f_e(x)))) \\
&\leq \bigvee_{y \in X} (u_e(z, y) \circ (u_e(z, y) \rightarrow f_e(z))) \leq f_e(z).
\end{align*}
\]

Hence \((rN^U)_k^x(f) \leq \gamma \).

Let \(u_e[g_e](z) = \bigvee_{y \in X} (u_e(z, y) \circ g_e(y)) \leq f_e(z) \). Then
\[
g_e(y) \leq \bigwedge_{z \in X} (u_e(z, y) \rightarrow f_e(z)).
\]
Hence \((rN^U)^x_k(f) \geq \gamma\).

Put \(\delta = \sqrt{\{(\bigwedge_{e \in E} g_e(x)) \odot S(u[g], f) \mid u \in U_k\}}\). We show that \(\delta = \gamma\) from the following statements.

Let \(g \in (L^X)^E\) with \(u[g] \leq f\) and \(u \in U_k\). Then \(S(u[g], f) = 1\). Hence \((\bigwedge_{e \in E} g_e(x)) \odot S(u[g], f) = (\bigwedge_{e \in E} g_e(x)) \leq \delta(x)\). So, \(\gamma \leq \delta\).

Let \((\bigwedge_{e \in E} g_e) \odot S(u[g], f)\) with \(u \in U\). Since

\[
\begin{align*}
\mu_e[(\bigwedge_{e \in E} g_e) \odot S(u[g], f)](x) &= \bigvee_{y \in X}((\mu_e(x, y) \odot (\bigwedge_{e \in E} g_e(y))) \odot S(u[g], f)) \\
&\leq \mu_e[g_e](x) \odot S(u[g], f) \leq f_e(x)
\end{align*}
\]

we have \(\mu_e[(\bigwedge_{e \in E} g_e) \odot S(u[g], f)] \leq f_e\). Then \(\bigwedge_{e \in E} g_e(x) \odot S(u[g], f) \leq \gamma\). Thus, \(\delta = \gamma\).

Theorem 12. Let \((X, U)\) be a \((K, E)\)-soft quasi-uniform space, \((X, rN^U)\) and \((X, lN^U)\) \(L\)-fuzzy \((K, E)\)-soft neighborhood spaces. Define \((\tau^r_U)_k, (\tau^l_U)_k \subset (L^X)^E\) as follows

\[
(\tau^r_U)_k = \{f \in (L^X)^E \mid f_e(x) = (rN^U)^x_k(f), \forall x \in X, e \in E\},
\]

\[
(\tau^l_U)_k = \{f \in (L^X)^E \mid f_e(x) = (lN^U)^x_k(f), \forall x \in X, e \in E\}.
\]

Then,

1. \((\tau^r_U)_k = \{(\tau^r_U)_k \mid k \in K\}\) is an enriched \((K, E)\)-soft topology on \(X\).
2. \((\tau^l_U)_k = \{(\tau^l_U)_k \mid k \in K\}\) is an enriched \((K, E)\)-soft topology on \(X\).
3. \(rN^U = N^r_U\).
4. \(lN^U = N^l_U\).

Proof. (1) (SO1) Since \((rN^U)^x_k(1_X) = 1\) and \((rN^U)^x_k(0_X) = 0\), we have \(1_X, 0_X \in (\tau^r_U)_k\).

(SO2) Let \(f, g \in (\tau^r_U)_k\) with \((rN^U)^x_k(f) = f_e(x)\) and \((rN^U)^x_k(g) = g_e(x)\). Since \((rN^U)^x_k(f \odot g) \geq (rN^U)^x_k(f) \odot (rN^U)^x_k(g) = (f \odot g)_e(x)\) and (SN4), then \(f \odot g \in (\tau^r_U)_k\).

(SO3) Let \(i_1 \in (\tau^r_U)_k\) for all \(i \in \Gamma\). Since \((rN^U)^x_k(\bigcup_{i \in \Gamma} f_i) = \bigcup_{i \in \Gamma} (rN^U)^x_k(f_i) = (\tau^r_U)_k\), then \(\bigcup_{i \in \Gamma} f_i \in (\tau^r_U)_k\).

(R) Let \(f \in (\tau^r_U)_k\). Since \((rN^U)^x_k(\alpha \odot f) \geq \alpha \odot (rN^U)^x_k(f) = \alpha \odot f_e(x)\) and (SN4), then \(\alpha \odot f \in (\tau^r_U)_k\).

(2) It is similarly proved as (1).

(3) Since \((rN^U)^x_k(f) \leq (rN^U)^x_k((rN^U)^x_k(f)) \leq (rN^U)^x_k(f)\) from (SN3) and (SN5), \((rN^U)^x_k(f) = (rN^U)^x_k((rN^U)^x_k(f))\) for all \(x \in X\). Since \((rN^U)^x_k(f) \in \tau^r_U\), by the definition of \(N\tau^r_U\), \((rN^U)^x_k(f) \leq (\tau^r_U)^x_k(f)\).
Since \((N^\tau U)^c_k(f) = \bigvee \{ \wedge_{e \in E} (g_i)_e(x) \mid g_i \subseteq f, g_i \in (\tau^c_{U})_k \}\) and \(\wedge_{e \in E} (g_i)_e(x) = (rN^U)^c_k(g_i)\), then

\[
\bigvee_i (g_i)_e(x) = \bigvee_i (rN^U)^c_k(g_i) \leq (rN^U)^c_k((N^\tau U)^c_k(f)) = (rN^U)^c_k(\bigcup_i g_i) \leq \bigvee_i (g_i)_e(x).
\]

Hence \((rN^U)^c_k((N^\tau U)^c_k(f)) = (N^\tau U)^c_k(f)\). Since \((N^\tau U)^c_k(f) \leq f(x)\) for all \(e \in E\), by (SN3), \((N^\tau U)^c_k(f) = (rN^U)^c_k(N^\tau U_k(f)) \leq (rN^U)^c_k(f)\). So, \(rN^U = N^\tau U\).

(4) It is similarly proved as (3).

Theorem 13. Let \((X, U)\) be a \((K_1, E_1)\)-soft quasi-uniform space and \((Y, U)\) be a \((K_2, E_2)\)-soft quasi-uniform space. Let \(\varphi : X \to Y\), \(\psi : E_1 \to E_2\) and \(\eta : K_1 \to K_2\) be mappings. If \(\varphi;\eta : (X, U) \to (Y, V)\) is soft uniformly continuous, then

1. \(\varphi;\eta : (X, rN^U) \to (Y, rN^V)\) is soft \(N\)-continuous.
2. \(\varphi;\eta : (X, lN^U) \to (Y, lN^V)\) is soft \(N\)-continuous.
3. \(\varphi;\eta : (X, \tau^\tau U) \to (Y, \tau^\tau V)\) is soft continuous.
4. \(\varphi;\eta : (X, \tau^\tau U) \to (Y, \tau^\tau V)\) is soft continuous.

Proof. (1) First we show that \(\varphi;\eta^{-1}((v[\varphi(x)]_\psi(e)) = ((\varphi \times \varphi)^{-1}_\psi(v)[x])_e\) from

\[
\varphi^{-1}_\psi((v[\varphi(x)]_\psi(e))(z) = (v[\varphi(x)]_\psi(e)(\varphi(z)) = v_\psi(e)(\varphi(z), \varphi(x))
= (\varphi \times \varphi)^{-1}_\psi(v_\psi(e))(z, x) = ((\varphi \times \varphi)^{-1}_\psi(v)[x])_e(z).
\]

Thus we have

\[
S(v[\varphi(x)], f) = \wedge_{y \in Y} \wedge_{e_2 \in E_2} (v[\varphi(x)]_e_2(y) \to f_{e_2}(y)) \leq \wedge_{z \in X} \wedge_{e_1 \in E_1} (v[\varphi(x)]_e_1(z) \to f_{e_1}(\varphi(z)))
= \wedge_{z \in X} \wedge_{e_1 \in E_1} (\varphi^{-1}_\psi((v[\varphi(x)]_e_1)(z) \to \varphi^{-1}_\psi(f_{e_1}(z)))
= \wedge_{z \in X} \wedge_{e_1 \in E_1} ((\varphi \times \varphi)^{-1}_\psi(v)[x]_e_1(z) \to (\varphi \times \varphi)^{-1}_\psi(f)[x]_e_1(z))
= S(((\varphi \times \varphi)^{-1}_\psi(v)[x], \varphi^{-1}_\psi(f)).
\]

\[
(rN^V)^\varphi(x)_k(f) = \bigvee_{v \in V_{\eta(k)}} S(v[\varphi(x)], f) \leq \bigvee_{v \in V_{\eta(k)}} S(((\varphi \times \varphi)^{-1}_\psi(v)[x], \varphi^{-1}_\psi(f)) \leq \bigvee_{((\varphi \times \varphi)^{-1}_\psi(v)[x] \varphi^{-1}_\psi(f)) \leq (rN^U)^c_k(\varphi^{-1}_\psi(f)).
\]

(2) It is similarly proved as (1).
(3) Let $f \in (\tau^\top V)_{\eta(k)}(f)$. Then $f_{\psi(e)}(\varphi(x)) = (rN^V)^{\varphi(x)}_{\eta(k)}(f)$. Then $\varphi\psi^{-1}(f)_{\tau(e)}(x) = \varphi\psi^{-1}((rN^V)^{\varphi(x)}_{\eta(k)}(f))_{\tau(e)}(x)$. Since $(rN^V)^{\varphi(x)}_{\eta(k)}(f) \leq (rN^U)^{\varphi\psi^{-1}(f)}_{\eta(k)}(f)$,

$$\varphi\psi^{-1}(f)_{\tau(e)}(x) = \varphi\psi^{-1}((rN^V)^{\varphi(x)}_{\eta(k)}(f))_{\tau(e)}(x) = (rN^V)^{\varphi(x)}_{\eta(k)}(f) \leq (rN^U)^{\varphi\psi^{-1}(f)}_{\eta(k)}(f).$$

By (SN3), $\varphi\psi^{-1}(f) = (rN^U)^{\varphi\psi^{-1}(f)}_{k}$. Hence $\varphi\psi^{-1}(f) \in (\tau^\top U)_k$.

(4) It is similarly proved as (3).

Example 14. Let $X = \{h_i \mid i \in \{1, 2, 3\}\}$ with $h_i =$ house and $E = \{e, b\}$ with $e =$ expensive, $b =$ beautiful. Let $(L = [0, 1], \odot = \land, \rightarrow, 0, 1)$ be a complete residuated lattice defined by

$$x \odot y = x \land y, \quad x \rightarrow y = \begin{cases} 1, & \text{if } x \leq y, \\ y, & \text{otherwise.} \end{cases}$$

Put $f \in (L^X)^E$ such that

$$f_e(h_1) = 0.3, f_e(h_2) = 0.5, f_e(h_3) = 0.3$$
$$f_b(h_1) = 0.7, f_b(h_2) = 0.9, f_b(h_3) = 0.4$$

Put $K = \{k_1, K_2\}$ and $w, v \in (L^{X \times X})^E$ such that

$$w_e = \begin{pmatrix} 1 & 0.3 & 0.5 \\ 0.6 & 1 & 0.7 \\ 0.5 & 0.3 & 1 \end{pmatrix}, \quad w_b = \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.5 & 1 & 0.4 \\ 0.4 & 0.4 & 1 \end{pmatrix},$$

$$v_e = \begin{pmatrix} 1 & 0.6 & 0.8 \\ 0.4 & 1 & 0.4 \\ 0.5 & 0.5 & 1 \end{pmatrix}, \quad v_b = \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.7 & 1 & 0.4 \\ 0.6 & 0.5 & 1 \end{pmatrix}.$$

Define $U_{k_1} = \{u \in (L^{X \times X})^E \mid u \geq w\}$ and $U_{k_2} = \{u \in (L^{X \times X})^E \mid u \geq v\}$.

(1) Since $w_e \circ w_e = w_e$ and $v_e \circ v_e = v_e$ for all $e \in E$, $U = \{U_{k_1}, U_{k_2}\}$ is a (K, E)-soft quasi-uniformity on X.

(2) Since $(rN^U)^x_{k}(f) = \bigvee_{u \in U_k} S(u[x], f)$, we have

$$(rN^U)^{h_1}_{k_1}(f) = \bigvee_{u \in U_{k_1}} S(u[h_1], f) = f_e(h_1) \land (0.6 \rightarrow f_e(h_2))$$
$$(0.5 \rightarrow f_e(h_3)) \land f_b(h_1) \land (0.5 \rightarrow f_b(h_2)) \land (0.4 \rightarrow f_b(h_3)),$$

$$(rN^U)^{h_2}_{k_1}(f) = \bigvee_{u \in U_{k_1}} S(u[h_2], f) = (0.3 \rightarrow f_e(h_1)) \land f_e(h_2)$$
$$(0.3 \rightarrow f_e(h_3)) \land (0.5 \rightarrow f_b(h_1)) \land f_b(h_2) \land (0.4 \rightarrow f_b(h_3)),$$

$$(rN^U)^{h_3}_{k_1}(f) = \bigvee_{u \in U_{k_1}} S(u[h_3], f) = (0.5 \rightarrow f_e(h_1)) \land (0.7 \rightarrow f_e(h_2))$$
$$\land f_e(h_3) \land (0.4 \rightarrow f_b(h_1)) \land (0.4 \rightarrow f_b(h_2)) \land f_b(h_3).$$
Then \((r^U_{N})_{k_1}^1(f) = 0.3, (r^U_{N})_{k_1}^2(f) = 0.5, (r^U_{N})_{k_1}^3(f) = 0.3\).

\((r^U_{N})_{k_2}^1(f) = \bigvee_{u \in U_{k_2}} S(u[h_1], f) = f_e(h_1) \land (0.4 \rightarrow f_e(h_2))
\land (0.5 \rightarrow f_e(h_3)) \land f_b(h_1) \land (0.7 \rightarrow f_b(h_2)) \land (0.6 \rightarrow f_b(h_3)),
\((r^U_{N})_{k_2}^2(f) = \bigvee_{u \in U_{k_2}} S(u[h_2], f) = (0.6 \rightarrow f_e(h_1)) \land f_e(h_2)
\land (0.5 \rightarrow f_e(h_3)) \land (0.5 \rightarrow f_b(h_1)) \land f_b(h_2) \land (0.5 \rightarrow f_b(h_3)),
\((r^U_{N})_{k_2}^3(f) = \bigvee_{u \in U_{k_2}} S(u[h_3], f) = (0.8 \rightarrow f_e(h_1)) \land (0.4 \rightarrow f_e(h_2))
\land f_e(h_3) \land (0.4 \rightarrow f_b(h_1)) \land (0.4 \rightarrow f_b(h_2)) \land f_b(h_3).

Then \((r^U_{N})_{k_2}^1(f) = 0.3, (r^U_{N})_{k_2}^2(f) = 0.3, (r^U_{N})_{k_2}^3(f) = 0.3\).

(3) Since \((L^{U}_{N})_{k}^x(f) = \bigvee_{u \in U} S(u[[x]], f)\), we have

\[(L^{U}_{N})_{k_1}^1(f) = \bigvee_{u \in U_{k_1}} S(u[[h_1]], f) = f_e(h_1) \land (0.3 \rightarrow f_e(h_2))
\land (0.5 \rightarrow f_e(h_3)) \land f_b(h_1) \land (0.5 \rightarrow f_b(h_2)) \land (0.4 \rightarrow f_b(h_3)),
\((L^{U}_{N})_{k_1}^2(f) = \bigvee_{u \in U_{k_1}} S(u[h_2], f) = (0.6 \rightarrow f_e(h_1)) \land f_e(h_2)
\land (0.7 \rightarrow f_e(h_3)) \land (0.5 \rightarrow f_b(h_1)) \land f_b(h_2) \land (0.4 \rightarrow f_b(h_3)),
\((L^{U}_{N})_{k_1}^3(f) = \bigvee_{u \in U_{k_1}} S(u[h_3], f) = (0.5 \rightarrow f_e(h_1)) \land (0.3 \rightarrow f_e(h_2))
\land f_e(h_3) \land (0.4 \rightarrow f_b(h_1)) \land (0.4 \rightarrow f_b(h_2)) \land f_b(h_3).

Then \((L^{U}_{N})_{k_1}^1(f) = 0.3, (L^{U}_{N})_{k_1}^2(f) = 0.3, (L^{U}_{N})_{k_1}^3(f) = 0.3\).

(4) Since \((\tau_{U}^r)_{k} = \{ f \in (L^{X})^E \mid f_e(x) = (r^U_{N})_{k}^x(f), \forall x \in X, e \in E\}\) from

Theorem 12, \(f_e = f_b\), we have

\[f \in (\tau_{U}^r)_{k_1} \text{ iff } \begin{cases} f = \alpha_X, \\ f_e(h_1) \leq 0.6 \rightarrow f_e(h_2), f_e(h_1) \leq 0.5 \rightarrow f_e(h_3), \\ f_e(h_2) \leq 0.5 \rightarrow f_e(h_1), f_e(h_2) \leq 0.4 \rightarrow f_e(h_3), \\ f_e(h_3) \leq 0.5 \rightarrow f_e(h_1), f_e(h_3) \leq 0.7 \rightarrow f_e(h_3), \end{cases} \]
(5) Since \((τ^U_k)_k = \{ f \in (L^X)^E \mid f_e(x) = (\text{In}U)_k^e(f), \forall x \in X, e \in E \}\) from Theorem 12, \(f_e = f_b\), we have

\[
\begin{align*}
 f \in (τ^U_k)_k & \quad \text{iff} \quad f = \alpha_X, \\
 f_e(h_1) & \leq 0.5 \rightarrow f_e(h_2), f_e(h_1) \leq 0.5 \rightarrow f_e(h_3), \\
 f_e(h_2) & \leq 0.7 \rightarrow f_e(h_1), f_e(h_2) \leq 0.7 \rightarrow f_e(h_3), \\
 f_e(h_3) & \leq 0.8 \rightarrow f_e(h_1), f_e(h_3) \leq 0.5 \rightarrow f_e(h_3),
\end{align*}
\]

Put \((g_e = g_b)(h_1) = 0.5, (g_e = g_b)(h_2) = 0.8, (g_e = g_b)(h_3) = 0.6\). Then \(g \in (τ^U_k)_k\) but \(g \notin (τ^U_k)_k\) because

\[
f_e(h_3) = 0.6 \leq 0.8 \rightarrow f_e(h_3) = 0.5.
\]

Put \((h_e = h_b)(h_1) = 0.8, (h_e = h_b)(h_2) = 0.5, (h_e = h_b)(h_3) = 0.9\). Then \(h \in (τ^U_k)_k\) but \(h \notin (τ^U_k)_k\) because

\[
f_e(h_1) = 0.8 \leq 0.6 \rightarrow f_e(h_2) = 0.5.
\]

References

