ON PSEUDO B-WEYL AND PSEUDO B-FREDHOLM OPERATORS

Abdelaziz Tajmouati$^{1,\$}$, Mohammed Karmouni2

1,2Laboratory of Mathematical Analysis and Applications
Faculty of Sciences Dhar Al Mahraz
Sidi Mohamed Ben Abdellah University
Fez, MOROCCO

Abstract: In this note, we show that the pseudo B-Fredholm and pseudo B-Weyl spectra, for a bounded linear operator on a Banach space, are compact in the complex plane. Afterwards, we prove that the pseudo B-Fredholm spectrum differs from the Kato spectrum on at most countable many points. Furthermore, if T and T^* have the SVEP at λ_0, we show that $\lambda_0 I - T$ is a pseudo B-Weyl operator if and only if $\lambda_0 I - T$ is a pseudo B-Fredholm operator.

AMS Subject Classification: 47A53, 47A10, 47A11
Key Words: pseudo B-Fredholm, pseudo B-Weyl, single-valued extension property, isolated point

1. Introduction

Throughout, X denotes a complex Banach space, $\mathcal{B}(X)$ the Banach algebra of all bounded linear operators on X, let I be the identity operator, and for $T \in \mathcal{B}(X)$ we denote by T^*, $R(T)$, $R^\infty(T) = \bigcap_{n \geq 0} R(T^n)$, $\rho(T)$, $\sigma(T)$, $\sigma_p(T)$, $\sigma_{ap}(T)$ and $\sigma_{su}(T)$ respectively the adjoint, the range, the hyper-range, the resolvent set, the spectrum, the point spectrum, the approximate point spectrum and the surjectivity spectrum of T.

Recall that $T \in \mathcal{B}(X)$ is called a Kato operator or semi-regular if $R(T)$ is closed and $N(T) \subseteq R^\infty(T)$. Denote by $\rho_K(T) : \rho_K(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is Kato} \}$ the Kato resolvent and $\sigma_K(T) = \mathbb{C} \setminus \rho_K(T)$ the Kato spectrum of
It is well known that $\rho_K(T)$ is an open subset of \mathbb{C} and may be decomposed in connected disjoint open nonempty components [1]. The Kato spectrum play an important role in local spectral theory, in particular, we have:

$$\partial \sigma(T) \subseteq \sigma_K(T) \subseteq \sigma_{su}(T) \cap \sigma_{ap}(T) \subseteq \sigma(T)$$

The concept of analytical core for an operator has been introduced by Vrbová in [15] and study by Mbekhta [9] [10] [11], that is the following set:

$$K(T) = \{ x \in X : \exists (x_n)_{n \geq 0} \subset X \text{ and } \delta > 0 \text{ such that } x_0 = x, \; T x_n = x_{n-1} \forall n \geq 1 \text{ and } \|x_n\| \leq \delta^n \|x\| \}$$

The quasi-nilpotent part of T, $H_0(T)$ is given by:

$$H_0(T) := \{ x \in X ; r_T(x) = 0 \} \text{ where } r_T(x) = \lim_{n \to +\infty} \|T^n x\|^\frac{1}{n}.$$

Next, let $T \in \mathcal{B}(X)$, T has the single valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP) if for every open neighborhood $U \subseteq \mathbb{C}$ of λ_0, the only analytic function $f : U \rightarrow X$ which satisfies the equation $(T - zI)f(z) = 0$ for all $z \in U$ is the function $f \equiv 0$. T is said to have the SVEP if T has the SVEP for every $\lambda \in \mathbb{C}$. Obviously, every operator $T \in \mathcal{B}(X)$ has the SVEP at every $\lambda \in \rho(T)$, then T and T^* have the SVEP at every point of the boundary $\partial(\sigma(T))$ of the spectrum. In particular, T and T^* have the SVEP at every isolated point of the spectrum. We have the implication [1]:

$$\sigma(T) \text{ does not cluster at } \lambda \implies T \text{ and } T^* \text{ have the SVEP at } \lambda$$

An operator $T \in \mathcal{B}(X)$ is said to be decomposable if for any open covering U_1, U_2 of the complex plane \mathbb{C}, there are two closed T-invariant subspaces X_1 and X_2 of X such that $X_1 + X_2 = X$ and $\sigma(T|X_k) \subset U_k$, $k = 1, 2$. Note that T is decomposable implies that T and T^* have the SVEP.

A bounded linear operator is called an upper semi-Fredholm (resp, lower semi Fredholm) if $dim N(T) < \infty$ and $R(T)$ is closed (resp, $codim R(T) < \infty$). T is semi-Fredholm if is a lower or upper semi-Fredholm operator. The index of a semi Fredholm operator T is defined by $ind(T) = dim N(T) - codim R(T)$

T is a Fredholm operator if is a lower and upper semi-Fredholm operator, and is called a Weyl operator if it is Fredholm of index zero.

The essential and Weyl spectra of T are closed and defined by:

$$\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not a Fredholm operator} \}$$

$$\sigma_W(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not a Weyl operator} \}$$
Let $T \in B(X)$, T is said to be a Drazin invertible if there exists a positive integer k and an operator $S \in B(X)$ such that

$$ST = TS, \ T^{k+1}S = T^k \text{ and } S^2T = S.$$

Which is also equivalent to the fact that $T = T_1 \oplus T_2$; where T_1 is invertible and T_2 is nilpotent. The concept of Drazin invertible operators has been generalized by Koliha [7]. In fact, $T \in B(X)$ is generalized Drazin invertible if and only if $0 \notin \text{acc}(\sigma(T))$ ($\text{acc}(\sigma(T))$ is the set of all points of accumulation of $\sigma(T)$), which is also equivalent to the fact that $T = T_1 \oplus T_2$ where T_1 is invertible and T_2 is quasinilpotent. The generalized Drazin invertible spectrum defined by

$$\sigma_{gD}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not generalized Drazin invertible} \}.$$

An operator $T \in B(X)$ is said to be B-Fredholm, if for some integer $n \geq 0$ the range $R(T^n)$ is closed and T_n, the restriction of T to $R(T^n)$ is a Fredholm operator. This class of operators, introduced and studied by Berkani et al. in a series of papers which extends the class of semi-Fredholm operators. T is said to be a B-Weyl operator if T_n is a Fredholm operator of index zero. The B-Fredholm and B-Weyl spectra are defined by

$$\sigma_{BF}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not B-Fredholm} \};$$

$$\sigma_{BW}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not B-Weyl} \}.$$

Note that T is a B-Fredholm operator if there exists two closed invariant subspaces X_1 and X_2 such that $X = X_1 \oplus X_2$, $T = T_1 \oplus T_2$, T_1 is Fredholm and T_2 is nilpotent [4, Theorem 2.7]. From [5, Lemma 4.1], T is a B-Weyl operator if there exists two closed invariant subspaces X_1 and X_2 such that $X = X_1 \oplus X_2$, $T = T_1 \oplus T_2$, T_1 is Weyl and T_2 is nilpotent

More recently, B-Fredholm and B-Weyl operators were generalized to pseudo B-Fredholm and pseudo B-Weyl [6], [16]. Precisely:

T is a pseudo B-Fredholm operator if there exists two closed T-invariant subspaces X_1 and X_2 such that $X = X_1 \oplus X_2$, $T = T_1 \oplus T_2$, T_1 is a Fredholm operator and T_2 is a quasi-nilpotent operator. T is said to be pseudo B-Weyl operator if there exists two closed T-invariant subspaces X_1 and X_2 such that $X = X_1 \oplus X_2$, $T = T_1 \oplus T_2$, T_1 is a Weyl operator and T_2 is a quasi-nilpotent operator. The pseudo B-Fredholm and pseudo B-Weyl spectra are defined by

$$\sigma_{pBF}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Fredholm} \};$$

$$\sigma_{pBW}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Weyl} \}.$$
It is easy to see that T is a pseudo B-Fredholm (resp. pseudo B-Weyl) operator if and only if T^* is pseudo B-Fredholm (resp. pseudo B-Weyl) operator. Hence $\sigma_{pBF}(T) = \sigma_{pBF}(T^*)$ and $\sigma_{pBW}(T) = \sigma_{pBW}(T^*)$.

$\sigma_{pBW}(T)$ and $\sigma_{pBF}(T)$ is not necessarily non empty. For example, the quasi nilpotent operator has empty pseudo B-Weyl and B-Fredholm spectra. Evidently $\sigma_{pBF}(T) \subset \sigma_{BW}(T) \subset \sigma_{W}(T) \subset \sigma(T)$. Then it is naturel to ask about the defect set $\sigma_{BW}(T) \setminus \sigma_{pBW}(T)$.

In this present paper, we show that the pseudo B-Fredholm spectrum $\sigma_{pBF}(T)$ is a compact set of \mathbb{C} and the set $\sigma_{BW}(T) \setminus \sigma_{pBW}(T)$ is at most countable. Also, if $\lambda_0 \in \sigma(T)$, T and T^* have the SVEP at λ_0, we show that $\lambda_0 I - T$ is a pseudo B-Weyl operator if and only if $\lambda_0 I - T$ is a pseudo B-Fredholm operator. From this characterization, we explore sufficient conditions which ensures the equalities $\sigma_{pBF}(T) = \sigma_{gD}(T)$.

2. Pseudo B-Fredholm and Pseudo B-Weyl Spectra

Denote the open disc centered at λ_0 with radius ε in \mathbb{C} by $D(\lambda_0, \varepsilon)$ and

$$D^*(\lambda_0, \varepsilon) = D(\lambda_0, \varepsilon) \setminus \{\lambda_0\}.$$ The following Theorem establishes that if T is a pseudo B-Fredholm operator, then $\lambda I - T$ is Fredholm in an open punctured neighborhood of 0.

Theorem 2.1. Let $T \in B(X)$, a pseudo B-Fredholm operator, then there exists a constant $\varepsilon > 0$, such that $\lambda I - T$ is Fredholm for all $\lambda \in D^*(0, \varepsilon)$.

Proof. If T is pseudo B-Fredholm, then there exists two closed T-invariant subspaces X_1 and X_2 such that $X = X_1 \oplus X_2$; $T_{|X_1}$ is Fredholm, $T_{|X_2}$ is quasi-nilpotent and $T = T_{|X_1} \oplus T_{|X_2}$.

If $X_1 = \{0\}$, T is quasi nilpotent then $\lambda I - T$ is invertible for all $\lambda \neq 0$, hence $\lambda I - T$ is Fredholm for all $\lambda \neq 0$.

If $X_1 \neq \{0\}$ then $T_{|X_1}$ is Fredholm $\Rightarrow \exists \varepsilon > 0$ such that $(\lambda I - T)_{|X_1}$ is Fredholm for all $\lambda \in D(0, \varepsilon)$. As $T_{|X_2}$ is quasi-nilpotent $\Rightarrow \forall \lambda \neq 0$, $(\lambda I - T)_{|X_2}$ is invertible, then $(\lambda I - T)_{|X_2}$ is Fredholm for all $\lambda \in D^*(0, \varepsilon)$. Since $(\lambda I - T)_{|X_2}$ and $(\lambda I - T)_{|X_1}$ are Fredholm $\forall \lambda \in D^*(0, \varepsilon)$, we have $\lambda I - T$ is Fredholm $\forall \lambda \in D^*(0, \varepsilon)$.

Since $\sigma_W(T)$ is a closed set in \mathbb{C}, by the same argument, we can prove the following:
Theorem 2.2. Let $T \in \mathcal{B}(X)$, a pseudo B-Weyl operator, then there exists a constant $\varepsilon > 0$, such that $\lambda I - T$ is Weyl for all $\lambda \in D^*(0, \varepsilon)$.

As consequences of the Theorem 2.1 and Theorem 2.2, we have the following corollaries.

Corollary 2.1. Let $T \in \mathcal{B}(X)$, $\sigma_{pBF}(T)$ is a compact subset of \mathbb{C}. Moreover $\sigma_e(T) \setminus \sigma_{pBF}(T)$ consist of at most countably many isolated points.

Proof. We have $\sigma_{pBF}(T) \subset \sigma(T)$, by Theorem 2.1 $\mathbb{C} \setminus \sigma_{pBF}(T) = \rho_{pBF}(T)$ is open. Then $\sigma_{pBF}(T)$ is compact.

Furthermore, if $\lambda \in \sigma_e(T) \setminus \sigma_{pBF}(T)$, then $T - \lambda I$ is pseudo B-Fredholm. By Theorem 2.1, there exist $\varepsilon > 0$ such that, for all $\mu \in D^*(\lambda, \varepsilon)$, $T - \mu I$ is Fredholm. Hence $D^*(\lambda, \varepsilon) \subset \mathbb{C} \setminus \sigma_e(T)$, therefore λ is an isolated point of $\sigma_e(T)$. It follows that $\sigma_e(T) \setminus \sigma_{pBF}(T)$ consists of at most countably many isolated points. \hfill \square

Corollary 2.2. Let $T \in \mathcal{B}(X)$, $\sigma_{pBW}(T)$ is a compact subset of \mathbb{C}. Moreover $\sigma_W(T) \setminus \sigma_{pBW}(T)$ consist of at most countably many isolated points.

Since $\sigma_{pBF}(T) \subset \sigma_{BF}(T) \subset \sigma_e(T)$ and $\sigma_{pBW}(T) \subset \sigma_{BW}(T) \subset \sigma_W(T)$, the following corollary hold.

Corollary 2.3. Let $T \in \mathcal{B}(X)$, $\sigma_{BW}(T) \setminus \sigma_{pBW}(T)$ and $\sigma_{BF}(T) \setminus \sigma_{pBF}(T)$ consist of at most countably many isolated points.

Lemma 2.1. [12] If $X = M \oplus N$, $T = T_1 \oplus T_2$, then T is Kato if and only if T_1 and T_2 are Kato.

It is well known that if a bounded operator T is a Fredholm operator, then there exists a $\gamma > 0$ for which $T - \lambda I$ is a Kato operator for all $\lambda \in D(0, \gamma)$ [8, Proposition 3.7.2]. In the following Theorem, we extend this result to the pseudo B-Fredholm operator.

Theorem 2.3. Let $T \in \mathcal{B}(X)$ a pseudo B-Fredholm operator. Then there exists a constant $\varepsilon > 0$ such that for all $\lambda \in D^*(0, \varepsilon)$, $\lambda I - T$ is a Kato operator.

Proof. If T is pseudo B-Fredholm, then there exists two closed T-invariant subspaces $X_1, X_2 \subset X$ such that $X = X_1 \oplus X_2$; $T_{|X_1}$ is Fredholm, $T_{|X_2}$ is quasi-nilpotent and $T = T_{|X_1} \oplus T_{|X_2}$.

If $X_1 = \{0\}$, T is quasi nilpotent, then for all $\lambda \neq 0$, $\lambda I - T$ is invertible, hence $\lambda I - T$ is Kato.

If $X_1 \neq \{0\}$ then $T_{|X_1}$ is Fredholm, by [8, Proposition 3.7.2] there exists $\varepsilon > 0$ such that $(\lambda I - T)_{|X_1}$ is a Kato operator for all $\lambda \in D^*(0, \varepsilon)$.

As \(T_{iX_2} \) is quasi-nilpotent \(\Rightarrow \forall \lambda \neq 0 \ (\lambda I - T)_{iX_2} \) is invertible, then \((\lambda I - T)_{iX_2}\) is a Kato operator \(\forall \lambda \in D^*(0,\varepsilon) \). Since \((\lambda I - T)_{iX_2}\) and \((\lambda I - T)_{iX_1}\) are Kato operators \(\forall \lambda \in D^*(0,\varepsilon) \), by lemma 2.1, \(\lambda I - T \) is a Kato operator \(\forall \lambda \in D^*(0,\varepsilon) \).

\[\square\]

Corollary 2.4. Let \(T \in \mathcal{B}(X) \), then \(\sigma_K(T) \setminus \sigma_{pBF}(T) \) consist of at most countably many isolated points.

Proof. If \(\lambda \in \sigma_K(T) \setminus \sigma_{pBF}(T) \), then \(\lambda I - T \) is a pseudo B-Fredholm operator. According to Theorem 2.3, there exists \(\varepsilon > 0 \) such that \(\lambda I - T \) is a Kato operator for all \(\lambda \in D^*(0,\varepsilon) \). Therefore \(\lambda \) is an isolated point of \(\sigma_K(T) \). It follows that \(\sigma_K(T) \setminus \sigma_{pBF}(T) \) consists of at most countably many isolated points. \(\square \)

3. SVEP, Pseudo B-Fredholm and Pseudo B-Weyl Operators

The main result of this section is the following Theorem.

Theorem 3.1. Let \(T \in \mathcal{B}(X) \), \(\lambda_0 \in \sigma(T) \), \(T \) and \(T^* \) have the SVEP at \(\lambda_0 \). Then: \(\lambda_0 I - T \) is a pseudo B-Weyl operator if and only if \(\lambda_0 I - T \) is a pseudo B-Fredholm operator.

Remark 1. If \(\lambda_0 \notin \sigma(T) \), the result is clear.

To prove theorem, we need the following lemmas:

Lemma 3.1. Let \(T \in \mathcal{B}(X) \), suppose that \(T - \lambda_0 I \) is a pseudo B-Fredholm operator. Then the following statements are equivalent:

1. \(T \) and \(T^* \) have the SVEP at \(\lambda_0 \),
2. \(\sigma(T) \) does not cluster at \(\lambda_0 \).

Proof. Without loss of generality, we can assume that \(\lambda_0 = 0 \).

2) \(\Rightarrow \) 1) See [1].

1) \(\Rightarrow \) 2) Suppose that \(T \) is a pseudo B-Fredholm operator, then there exists two closed \(T \)-invariant subspaces \(X_1, X_2 \subset X \) such that \(X = X_1 \oplus X_2 \), \(T_{iX_1} \) is Fredholm, \(T_{iX_2} \) is quasi-nilpotent and \(T = T_{iX_1} \oplus T_{iX_2} \). Since \(T_{iX_1} \) is Fredholm, then \(T_{iX_1} \) is of Kato type, since \(T \) and \(T^* \) have the SVEP at \(\lambda_0 \) by [3, Theorem 2.2, Theorem 2.5] there exists a constant \(\varepsilon > 0 \) such that for all \(\lambda \in D^*(0,\varepsilon) \), \((\lambda I - T)_{iX_1} \) is invertible. Since \(T_{iX_2} \) is quasi-nilpotent, \((\lambda I - T)_{iX_2} \) is invertible.

\[\square\]
for all $\lambda \neq 0$. Hence $\lambda I - T$ is invertible for all $\lambda \in D^*(0, \varepsilon)$. Therefore $\sigma(T)$ does not cluster at λ_0. \hfill \Box

Lemma 3.2. Let $T \in \mathcal{B}(X)$, suppose that $T - \lambda_0 I$ is a pseudo B-Weyl operator. Then the following statements are equivalent:

1. T or T^* have the SVEP at λ_0,

2. $\sigma(T)$ does not cluster at λ_0.

Proof. Without loss of generality, we can assume that $\lambda_0 = 0$.

2) \Rightarrow 1) [1].

1) \Rightarrow 2) Let $T \in \mathcal{B}(X)$ such that T or T^* have the SVEP at 0, since T is a pseudo B-Weyl operator, according to [16, corollary 2.8], T is a generalized Drazin invertible, then there exists X_1, X_2 such that $X = X_1 \oplus X_2$, $T|_{X_1}$ is invertible and $T|_{X_2}$ is quasi-nilpotent. Hence there exists $\delta > 0$ such that, $(\lambda I - T)|_{X_1}$ is invertible for all $|\lambda| < \delta$. Since $T|_{X_2}$ is quasi nilpotent then $(\lambda I - T)|_{X_2}$ is invertible for all $\lambda \neq 0$. It follows that for all $\lambda \in D^*(0, \delta)$, $\lambda I - T$ is invertible, hence $D^*(0, \delta) \subset \rho(T)$, therefore $\sigma(T)$ does not cluster at 0. \hfill \Box

Proof of Theorem 3.1. Suppose that $\lambda_0 \in \sigma(T)$, T and T^* have the SVEP.

Step 1: $\lambda_0 I - T$ is a pseudo B-Fredholm operator if and only if λ_0 is an isolated point of $\sigma(T)$.

Assume that $\lambda_0 I - T$ is a pseudo B-Fredholm operator, since T and T^* have the SVEP at λ_0, then λ_0 is an isolated point of $\sigma(T)$ by lemma 3.1. Conversely, if λ_0 is an isolated point of $\sigma(T)$, then $X = H_0(T - \lambda_0 I) \oplus K(T - \lambda_0 I)$, [14, Theorem 4] $(T - \lambda_0 I)|_{H_0(T - \lambda_0 I)}$ is quasi nilpotent and $(T - \lambda_0 I)|_{K(T - \lambda_0 I)}$ is surjective, hence $(T - \lambda_0 I)|_{K(T - \lambda_0 I)}$ is Fredholm. Indeed, λ_0 is an isolated point, then T has the SVEP at λ_0, hence $(T - \lambda_0 I)|_{K(T - \lambda_0 I)}$ has the SVEP at 0 and surjective, according to [1, corollary 2.24] $(T - \lambda_0)|_{K(T - \lambda_0 I)}$ is bijective.

Step 2: $\lambda_0 I - T$ is a pseudo B-Weyl operator if and only if λ_0 is an isolated point of $\sigma(T)$.

Suppose that $T - \lambda_0 I$ is a pseudo B-Weyl operator, since T and T^* have the SVEP at λ_0, by Lemma 3.2, $\sigma(T)$ does not cluster at λ_0. So λ_0 is an isolated point of $\sigma(T)$. The converse is similar to the converse of Step 1.

Now the result is clear. \hfill \Box

Since T and T^* have the SVEP at every point of the boundary $\partial(\sigma(T))$ of the spectrum, the following corollary hold.
Corollary 3.1. Let $T \in \mathcal{B}(X)$, $\lambda_0 \in \partial(\sigma(T))$. Then: $\lambda_0 I - T$ is a pseudo B-Weyl operator if and only if $\lambda_0 I - T$ is a pseudo B-Fredholm operator.

As a straightforward consequence of the Theorem 3.1, we have the following corollary.

Corollary 3.2. Let $T \in \mathcal{B}(X)$, suppose that T and T^* have the SVEP. Then:

$$\sigma_{pBW}(T) = \sigma_{pBF}(T).$$

In particular, this holds if T is decomposable.

Remark 2. We have $\sigma_{pBF}(T) \subset \sigma_{gD}(T)$, this inclusion is proper. Indeed:

Consider the operator T defined in $l^2(\mathbb{N})$ by

$$T(x_1, x_2, ...) = (0, x_1, x_2, ...), \quad T^*(x_1, x_2, ...) = (x_2, x_3, ...).$$

Let $B = T \oplus T^*$. Then $\sigma_{gD}(B) = \{\lambda \in \mathbb{C}; |\lambda| \leq 1\}$ and we have $0 \notin \sigma_{pBF}(B)$.

This shows that the inclusion $\sigma_{pBF}(B) \subset \sigma_{gD}(B)$ is proper.

According to corollary 3.2 and [16, corollary 2.8], the following corollary hold.

Corollary 3.3. Let $T \in \mathcal{B}(X)$, suppose that T and T^* have the SVEP. Then:

$$\sigma_{gD}(T) = \sigma_{pBF}(T).$$

In particular, this holds if T is decomposable.

Theorem 3.2. Let $T \in \mathcal{B}(X)$, for which $\sigma_e(T) = \partial(\sigma(T))$ and every $\lambda \in \partial(\sigma(T))$ is non-isolated in $\sigma(T)$. Then

$$\sigma_e(T) = \sigma_{BF}(T) = \sigma_{pBF}(T).$$

Proof. Let $\lambda \in \partial(\sigma(T))$ a non-isolated point of $\sigma(T)$ and suppose that $\lambda \notin \sigma_{pBF}(T)$, then $T - \lambda I$ is a pseudo B-Fredholm operator, since $\lambda \in \partial(\sigma(T))$, then T and T^* have the SVEP at λ. By lemma 3.1, $\sigma(T)$ does not cluster at λ. Hence, every non-isolated boundary point of $\sigma(T)$ belongs to $\sigma_{pBF}(T)$. Then

$$\sigma_e(T) = \partial(\sigma(T)) \subseteq \sigma_{pBF}(T) \subseteq \sigma_{BF}(T) \subseteq \sigma_e(T)$$

Example 1. Let C_p the Cesaro operator on the classical Hardy space $H^p(\mathcal{D})$, where \mathcal{D} the open unit disc of \mathbb{C} and $1 \leq p < \infty$, is given by:
\[C_p f(\lambda) := \frac{1}{\lambda} \int_0^\lambda \frac{f(\zeta)}{1 - \zeta} d\zeta \]

The spectrum of \(C_p \) is: \(\sigma(T) = \Gamma_p \) the closed disc centered at \(\frac{p}{2} \) with radius \(\frac{p}{2} \).

According to [8, Example 3.7.9], we have \(\sigma_e(C_p) = \partial \Gamma_p \), from Theorem 3.2

\[\sigma_{pBF}(C_p) = \partial \Gamma_p \]

In addition, for arbitrary \(1 < p < q < \infty \)

\[\sigma_{pBF}(C_p) \cap \sigma_{pBF}(C_q) = \{0\} \]

Example 2. Let \(T \) is an unilateral weighted right shift on \(l^p(\mathbb{N}) \), \(1 \leq p < \infty \), with weight sequence \((w_n)_{n \in \mathbb{N}} \). If \(c(T) = \lim_{n \to \infty} \inf(w_1 ... w_n)^{1/n} = 0 \), then \(T \) and \(T^* \) have the SVEP, according to corollary 3.2, we have:

\[\sigma_{pBW}(T) = \sigma_{pBF}(T) \]

By [1, corollary 3.118]: \(\sigma(T) = D(0, r(T)) \) where \(D(0, r(T)) \) is the closed disc centered at 0 with radius \(r(T) \), then \(iso(\sigma(T)) = \emptyset \). By Theorem 3.1, \(\sigma_{pBW}(T) = \sigma_{pBF}(T) = D(0, r(T)) \).

References

