DIFFERENTIAL EQUATIONS ASSOCIATED WITH DEGENERATE BELL POLYNOMIALS

Taekyun Kim1, Dae San Kim2, Jong-Jin Seo3,5

1Department of Mathematics
Kwangwoon University
Seoul 139-701, REPUBLIC OF KOREA

2Department of Mathematics
Sogang University
Seoul 121-742, REPUBLIC OF KOREA

3Department of Applied Mathematics
Pukyong National University
Busan, REPUBLIC OF KOREA

Abstract: The degenerate Bell numbers and polynomials, recently introduced by Kim and Kim, turned out to be very useful for studying special numbers and polynomials and mathematical physics. In this paper, we derive a family of linear differential equations satisfied by the generating function of the degenerate Bell polynomials and give some explicit and interesting identities for those polynomials arising from the linear differential equations.

AMS Subject Classification: 05A19, 11B83, 34A30
Key Words: degenerate Bell polynomials and numbers, differential equations

1. Introduction

As is well known, the Bell polynomials (also called the exponential polynomials)
are given by the generating function

\[e^{x(e^t-1)} = \sum_{n=0}^{\infty} \text{Bel}_n(x) \frac{t^n}{n!}, \quad (\text{see [1, 4, 3, 2, 9, 8, 13]}). \] (1)

From (1), we note that \(\text{Bel}_0(x) = 1 \), \(\text{Bel}_1(x) = x \), \(\text{Bel}_2(x) = x^2 + x \), \(\text{Bel}_3(x) = x^3 + 3x^2 + x \), \(\text{Bel}_4(x) = x^4 + 6x^3 + 7x^2 + x \),

The Stirling numbers of the first kind are defined by

\[(x)_n = x(x-1) \cdots (x-n+1) \] (2)

\[= \sum_{l=0}^{n} S_1(n, l) x^l, \quad (n \geq 0), \]

and the Stirling numbers of the second kind are given by

\[x^n = \sum_{l=0}^{n} S_2(n, l) x^l, \quad (n \geq 0), \] (3)

(see [1, 4, 3, 2, 5, 6, 7, 9, 8, 10, 11, 12, 13])

From (2) and (3), we note that the generating functions of Stirling numbers are given by

\[(e^t - 1)^n = n! \sum_{l=n}^{\infty} S_2(l, n) \frac{t^l}{l!}, \quad (n \geq 0), \] (4)

and

\[(\log(1 + t))^n = n! \sum_{l=n}^{\infty} S_1(n, l) \frac{t^l}{l!}, \quad (\text{see [8, 10, 11, 12, 13]}). \] (5)

By (1), we get

\[\text{Bel}_k(x) = e^{-x} \sum_{l=0}^{\infty} \frac{x^l}{l!} t^k, \quad (k \geq 0), \] (6)

and

\[\text{Bel}_n(x) = \sum_{l=0}^{n} S_2(n, l) x^l, \quad (n \geq 0). \]

In [4], L. Carlitz introduced the degenerate Bernoulli and Euler polynomials. Since then, various versions of degenerate special numbers and polynomials have been studied by the several authors (see [1, 4, 3, 2, 5, 6, 7, 9, 8, 10, 11, 12, 13]).
The degenerate Bell numbers and polynomials, recently introduced by Kim and Kim (see [9]), turned out to be very useful for studying special numbers and polynomials and mathematical physics. In this paper, we derive a family of linear differential equations satisfied by the generating function of the degenerate Bell polynomials and give some explicit and interesting identities for those polynomials arising from the linear differential equations.

2. Differential Equations Associated with Bell Polynomials

Let

\[F = F(t; x, \lambda) \]

\[= (1 + \lambda)^{\frac{x}{\lambda - 1}} \]

\[= e^{\frac{\log(1 + \lambda)x}{\lambda - 1}} \]

\[= e^{\alpha x (1 + \lambda)^{\frac{1}{\lambda - 1}}} \]

where \(\alpha = \frac{\log(1 + \lambda)}{\lambda} \).

From (1), we note that

\[F^{(1)} = \frac{d}{dt} F(t; x, \lambda) = \alpha x (1 + \lambda t)^{\frac{1}{\lambda - 1}} F, \]

\[F^{(2)} = \frac{d}{dt} F^{(1)} = \left(\alpha x (1 - \lambda) (1 + \lambda t)^{\frac{1}{\lambda - 2}} + (\alpha x)^2 (1 + \lambda t)^{\frac{2}{\lambda - 2}} \right) F, \]

and

\[F^{(3)} = \frac{d}{dt} F^{(2)} = \left(\alpha x (1 - \lambda) (1 - 2\lambda) (1 + \lambda t)^{\frac{1}{\lambda - 3}} + 3 (\alpha x)^2 (1 - \lambda) (1 + \lambda t)^{\frac{2}{\lambda - 3}} + (\alpha x)^3 (1 + \lambda t)^{\frac{3}{\lambda - 3}} \right) F. \]

Continuing this process, we can set

\[F^{(N)} = \left(\frac{d}{dt} \right)^N F(t; x, \lambda) \]

\[= \left(\sum_{i=1}^{N} a_i (N, \lambda) (\alpha x)^i (1 + \lambda t)^{\frac{i}{\lambda - N}} \right) F; \]
where \(N = 1, 2, 3, \ldots \).

Let us take the derivative with respect to \(t \) of (11). Then we have

\[
F^{(N+1)} = \frac{dF^{(N)}}{dt} = \left(\sum_{i=1}^{N} (i - N\lambda) a_i (N, \lambda) (\alpha x)^i (1 + \lambda t)^{\frac{i}{\lambda} - N - 1} \right) F \\
+ \left(\sum_{i=2}^{N+1} a_{i-1} (N, \lambda) (\alpha x)^i (1 + \lambda t)^{\frac{i}{\lambda} - N - 1} \right) F.
\]

On the other hand, by replacing \(N \) by \(N + 1 \) in (11), we get

\[
F^{(N+1)} = \left(\sum_{i=1}^{N+1} a_i (N + 1, \lambda) (\alpha x)^i (1 + \lambda t)^{\frac{i}{\lambda} - N - 1} \right) F.
\]

Comparing the coefficients on both sides of (12) and (13), we have

\[
a_1 (N + 1, \lambda) = (1 - N\lambda) a_1 (N, \lambda),
\]

\[
a_{N+1} (N + 1, \lambda) = a_N (N, \lambda),
\]

and

\[
a_i (N + 1, \lambda) = a_{i-1} (N, \lambda) + (i - N\lambda) a_i (N, \lambda),
\]

where \(2 \leq i \leq N \).

In addition,

\[
\alpha x (1 + \lambda t)^{\frac{i}{\lambda} - 1} F = F^{(1)} = a_1 (1, \lambda) (\alpha x) (1 + \lambda t)^{\frac{1}{\lambda} - 1} F.
\]

Thus, by comparing the coefficients on both sides of (17), we get

\[
a_1 (1, \lambda) = 1.
\]

From (14), we note that

\[
a_1 (N + 1, \lambda) = (1 - N\lambda) a_1 (N, \lambda) = (1 - N\lambda) (1 - (N - 1) \lambda) a_1 (N - 1, \lambda) = \cdots = (1 - N\lambda) (1 - (N - 1) \lambda) \cdots (1 - \lambda) a_1 (1, \lambda) = (1 - N\lambda; \lambda)_{N},
\]
where

\[
\langle x; \alpha \rangle_N = x (x + \alpha) \cdots (x + (N - 1) \alpha), \quad (N \geq 1),
\]

\[
\langle x; \alpha \rangle_0 = 1.
\]

By (15), we easily get

\[
a_{N+1} (N + 1, \lambda) = a_N (N, \lambda) = \cdots = a_1 (1, \lambda) = 1.
\] (20)

For \(i = 2, 3, 4\) in (16), we have

\[
a_2 (N + 1, \lambda) = \sum_{k=0}^{N-1} \langle 2 - N\lambda; \lambda \rangle_k a_1 (N - k, \lambda),
\] (21)

\[
a_3 (N + 1, \lambda) = \sum_{k=0}^{N-2} \langle 3 - N\lambda; \lambda \rangle_k a_2 (N - k, \lambda),
\] (22)

and

\[
a_4 (N + 1, \lambda) = \sum_{k=0}^{N-3} \langle 4 - N\lambda; \lambda \rangle_k a_3 (N - k, \lambda).
\] (23)

Continuing this process, we have

\[
a_i (N + 1, \lambda) = \sum_{k=0}^{N-i+1} \langle i - N\lambda; \lambda \rangle_k a_{i-1} (N - k, \lambda),
\] (24)

for \(2 \leq i \leq N\).

Now, we give explicit expressions for \(a_i (N + 1, \lambda)\), for \(2 \leq i \leq N\).

From (19) and (21), we note that

\[
a_2 (N + 1, \lambda) = \sum_{k_1=0}^{N-1} \langle 2 - N\lambda; \lambda \rangle_{k_1} a_1 (N - k_1, \lambda)
\]

\[
= \sum_{k_1=0}^{N-1} \langle 2 - N\lambda; \lambda \rangle_{k_1} \langle 1 - (N - k_1 - 1) \lambda; \lambda \rangle_{N-k_1-1},
\] (25)

\[
a_3 (N + 1, \lambda) = \sum_{k_2=0}^{N-2} \langle 3 - N\lambda; \lambda \rangle_{k_2} a_2 (N - k_2, \lambda)
\] (26)
\[
\begin{align*}
&= \sum_{k_2=0}^{N-2} \langle 3 - N\lambda; \lambda \rangle_{k_2} \\
&\times \sum_{k_1=0}^{N-2-k_2} \langle 2 - (N - k_2 - 1) \lambda; \lambda \rangle_{k_1} \\
&\times \langle 1 - (N - k_2 - k_1 - 2) \lambda; \lambda \rangle_{N-k_2-k_1-2} \\
&= \sum_{k_2=0}^{N-2} \sum_{k_1=0}^{N-2-k_2} \langle 3 - N\lambda; k_2 \rangle \langle 2 - (N - k_2 - 1) \lambda; \lambda \rangle_{k_1} \\
&\times \langle 1 - (N - k_2 - k_1 - 2) \lambda; \lambda \rangle_{N-k_2-k_1-2}
\end{align*}
\]

and

\[
\begin{align*}
a_i (N + 1, \lambda) &= \sum_{k_3=0}^{N-3} \langle 4 - N\lambda; \lambda \rangle_{k_3} a_3 (N - k_3, \lambda) \\
&= \sum_{k_3=0}^{N-3} \sum_{k_2=0}^{N-3-k_3} \sum_{k_1=0}^{N-3-k_1-k_2} \langle 4 - N\lambda; \lambda \rangle_{k_3} \\
&\times \langle 3 - (N - k_3 - 1) \lambda; \lambda \rangle_{k_2} \langle 2 - (N - k_3 - k_2 - 2) \lambda; \lambda \rangle_{k_1} \\
&\times \langle 1 - (N - k_3 - k_2 - k_1 - 3) \lambda; \lambda \rangle_{N-k_3-k_2-k_1-3}.
\end{align*}
\]

So, we can deduce that, for \(2 \leq i \leq N\),

\[
a_i (N + 1, \lambda) = \sum_{k_{i-1}=0}^{N-i+1} \sum_{k_{i-2}=0}^{N-i+1-k_{i-1}} \cdots \sum_{k_1=0}^{N-i+1-k_{i-1}-\cdots-k_2} \\
\times \prod_{l=2}^{i} \left(\langle l - \left(N - \sum_{j=l}^{i-1} k_j - i + l \right) \lambda; \lambda \rangle_{k_{l-1}} \right. \\
\times \left. \langle 1 - \left(N - \sum_{j=1}^{i-1} k_j - i + 1 \right) \lambda; \lambda \rangle_{N-\sum_{j=1}^{i-1} k_j-i+1} \right).
\]

Remark. (28) also holds for \(i = N + 1\).

Therefore, by (28), we obtain the following theorem.

Theorem 1. The family of differential equations

\[
F^{(N)} = \left(\sum_{i=1}^{N} a_i (N, \lambda) \left(\log \frac{1 + \lambda}{\lambda} \right)^i \frac{x^i}{(1 + \lambda t)^{\frac{i}{1-N}}} \right) F
\]
have a solution

\[F = F(t; x, \lambda) = (1 + \lambda)^{\frac{t}{\lambda}} \left((1 + \lambda t)^{\frac{t}{\lambda}} - 1 \right), \]

where \(a_1(N, \lambda) = (1 - (N - 1) \lambda; \lambda)_{N-1} \),

\[
a_i(N, \lambda) = \sum_{k_{i-1}=0}^{N-i} \sum_{k_{i-2}=0}^{N-i-k_{i-1}} \cdots \sum_{k_1=0}^{N-i-k_{i-1}-\cdots-k_2} \times \prod_{i=2} \left(l - \left(N - \sum_{j=l}^{i-1} k_j - i + 1 + l \right) \lambda; \lambda \right)^{k_{l-1}}
\]

\[
\times \left(1 - \left(N - \sum_{j=1}^{i-1} k_j - i \right) \lambda; \lambda \right)^{N-\sum_{j=1}^{i-1} k_j - i},
\]

(for \(2 \leq i \leq N \)).

Recall that the degenerate Bell polynomials \(\text{Bel}_{n, \lambda}(x) \) are given by the generating function

\[
F = F(t; x, \lambda) = (1 + \lambda)^{\frac{t}{\lambda}} \left((1 + \lambda t)^{\frac{t}{\lambda}} - 1 \right)
\]

\[
= \sum_{n=0}^{\infty} \text{Bel}_{n, \lambda}(x) \frac{t^n}{n!}, \quad \text{(see [9])}.
\]

Thus, by (29), we get

\[
\sum_{n=0}^{\infty} \text{Bel}_{n+N, \lambda}(x) \frac{t^n}{n!} = F^{(N)}
\]

\[
= \left(\sum_{i=1}^{N} a_i(N, \lambda) \left(\frac{\log(1 + \lambda)}{\lambda} x \right)^i \right) \left(1 + \lambda t \right)^{\frac{t}{\lambda} - N} F
\]

\[
= \sum_{i=1}^{N} a_i(N, \lambda) \left(\frac{\log(1 + \lambda)}{\lambda} x \right)^i \left(\sum_{l=0}^{\infty} \left(\frac{i}{\lambda} - N \right) \lambda^l \frac{t^l}{l!} \right)
\]

\[
\times \left(\sum_{m=0}^{\infty} \text{Bel}_m(x) \frac{t^m}{m!} \right)
\]
\[
\begin{align*}
&= \sum_{i=1}^{N} a_i (N, \lambda) \left(\frac{\log (1 + \lambda)}{\lambda} x \right)^i \\
&\quad \times \sum_{n=0}^{\infty} \sum_{l=0}^{n} \binom{n}{l} \left(\frac{i}{\lambda} - N \right) \lambda^l \text{Bel}_{n-l, \lambda}(x) \frac{t^n}{n!} \\
&= \sum_{n=0}^{\infty} \left\{ \sum_{i=1}^{N} \sum_{l=0}^{n} \binom{n}{l} \left(\frac{i}{\lambda} - N \right) \lambda^l \left(\frac{\log (1 + \lambda)}{\lambda} \right)^i \\
&\quad \times a_i (N, \lambda) x^i \text{Bel}_{n-l, \lambda}(x) \right\} \frac{t^n}{n!}.
\end{align*}
\]

Therefore, by comparing the coefficients on the both sides of (30), we obtain the following theorem.

Theorem 2. For \(n = 0, 1, 2, \ldots \), and \(N = 1, 2, 3, \ldots \), we have

\[
\text{Bel}_{n+N, \lambda}(x) = \sum_{i=1}^{N} \sum_{l=0}^{n} \binom{n}{l} \left(\frac{i}{\lambda} - N \right) \lambda^l \left(\frac{\log (1 + \lambda)}{\lambda} \right)^i \\
\times a_i (N, \lambda) x^i \text{Bel}_{n-l, \lambda}(x),
\]

where \(a_i (N, \lambda) \)'s are as in Theorem 1.

References

