International Journal of Pure and Applied Mathematics

Volume 108 No. 4 2016, 831-847

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu **doi:** 10.12732/ijpam.v108i4.9

L- FUZZY (K, E)-SOFT QUASI UNIFORM SPACES AND L-FUZZY (K, E)-SOFT TOPOGENOUS SPACES

Ju-Mok Oh¹, Yong Chan Kim²¹, A.A. Ramadan³

^{1,2}Department of Mathematics
Gangneung-Wonju University
Gangneung, Gangwondo, 210-702, KOREA

³Mathematics Department
Faculty of Science
Beni-Suef University
Beni-Suef, EGYPT

Abstract: The goal of this paper is to focus on the relationships between L-fuzzy (K, E)soft quasi uniformities and L-fuzzy (K, E)- soft topogenous orders in complete residuated
lattices. As main results, we investigate the L-fuzzy (K, E)- soft quasi uniformities induced
by L-fuzzy (K, E)- soft topogenous orders. Moreover, we study the L-fuzzy (K, E)- soft
topogenous orders induced by L-fuzzy (K, E)- soft uniformities. We give their examples.

AMS Subject Classification: 03E72, 06A15, 06F07, 54A05

 $\textbf{Key Words:} \quad \text{complete residuated lattice, L-fuzzy (K,E)- soft quasi uniformities, L-fuzzy }$

(K, E)- soft topogenous orders

1. Introduction

Molodtsov [18] introduced a completely new concept called soft set theory to model uncertainty, which associates a set with a set of parameters. Pei and Miao [19] showed that soft sets are a class of special information systems. Later, Maji et al. [15] introduced the concept of a fuzzy soft set which combines a fuzzy set and a soft set. Presently, the soft set theory is making progress rapidly [1,2,6,15-19,26,28,31,32]. The topological structures of soft sets have been developed by

Received: April 7, 2016 © 2016 Academic Publications, Ltd. Published: August 16, 2016 **url:** www.acadpubl.eu

many researchers [3,5,8,23,27,29,30,33].

Hájek [9] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Bělohlávek [4] investigated information systems and decision rules in complete residuated lattices. Höhle [10] introduced L-fuzzy topologies with algebraic structure L(cgm, quantales, MV-algebra). Uniformities in fuzzy sets, have the following approach of Lowen [14] based on powersets of the form $L^{X\times X}$ as a viewpoint of the enourage approach, the uniform covering approach of Kotzé [13], the uniform operator approach of Rodabaugh [25] as a generalization of Hutton [11] based on powersets of the form $(L^X)^{(L^X)}$, the unification approach of Gutiérrez García [7]. Recently, Gutiérrez García introduced L-valued Hutton uniformity where a quadruple $(L, \leq, \otimes, \star)$ is defined by a GL-monoid (L,\star) as an extension of a completely distributive lattice L. Kim [12] introduced the notion of L-fuzzy uniformities as an extension of Lowen in a strictly two-sided, commutative quantale. Moreover, he investigated the relations between L- fuzzy topological spaces and L- fuzzy uniform spaces. Ramadan et.al [23] introduced the notion of L-fuzzy (K, E)soft topogenous orders and L-fuzzy (K, E)- soft quasi uniformities in complete residuated lattices.

The goal of this paper is to focus on the relationships between L-fuzzy (K, E)- soft quasi uniformities and L-fuzzy (K, E)- soft topogenous orders in complete residuated lattices. As main results, we investigate the L-fuzzy (K, E)- soft quasi uniformities induced by L-fuzzy (K, E)- soft topogenous orders. Moreover, we study the L-fuzzy (K, E)- soft topogenous orders induced by L-fuzzy (K, E)- soft uniformities. We give their examples.

2. Preliminaries

Let $L=(L,\leq,\vee,\wedge,0,1)$ be a completely distributive lattice with the least element 0 and the greatest element 1 in L.

Definition 2.1. [4,9,11] An algebra $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a complete residuated lattice if it satisfies the following conditions:

- (C1) $L = (L, \leq, \vee, \wedge, 1, 0)$ is a complete lattice with the greatest element 1 and the least element 0;
 - (C2) $(L, \odot, 1)$ is a commutative monoid;
 - (C3) $x \odot y \le z$ iff $x \le y \to z$ for $x, y, z \in L$.

Remark 2.2. Every completely distributive lattice $(L, \leq, \wedge, \vee, ^*)$ with order reversing involution * is a complete residuated lattice $(L, \leq, \odot, \oplus, ^*)$ with a

strong negation * where $\odot = \land$, $\oplus = \lor$ and

$$x \to y = \begin{cases} 1, & \text{if } x \le y, \\ y, & \text{otherwise.} \end{cases}$$

In this paper, we assume that $(L, \leq, \odot, \rightarrow, \oplus, *)$ is a complete residuated lattice with an order reversing involution $x^* = x \to 0$ which is defined by $x \oplus y = (x^* \odot y^*)^*$.

Lemma 2.3. [4,9,11] For each $x, y, z, x_i, y_i, w \in L$, we have the following properties.

- (1) $1 \to x = x$, $0 \odot x = 0$,
- (2) If $y \le z$, then $x \odot y \le x \odot z$, $x \oplus y \le x \oplus z$, $x \to y \le x \to z$ and $z \to x \le y \to x$,
 - (3) $x \leq y$ iff $x \to y = 1$.
 - $(4) (\bigwedge_i y_i)^* = \bigvee_i y_i^*, (\bigvee_i y_i)^* = \bigwedge_i y_i^*,$
 - (5) $x \to (\bigwedge_i y_i) = \bigwedge_i (x \to y_i),$
 - (6) $(\bigvee_i x_i) \to y = \bigwedge_i (x_i \to y),$
 - $(7) x \to (\bigvee_i y_i) \ge \bigvee_i (x \to y_i),$
 - (8) $(\bigwedge_i x_i) \to y \ge \bigvee_i (x_i \to y),$
 - $(9) (x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z),$
 - (10) $x \odot y = (x \to y^*)^*$ and $x \oplus y = x^* \to y$,
 - $(11) (x \to y) \odot (z \to w) \le (x \odot z) \to (y \odot w),$
 - (12) $x \to y \le (x \odot z) \to (y \odot z)$ and $(x \to y) \odot (y \to z) \le x \to z$,
 - (13) $(x \to y) \odot (z \to w) \le (x \oplus z) \to (y \oplus w)$.
 - $(14) x \to y = y^* \to x^*.$
 - $(15)\ (x\vee y)\odot(z\vee w)\leq (x\vee z)\vee (y\odot w)\leq (x\oplus z)\vee (y\odot w).$
- (16) $\bigvee_{i \in \Gamma} x_i \to \bigvee_{i \in \Gamma} y_i \ge \bigwedge_{i \in \Gamma} (x_i \to y_i)$ and $\bigwedge_{i \in \Gamma} x_i \to \bigwedge_{i \in \Gamma} y_i \ge \bigwedge_{i \in \Gamma} (x_i \to y_i)$,

Throughout this paper, X refers to an initial universe, E and K are the sets of all parameters for X, and L^X is the set of all L-fuzzy sets on X.

Definition 2.4. [3,5,23] A map f is called an L- fuzzy soft set on X, where f is a mapping from E into L^X , i.e., $f_e := f(e)$ is an L- fuzzy set on X, for each $e \in E$. The family of all L- fuzzy soft sets on X is denoted by $(L^X)^E$. Let f and g be two L- fuzzy soft sets on X.

- (1) f is an L-fuzzy soft subset of g and we write $f \sqsubseteq g$ if $f_e \leq g_e$, for each $e \in E$. f and g are equal if $f \sqsubseteq g$ and $g \sqsubseteq f$.
- (2) The intersection of f and g is an L- fuzzy soft set $h = f \sqcap g$, where $h_e = f_e \land g_e$, for each $e \in E$.

- (3) The union of f and g is an L- fuzzy soft set $h = f \sqcup g$, where $h_e = f_e \vee g_e$, for each $e \in E$.
 - (4) An L-fuzzy soft set $h = f \odot g$ is defined as $h_e = f_e \odot g_e$, for each $e \in E$.
 - (5) An L-fuzzy soft set $h = f \oplus g$ is defined as $h_e = f_e \oplus g_e$, for each $e \in E$.
- (6) The complement of an L- fuzzy soft sets on X is denoted by f^* , where $f^*: E \to L^X$ is a mapping given by $f_e^* = (f_e)^*$, for each $e \in E$.
- (7) f is called a null L- fuzzy soft set and is denoted by 0_X , if $f_e(x)=0$, for each $e\in E$, $x\in X$.
- (8) f is called an absolute L- fuzzy soft set and is denoted by 1_X , if $f_e(x)=1$, for each $e\in E$, $x\in X$.

Definition 2.5. [3,5,23] A mapping $\mathcal{T}: K \to L^{(L^X)^E}$ (where $\mathcal{T}_k := \mathcal{T}(k): (L^X)^E \to L$ is a mapping for each $k \in K$) is called an L-fuzzy (K, E)-soft topology on X if it satisfies the following conditions for each $k \in K$.

- (O1) $\mathcal{T}_k(0_X) = \mathcal{T}_k(1_X) = 1$,
- (O2) $\mathcal{T}_k(f \odot g) \ge \mathcal{T}_k(f) \odot \mathcal{T}_k(g) \ \forall f, g \in (L^X)^E$,
- (O3) $\mathcal{T}_k(\bigsqcup_i f_i) \ge \bigwedge_{i \in I} \mathcal{T}_k(f_i) \ \forall \ f_i \in (L^X)^E, \ i \in I.$

The pair (X, \mathcal{T}) is called an L-fuzzy (K, E)-soft topological space.

Definition 2.6. [23] An L- fuzzy (K, E)-soft quasi uniformity is a mapping $\mathcal{U}: K \to L^{(L^{X \times X})^E}$ which satisfies the following conditions .

- (SU1) There exists $u \in (L^{X \times X})^E$ such that $\mathcal{U}_k(u) = 1$.
- (SU2) If $v \sqsubseteq u$, then $\mathcal{U}_k(v) \leq \mathcal{U}_k(u)$.
- (SU3) For every $u, v \in (L^{X \times X})^E$, $\mathcal{U}_k(u \odot v) \ge \mathcal{U}_k(u) \odot \mathcal{U}_k(v)$.
- (SU4) If $\mathcal{U}_k(u) \neq 0$ then $\top_{\triangle} \sqsubseteq u$ where, for each $e \in E$,

$$(\top_{\triangle})_e(x,y) = \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{if } x \neq y. \end{cases}$$

(SU5) $\mathcal{U}_k(u) \leq \bigvee \{\mathcal{U}_k(v) \odot \mathcal{U}_k(w) \mid v \circ w \sqsubseteq u\}.$

The pair (X, \mathcal{U}) is called an L-fuzzy (K, E)-soft quasi-uniform space.

An L-fuzzy (K, E)-soft quasi-uniform space (X, \mathcal{U}) is said to be an L-fuzzy (K, E)-soft uniform space if

(U) $\mathcal{U}_k(u) \leq \mathcal{U}_k(u^{-1})$, where $(u^{-1})_e(x,y) = u_e(y,x)$ for each $k \in K$ and $u \in (L^{X \times X})^E$.

Remark 2.7. Let (X, \mathcal{U}) be an L-fuzzy (K, E)-soft uniform space.

- (1) By (SU1) and (SU2), we have $\mathcal{U}_k(1_{X\times X})=1$ because $u\subseteq 1_{X\times X}$ for all $u\in (L^{X\times X})^E$.
 - (2) Since $\mathcal{U}_k(u) \leq \mathcal{U}_k(u^{-1}) \leq \mathcal{U}_k((u^{-1})^{-1}) = \mathcal{U}_k(u)$, then $\mathcal{U}_k(u) = \mathcal{U}_k(u^{-1})$.

The proof of the next lemma is similar to Lemma 3.6 [12].

Lemma 2.8. Let (X, \mathcal{U}) be an L-fuzzy (K, E)-soft quasi-uniform space. For each $u \in (L^{X \times X})^E$ and $f \in (L^X)^E$, the image u[f] of f with respect to u is the fuzzy soft subset of X defined by

$$u_e[f_e](x) = \bigvee_{y \in X} (f_e(y) \odot u_e(y, x)), \quad \forall \ x \in X, e \in E.$$

For each $u, v, u_1, u_2 \in (L^{X \times X})^E$ and $f, f_1, f_2, f_i \in (L^X)^E$, we have

- (1) $f \sqsubseteq u[f]$, for each $\mathcal{U}(u) > 0$,
- (2) $u \sqsubseteq u \circ u$, for each $\mathcal{U}(u) > 0$,
- (3) $(v \circ u)[f] = v[u[f]],$
- $(4) \ u[\bigvee_i f_i] = \bigvee_i u[f_i],$
- (5) $(u_1 \odot u_2)[f_1 \odot f_2] \sqsubseteq u_1[f_1] \odot u_2[f_2],$
- (6) $(u_1 \odot u_2)[f_1 \oplus f_2] \sqsubseteq u_1[f_1] \oplus u_2[f_2].$

Definition 2.9. [5,23] A mapping $\xi: K \to L^{(L^X)^E \times (L^X)^E}$ is called an L-fuzzy (K, E)-soft semi-topogenous order on X if it satisfies the following axioms.

- (ST1) $\xi_k(1_X, 1_X) = \xi_k(0_X, 0_X) = 1$,
- (ST2) $\xi_k(f,g) \le \bigwedge_{x \in X} \bigwedge_{e \in E} (f_e(x) \to g_e(x)),$
- (ST3) If $f_1 \sqsubseteq f$, $g \sqsubseteq g_1$, then $\xi_k(f,g) \le \xi_k(f_1,g_1)$.

An L-fuzzy (K, E)-soft semi-topogenous order ξ is called: for every $f_1, f_2, g_1, g_2 \in (L^X)^E$,

- (1) topogenous if
- (T) $\xi_k(f_1 \odot f_2, g_1 \odot g_2) \ge \xi_k(f_1, g_1) \odot \xi_k(f_2, g_2)$.
- (2) cotopogenous if
- (CT) $\xi_k(f_1 \oplus f_2, g_1 \oplus g_2) \ge \xi_k(f_1, g_1) \odot \xi_k(f_2, g_2),$
- (3) bitopogenous if ξ are L-fuzzy (K,E)-soft topogenous and L-fuzzy (K,E)-soft cotopogenous.

An L-fuzzy (K, E)-soft topogenous (resp. cotopogenous) order ξ on X is said to be L-fuzzy (K, E)-topogenous (resp. cotopogenous) space if

(TS) $\xi \circ \xi \geq \xi$, where

$$(\xi_k \circ \xi_k)(f,g) = \bigvee_{h \in (L^X)^E} (\xi_k(f,h) \odot \xi_k(h,g)).$$

Let ξ be an L-fuzzy (K, E)-soft semi-topogenous order on X and let the mapping $\xi^s: K \to L^{(L^X)^E \times (L^X)^E}$ defined by $\xi^s_k(f,g) = \xi_k(g^*,f^*)$. Then ξ^s is an L-fuzzy semi-topogenous order on X. An L-fuzzy (K,E)-soft semi-topogenous order ξ on X is called symmetric if

(ST4)
$$\xi = \xi^s$$
.

Remark 2.10. If ξ is an L-fuzzy (K, E)-soft semi-topogenous order on X.

- (1) If $\xi_k(f,g) = 1$, then $f \sqsubseteq g$.
- (2) $\xi_k(1_X, f) \leq \bigwedge_{x \in X} \bigwedge_{e \in E} f_e(x)$ and $\xi_k(f, 0_X) \leq \bigwedge_{x \in X} \bigwedge_{e \in E} f_e^*(x)$.
- (3) If the parameters sets E, K are both one-pointed sets, then L-fuzzy (K, E)-soft semi-topogenous order is the concept of Ramadan et al.[22].

3. L-Fuzzy (K, E)-Soft Quasi-Uniform Spaces and L-Fuzzy (K, E)-Soft Topogenous Spaces

Theorem 3.1. Let (X, \mathcal{U}) be an L-fuzzy (K, E)-soft quasi-uniform space. Define a mapping $\xi^{\mathcal{U}}: K \to L^{(L^X \times L^X)^E}$ by

$$\xi_k^{\mathcal{U}}(f,g) = \bigvee \{\mathcal{U}_k(u) \mid u[f] \sqsubseteq g\}.$$

Then $(X, \xi^{\mathcal{U}})$ is an L-fuzzy (K, E)-soft topogenous space.

Proof. (ST1) Since $u[0_X] = 0_X$ and $u[1_X] = 1_X$, for $\mathcal{U}_k(u) = 1$, we have $\xi_k^{\mathcal{U}}(1_X, 1_X) = \xi_k^{\mathcal{U}}(0_X, 0_X) = 1$.

(ST2) Since for all $\mathcal{U}_k(u) > 0$, we have $f \sqsubseteq u[f]$. Then if $\xi_k^{\mathcal{U}}(f,g) = 1$, we have $f \sqsubseteq g$.

(ST3) If $f_1 \sqsubseteq f$, $g \sqsubseteq g_1$, then

$$\xi_k^{\mathcal{U}}(f,g) = \bigvee \{\mathcal{U}_k(u) \mid u[f] \sqsubseteq g\} \le \bigvee \{\mathcal{U}_k(u) \mid u[f] \sqsubseteq g_1\}$$

$$\le \bigvee \{\mathcal{U}_k(u) \mid u[f_1] \sqsubseteq g_1\} = \xi_k^{\mathcal{U}}(f_1,g_1).$$

(ST5)

$$\xi_k^{\mathcal{U}}(f_1, g_1) \odot \xi_k^{\mathcal{U}}(f_2, g_2)
= \bigvee \{\mathcal{U}_k(u) \mid u[f_1] \sqsubseteq g_1\} \odot \bigvee \{\mathcal{U}(v) \mid v[f_2] \sqsubseteq g_2\}
\leq \bigvee \{\mathcal{U}_k(u) \odot \mathcal{U}(v) \mid u[f_1] \odot v[f_2] \sqsubseteq g_1 \odot g_2\}
\leq \bigvee \{\mathcal{U}_k(u \odot v) \mid (u \odot v)[f_1 \odot f_2] \sqsubseteq g_1 \odot g_2\}
\leq \bigvee \{\mathcal{U}_k(w) \mid w[f_1 \odot f_2] \sqsubseteq g_1 \odot g_2\} = \xi_k^{\mathcal{U}}(f_1 \odot f_2, g_1 \odot g_2).$$

(ST6)

$$\begin{aligned} & \xi_k^{\mathcal{U}}(f_1, g_1) \odot \xi_k^{\mathcal{U}}(f_2, g_2) \\ & = \bigvee \{ \mathcal{U}_k(u) \mid u[f_1] \sqsubseteq g_1 \} \odot \bigvee \{ \mathcal{U}_k(v) \mid v[f_2] \sqsubseteq g_2 \} \\ & \leq \bigvee \{ \mathcal{U}_k(u) \odot \mathcal{U}(v) \mid u[f_1] \oplus v[f_2] \sqsubseteq g_1 \oplus g_2 \} \\ & \leq \bigvee \{ \mathcal{U}_k(u \odot v) \mid u \odot v[f_1 \oplus f_2] \sqsubseteq g_1 \oplus g_2 \} \\ & \leq \xi_k^{\mathcal{U}}(f_1 \oplus f_2, g_1 \oplus g_2). \end{aligned}$$

(TS) For each $u \in (L^{X \times X})^E$ such that $u[f] \subseteq g$, by (SU5), we have

$$\mathcal{U}_k(u) = \bigvee \{ \mathcal{U}_k(v) \odot \mathcal{U}_k(w) \mid v \circ w \sqsubseteq u \}.$$

Thus,

$$\bigvee \{ \mathcal{U}_{k}(u) \mid u[f] \sqsubseteq g \}
\leq \bigvee \{ \mathcal{U}_{k}(v) \odot \mathcal{U}_{k}(w) \mid v \circ w[f] = v[w[f]] \sqsubseteq g \}
\leq \bigvee_{h \in (L^{X})^{E}} \{ \bigvee \{ \mathcal{U}_{k}(v) \odot \mathcal{U}(w) \mid w[f] \sqsubseteq h, \ v[h] \sqsubseteq g \} \}
\leq \bigvee_{h \in (L^{X})^{E}} \{ \bigvee \{ \mathcal{U}_{k}(v) \mid v[h] \sqsubseteq g \} \odot \bigvee \{ \mathcal{U}_{k}(w) \mid w[f] \sqsubseteq h \} \}
= \bigvee_{\gamma \in L^{X}} \xi_{k}^{\mathcal{U}}(f, h) \odot \xi_{k}^{\mathcal{U}}(h, g).$$

Lemma 3.2. For every $f, g \in (L^X)^E$, we define $u_{f,g}, u_{f,g}^{-1} \in (L^{X \times X})^E$ by

$$(u_{f,g})_e(x,y) = f_e(x) \to g_e(y) \quad \forall e \in E,$$

 $(u_{f,g}^{-1})_e(x,y) = (u_{f,g})_e(y,x).$

Then we have the following statements

- (1) $1_{X\times X} = u_{0_X,0_X} = u_{1_X,1_X}$,
- (2) If $f_1 \sqsubseteq f_2$ and $g_1 \sqsubseteq g_2$, then $u_{f_2,q_1} \sqsubseteq u_{f_1,q_2}$,
- (3) If $f \sqsubseteq g$, then $1_{\triangle} \sqsubseteq u_{f,g}$, (4) For $u_{g,h} \in (L^{X \times X})^E$ and $f \in (L^X)^E$, $u_{h,g} \circ u_{f,h} \sqsubseteq u_{f,g}$,
- (5) $u_{f_1,q_1} \odot u_{f_2,q_2} \sqsubseteq u_{f_1 \odot f_2,q_1 \odot q_2}$,
- (6) $u_{f_1,g_1} \odot u_{f_2,g_2} \sqsubseteq u_{f_1 \oplus f_2,g_1 \oplus g_2},$ (7) $u_{f,g}^{-1} = u_{g^*,f^*},$
- $(8)u_{f_1 \odot f_2, g_1 \odot g_2}^{-1} = u_{g_1^* \oplus g_2^*, f_1^* \oplus f_2^*},$

- $(9)u_{f_1 \oplus f_2, g_1 \oplus g_2}^{-1} = u_{g_1^* \odot g_2^*, f_1^* \odot f_2^*}.$ $(10) \ u[f] \sqsubseteq g \ \text{iff} \ u \sqsubseteq u_{f,g}.$ $(11) \ u_{f,g} = \bigvee \{u \in (L^{X \times X})^E | u[f] \sqsubseteq g\}.$
- (12) $u_{f,q}[f] \sqsubseteq g$ and $u_{f,f}[f] = f$.

Proof. (1) $(1_{X\times X})_e(x,y)=1=(u_{0_X,0_X})_e(x,y)=(0_X)_e(x)\to (0_X)_e(y)=$ $(1_X)_e(x) \to (1_X)_e(y) = (u_{1_X,1_X})_e(x,y).$

(2) Let $f_1 \sqsubseteq f_2$ and $g_1 \sqsubseteq g_2$, then

$$(u_{f_2,g_1})_e(x,y) = (f_2)_e(x) \to (g_1)_e(y)$$

 $\leq (f_1)_e(x) \to (g_2)_e(y) = (u_{f_1,g_2})_e(x,y).$

(3) Since $1_{\triangle}[f] = f \sqsubseteq g$, then $1_{\triangle} \sqsubseteq u_{f,g}$.

(4)

$$(u_{h,g})_e(x,z) \circ (u_{f,h})_e(x,z) = \bigvee_{y \in X} ((h_e(y) \to g_e(z)) \odot (f_e(x) \to h_e(y))) \le f_e(x) \to g_e(z) = (u_{f,q})_e(x,z).$$

(5)

$$(u_{f_1,g_1} \odot u_{f_2,g_2})_e(x,y) = (u_{f_1,g_1})_e(x,y) \odot (u_{f_2,g_2})_e(x,y)$$

$$= ((f_1)_e(x) \to (g_1)_e(y)) \odot ((f_2)_e(x) \to (g_2)_e(y))$$

$$\leq (f_1)_e(x) \odot (f_2)_e(x) \to (g_1)_e(y) \odot (g_2)_e(y)$$

$$= (u_{f_1 \odot f_2}, u_{g_1 \odot g_2})_e(x,y).$$

(6)

$$(u_{f_1,g_1} \odot u_{f_2,g_2})_e(x,y) = (u_{f_1,g_1})_e(x,y) \odot (u_{f_2,g_2})_e(x,y)$$

$$\leq ((f_1)_e(x) \to (g_1)_e(y)) \odot ((f_2)_e(x) \to (g_2)_e(y))$$

$$\leq (f_1)_e(x) \oplus (f_2)_e(x) \to (g_1)_e(y) \oplus (g_2)_e(y)$$

$$= (u_{f_1 \oplus f_2}, u_{g_1 \oplus g_2})_e(x,y).$$

(7)

$$(u_{f,g}^{-1})_e(x,y) = (u_{f,g})_e(y,x) = f_e(y) \to g_e(x)$$

$$= g_e^*(x) \to f_e^*(y) = (u_{g^*,f^*})_e(x,y).$$

(8),(9) are similarly proved

(10)

$$u_e[f_e](x) = \bigvee_{y \in X} (f_e(y) \odot u_e(y, x)) \le g_e(x)$$

iff $u_e(y, x) \le f_e(y) \to g_e(x) = (u_{f,g})_e(y, x)$.

(11) Since $u_e[f_e](x) = \bigvee_{y \in X} (f_e(y) \odot u_e(y,x)) \leq g_e(x)$, then $u_e(y,x) \leq f_e(y) \rightarrow g_e(x) = (u_{f,g})_e(y,x)$. Moreover, $(u_{f,g})_e(y,x) \odot f_e(y) = (f_e(y) \rightarrow g_e(x)) \odot f_e(y) \leq g_e(x)$. Hence $u_{f,g} = \bigvee \{u \in (L^{X \times X})^E | u[f] \sqsubseteq g\}$.

(12) Since $(u_{f,g})_e[f_e](y) = \bigvee_{x \in X} ((f_e(x) \to g_e(y)) \odot f_e(x)) \leq g_e(y)$, then $u_{f,g}[f] \leq g$. Moreover,

$$(u_{f,f})_e[f_e](y) \ge (u_{f,f})_e(y,y) \odot f_e(y)$$

= $(f_e(y) \to f_e(y)) \odot f_e(y) = f_e(y).$

In the following theorem, we obtain an L-fuzzy (K, E)-soft quasi uniform space from an L-fuzzy (K, E)-soft topogenous order.

Theorem 3.3. Let (X,ξ) be an L-fuzzy (K,E)-soft topogenous space. Define $\mathcal{U}^{\xi}: K \to L^{(L^{X \times X})^E}$ by

$$\mathcal{U}_k^{\xi}(u) = \bigvee \{ \odot_{i=1}^n \xi_k(f_i, g_i) \mid \odot_{i=1}^n u_{f_i, g_i} \sqsubseteq u \},$$

where \bigvee is taken over every finite family $\{u_{f_i,q_i} \mid i=1,2,3,....,n\}$. Then

- (1) $\mathcal{U}_{k}^{\xi}(u_{\odot_{i-1}^{n}f_{i},\odot_{i-1}^{n}g_{i}}) = \xi_{k}(\odot_{i=1}^{n}f_{i},\odot_{i=1}^{n}g_{i})$
- (2) \mathcal{U}^{ξ} is an L-fuzzy (K, E)-soft quasi uniformity on X,
- (3) $\xi^{\mathcal{U}^{\xi}} = \xi$.
- (4) $\mathcal{U}^{\xi^s}(u) = \mathcal{U}^{\xi}(u^{-1})$

Proof. (1) Since $\bigcirc_{i=1}^n u_{f_i,g_i} \sqsubseteq u_{\bigcirc_{i=1}^n f_i,\bigcirc_{i=1}^n g_i}$, from Lemma 2.3 (14) and by $(T), \ \odot_{i=1}^n \xi_k(f_i, g_i) \leq \xi_k(\odot_{i=1}^n f_i, \odot_{i=1}^n g_i), \text{ then}$

$$\mathcal{U}_{k}^{\xi}(u_{\odot_{i=1}^{n}f_{i},\odot_{i=1}^{n}g_{i}}) = \xi_{k}(\odot_{i=1}^{n}f_{i},\odot_{i=1}^{n}g_{i}).$$

(2) (SU1) Since $\xi_k(0_X, 0_X) = \xi_k(1_X, 1_X) = 1$, there exists $1_{X \times X} = u_{0_X, 0_X} = 1$ $u_{1_X,1_X} \in (L^{X \times X})^E$. It follows $\mathcal{U}_k^{\xi}(1_{X \times X}) = 1$.

(SU2) It is trivial from the definition of \mathcal{U}^{ξ} .

(SU3) For every $u, v \in (L^{X \times X})^E$, each two families $\{u_{f_i, g_i} \mid \bigcirc_{i=1}^n u_{f_i, g_i} \sqsubseteq u\}$ and $\{u_{h_i,w_i} \mid \odot_{i=1}^k u_{h_i,w_i} \sqsubseteq v\}$, we have

$$\mathcal{U}_{k}^{\xi}(u) \odot \mathcal{U}_{k}^{\xi}(v) = \left(\bigvee \{ \bigcirc_{i=1}^{n} \xi_{k}(f_{i}, g_{i}) \mid \bigcirc_{i=1}^{n} u_{f_{i}, g_{i}} \sqsubseteq u \} \right) \\
\odot \left(\bigvee \{ \bigcirc_{j=1}^{k} \xi_{k}(h_{i}, w_{i}) \mid \bigcirc_{j=1}^{k} u_{h_{i}, w_{i}} \sqsubseteq v \} \right) \\
\leq \bigvee \{ \bigcirc_{i=1}^{n} \xi_{k}(f_{i}, g_{i}) \odot \bigcirc_{j=1}^{k} \xi_{k}(h_{i}, w_{i}) \mid \\
\bigcirc_{i=1}^{n} u_{f_{i}, g_{i}} \sqsubseteq u, \bigcirc_{j=1}^{k} u_{h_{i}, w_{i}} \sqsubseteq v \} \\
\leq \bigvee \{ \bigcirc_{i=1}^{n} \xi_{k}(f_{i}, g_{i}) \odot \bigcirc_{j=1}^{k} \xi_{k}(h_{i}, w_{i}) \mid \\
\bigcirc_{i=1}^{n} u_{f_{i}, g_{i}} \odot \bigcirc_{j=1}^{k} u_{h_{i}, w_{i}} \sqsubseteq u \odot v \} \\
\leq \mathcal{U}_{k}^{\xi}(u \odot v).$$

(SU4) If $\mathcal{U}_k(u) \neq 0$, there exists a family $\{u_{f_i,g_i} \mid \bigcirc_{i=1}^m u_{f_i,g_i} \sqsubseteq u\}$ such that $\bigcirc_{i=1}^m \xi_k(f_i, g_i) \neq 0$. Since $\xi_k(f_i, g_i) \neq 0$, for i = 1, 2, ..., m, then $f_i \sqsubseteq g_i$ for i=1,2,...,m, i.e. $1_{\triangle} \sqsubseteq u_{f_i,g_i}$. Thus $1_{\triangle} \sqsubseteq \odot_{i=1}^m u_{f_i,g_i} \sqsubseteq u$. (SU5) Suppose there exists $u \in L^{X \times X}$ such that

$$\bigvee \{\mathcal{U}_k^{\xi}(v) \odot \mathcal{U}_k^{\xi}(w) \mid v \circ w \le u\} \not \ge \mathcal{U}_k^{\xi}(u).$$

Put $t = \bigvee \{\mathcal{U}_k^{\xi}(v) \odot \mathcal{U}_k^{\xi}(w) \mid v \circ w \leq u\}$. From the Definition of $\mathcal{U}_k^{\xi}(u)$, there exists family $\{u_{f_i,q_i} \mid \odot_{i=1}^m u_{f_i,q_i} \sqsubseteq u\}$ such that

$$t \not\geq \odot_{i=1}^m \xi_k(f_i, g_i).$$

Since $\xi_k \circ \xi_k \geq \xi_k$,

$$t \not\geq \bigcirc_{i=1}^{m} \xi_k \circ \xi_k(f_i, g_i) = \bigcirc_{i=1}^{m} \{ \bigvee_{h \in (L^X)^E} \{ (\xi_k(h, g_i) \odot (\xi_k(f_i, h)) \}.$$

Since L is a stsc-quantel, there exists $h_i \in (L^X)^E$ such that

$$t \not\geq \bigcirc_{i=1}^m (\xi_k(h_i, g_i) \odot \xi_k(f_i, h_i)).$$

On the other hand, put $v_i = u_{h_i,g_i}, w_i = u_{f_i,h_i}$, then from Lemma 3.1 (4), it satisfies $v_i \circ w_i \sqsubseteq u_{h_i,g_i} \circ u_{f_i,h_i} \sqsubseteq u_{f_i,g_i}$,

$$\mathcal{U}_k^{\xi}(v_i) \ge \xi_k(h_i, g_i), \ \mathcal{U}_k^{\xi}(w_i) \ge \xi_k(f_i, h_i).$$

Let $v=\odot_{i=1}^m v_i$ and $w=\odot_{i=1}^m w_i$ be given . Since $v_i\circ w_i\sqsubseteq u_{f_i,g_i}$, for each i=1,2,3,....,m, we have $\left(\odot_{i=1}^m v_i\right)\circ\left(\odot_{i=1}^m v_i\right)=\odot_{i=1}^m (v_i\circ w_i)\sqsubseteq \odot_{i=1}^m u_{f_i,g_i}\sqsubseteq u$.

Then we have $v \circ w \sqsubseteq u$ and $\mathcal{U}_k^{\xi}(v) \ge \odot_{i=1}^m \mathcal{U}_k^{\xi}(v_i)$ and $\mathcal{U}_k^{\xi}(w) \ge \odot_{i=1}^m \mathcal{U}_k^{\xi}(w_i)$. Thus,

$$t = \bigvee \{ \mathcal{U}_k^{\xi}(v) \odot \mathcal{U}_k^{\xi}(w) \mid v \circ w \sqsubseteq u \}$$

$$\geq \mathcal{U}_k^{\xi}(v) \odot \mathcal{U}_{\mathcal{E}}(w) \geq \odot_{i=1}^m (\xi_k(h_i, g_i) \odot \xi_k(f_i, h_i)).$$

It is a contradiction. Then \mathcal{U}^{ξ} is an L-fuzzy (K, E)-soft quasi uniformity on X.

(3) Since $u[f] \sqsubseteq g$, by Lemma 3.2(10), $u \sqsubseteq u_{f,g}$. Hence, $\xi_k^{\mathcal{U}^{\xi}}(f,g) = \bigvee \{\mathcal{U}_k^{\xi}(u) \mid u[f] \sqsubseteq g\} = \mathcal{U}_k^{\xi}(u_{f,g}) = \xi_k(f,g)$.

$$\mathcal{U}_{k}^{\xi^{s}}(u) = \bigvee \{ \bigcirc_{i=1}^{n} \xi_{k}^{s}(f_{i}, g_{i}) \mid \bigcirc_{i=1}^{n} u_{f_{i}, g_{i}} \sqsubseteq u \}
= \bigvee \{ \bigcirc_{i=1}^{n} \xi_{k}(g_{i}^{*}, f_{i}^{*}) \mid \bigcirc_{i=1}^{n} u_{f_{i}, g_{i}}^{-1} \sqsubseteq u^{-1} \}
= \bigvee \{ \bigcirc_{i=1}^{n} \xi_{k}(g_{i}^{*}, f_{i}^{*}) \mid \bigcirc_{i=1}^{n} u_{g_{i}^{*}, f_{i}^{*}} \sqsubseteq u^{-1} \} = \mathcal{U}_{k}^{\xi}(u^{-1}).$$

The following corollary is similarly proved as Theorem 3.3.

Corollary 3.4. Let (X, ξ) be an L-fuzzy (K, E)-soft cotopogenous space. Define $\mathcal{U}^{\xi}: K \to L^{(L^{X \times X})^E}$ by

$$\mathcal{U}_k^{\xi}(u) = \bigvee \{ \bigcirc_{i=1}^n \xi_k(f_i, g_i) \mid \bigcirc_{i=1}^n u_{f_i, g_i} \sqsubseteq u \},$$

where \bigvee is taken over every finite family $\{u_{f_i,g_i} \mid i=1,2,3,...,n\}$. Then

- (1) $\mathcal{U}_{k}^{\xi}(u_{\bigoplus_{i=1}^{n}f_{i},\bigoplus_{i=1}^{n}g_{i}}) = \xi_{k}(\bigoplus_{i=1}^{n}f_{i},\bigoplus_{i=1}^{n}g_{i})$ (2) \mathcal{U}^{ξ} is an L-fuzzy (K, E)-soft quasi uniformity on X,
- (3) $\xi^{\mathcal{U}^{\xi}} = \xi$.
- (4) $\mathcal{U}^{\xi^s}(u) = \mathcal{U}^{\xi}(u^{-1})$

Definition 3.5. An L- fuzzy (K, E)-soft uniform structure \mathcal{U} on X is said to be compatible with an L- fuzzy (K, E)-soft topogenous order ξ on X if $\xi^{\mathcal{U}} = \xi$. The class $\prod(\xi)$ denotes the family of all L- fuzzy (K, E)-soft uniform structure which are compatible with a given L- fuzzy (K, E)-soft topogenous structure ξ .

Theorem 3.6. Let ξ be an L-fuzzy (K, E)-soft topogenous order on X and the L- fuzzy (K, E)-soft topogenous order $\xi^{\mathcal{U}^{\xi}}$ induced by \mathcal{U}^{ξ} . Then

- (1) $\xi^{\mathcal{U}^{\xi}} = \xi$, that is $\mathcal{U}^{\xi} \in \prod(\xi)$,
- (2) \mathcal{U}^{ξ} is the coarsest member of $\prod(\xi)$, i.e., $\mathcal{U}^{\xi} \leq \mathcal{U}$.

Proof. (1) is easily proved from Theorem 3.3.

(2) Let \mathcal{U} be an arbitrary member of $\prod(\xi)$. We will show that $\mathcal{U}_k^{\xi}(u) \leq$ $\mathcal{U}_k(u)$, for all $u \in (L^{X \times X})^E$.

Suppose that there exists $u \in (L^{X \times X})^E$ such that

$$\mathcal{U}_k^{\xi}(u) \not\leq \mathcal{U}_k(u).$$

There exists a family $\{u_{f_i,g_i} \mid \odot_{i=1}^m u_{f_i,g_i} \sqsubseteq u\}$ such that $\odot_{j=1}^m \xi_k(f_i,g_i) \not\leq \mathcal{U}_k^{\xi}(u)$. Since $\mathcal{U}^{\xi} \in \prod(\xi)$, that is $\xi_k(f_i,g_i) = \xi_k^{\mathcal{U}}(f_i,g_i)$ for each i=1,2,...,m, by the definition of $\xi^{\mathcal{U}}$, there exists $v_i \in (L^{X \times X})^E$ with $v_i[f_i] \sqsubseteq g_i$ such that

$$\bigcirc_{j=1}^m \mathcal{U}_k^{\xi}(v_i) \not\leq \mathcal{U}_k(u)...$$

On the other hand, put $v = \bigoplus_{i=1}^m v_i$. Since $v_i[f_i] \sqsubseteq g_i$ by the definition of u_{f_i,g_i} , we have $v_i \sqsubseteq u_{f_i,g_i}$. It follows that

$$v = \bigcirc_{i=1}^m v_i \sqsubseteq \bigcirc_{i=1}^m u_{f_i,q_i} \sqsubseteq u.$$

Hence, $\mathcal{U}_k(u) \geq \mathcal{U}_k^{\xi}(\odot_{i=1}^m u_{f_i,g_i}) \geq \mathcal{U}_k^{\xi}(v) \geq \odot_{i=1}^m \mathcal{U}_k^{\xi}(v_i)$. It is a contradiction.

Example 3.7. Let $X = \{h_i \mid i = \{1, 2, 3\}\}$ with h_i =house and $E = \{e, b\}$ with e=expensive, b= beautiful. Define a binary operation \odot on [0,1] by

$$x \odot y = \max\{0, x + y - 1\}, \ x \to y = \min\{1 - x + y, 1\}$$

$$x \oplus y = \min\{1, x + y\}, \ x^* = 1 - x$$

Then $([0,1], \land, \rightarrow, 0, 1)$ is a complete residuated lattice (ref. [4,9]).

(1) Put $v, v \odot v, w \in ([0, 1]^{X \times X})^E$ as

$$v_{e} = \begin{pmatrix} 1 & 0.6 & 0.5 \\ 0.3 & 1 & 0.5 \\ 0.4 & 0.6 & 1 \end{pmatrix} v_{b} = \begin{pmatrix} 1 & 0.5 & 0.3 \\ 0.7 & 1 & 0.5 \\ 0.6 & 0.6 & 1 \end{pmatrix}$$
$$(v \odot v)_{e} = \begin{pmatrix} 1 & 0.2 & 0 \\ 0 & 1 & 0 \\ 0 & 0.2 & 1 \end{pmatrix} (v \odot v)_{b} = \begin{pmatrix} 1 & 0 & 0 \\ 0.4 & 1 & 0 \\ 0.2 & 0.2 & 1 \end{pmatrix}$$
$$w_{e} = \begin{pmatrix} 1 & 0.4 & 0.5 \\ 0.4 & 1 & 0.5 \\ 0.4 & 0.6 & 1 \end{pmatrix} v_{b} = \begin{pmatrix} 1 & 0.5 & 0.3 \\ 0.3 & 1 & 0.5 \\ 0.2 & 0.3 & 1 \end{pmatrix}$$

We define $\mathcal{U}: E \to [0,1]^{([0,1]^{X\times X})^E}$ as follows:

$$\mathcal{U}_{e}(u) = \begin{cases} 1, & \text{if } u = 1_{Y \times Y} \\ 0.6, & \text{if } v \sqsubseteq u \neq 1_{Y \times Y}, \\ 0.3, & \text{if } v \odot v \sqsubseteq u \not \supseteq v, \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathcal{U}_b(u) = \begin{cases} 1, & \text{if } u = 1_{Y \times Y} \\ 0.5, & \text{if } w \sqsubseteq u \neq 1_{Y \times Y}, \\ 0, & \text{otherwise.} \end{cases}$$

Since $v \circ v = v$, $w \circ w = w$ and $(v \odot v) \circ (v \odot v) = (v \odot v)$, \mathcal{U} is a [0,1]-fuzzy soft (E,E)-quasi-uniformity on X.

From Theorem 3.1, we obtain a [0,1]-fuzzy soft (E,E)-topogenous order $\xi^{\mathcal{U}}: E \to [0,1]^{([0,1]^X)^E \times ([0,1]^X)^E}$ as follows

$$\xi_e^{\mathcal{U}}(f,g) = \begin{cases} 1, & \text{if } [1_{X \times X}](f) \sqsubseteq g \not\supseteq v[f], \\ 0.6, & \text{if } v[f] \sqsubseteq g \not\supseteq (v \odot v)[f], \\ 0.3, & \text{if } (v \odot v)[f] \sqsubseteq g \\ 0, & \text{otherwise,} \end{cases}$$

$$\xi_b^{\mathcal{U}}(f,g) = \begin{cases} 1, & \text{if } [1_{X \times X}](f) \sqsubseteq g \not\supseteq w[f], \\ 0.5, & \text{if } w[f] \sqsubseteq g, \\ 0, & \text{otherwise,} \end{cases}$$

From Theorem 3.3, we obtain $\mathcal{U}^{\xi^{\mathcal{U}}}: E \to [0,1]^{([0,1]^{X\times X})^E}$ as follows:

$$\mathcal{U}_{e}^{\xi^{\mathcal{U}}}(u) = \begin{cases} 1, & \text{if } u = 1_{X \times X} \\ 0.6, & \text{if } u_{v[f],v[f]} \sqsubseteq u \neq 1_{Y \times Y}, \\ 0.3, & \text{if } u_{(v \odot v)[f],(v \odot v)[f]} \sqsubseteq u \not\supseteq u_{v[f],v[f]}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathcal{U}_b^{\xi^{\mathcal{U}}}(u) = \begin{cases} 1, & \text{if } u = 1_{X \times X} \\ 0.5, & \text{if } u_{v[f],v[f]} \sqsubseteq u \neq 1_{Y \times Y}, \\ 0, & \text{otherwise.} \end{cases}$$

Since

$$\begin{array}{l} \bigvee_{x \in X} (v_e(x,y) \odot f_e(x)) \rightarrow \bigvee_{x \in X} (v_e(x,z) \odot f_e(x)) \\ \geq \bigwedge_{x \in X} ((v_e(x,y) \odot f_e(x)) \rightarrow (v_e(x,z) \odot f_e(x)) \\ \geq \bigwedge_{x \in X} (v_e(x,y) \rightarrow v_e(x,z)) \geq v_e(y,z), \end{array}$$

 $u_{v[f],v[f]} \sqsubseteq v$ and $u_{(v \odot v)[f],(v \odot v)[f]} \sqsubseteq v$. Hence $\mathcal{U}^{\xi^{\mathcal{U}}} \leq \mathcal{U}$. (2) Put $l, m \in (L^X)^E$ such that

$$l_e(h_1) = 0.3, l_e(h_2) = 0.5, l_e(h_3) = 0.6,$$

 $l_b(h_1) = 0.6, l_b(h_2) = 0.3, l_b(h_3) = 0.6,$
 $m_e(h_1) = 0.4, m_e(h_2) = 0.3, m_e(h_3) = 0.5,$
 $m_b(h_1) = 0.2, m_b(h_2) = 0.6, m_b(h_3) = 0.6.$

We define a [0, 1]-fuzzy soft (E, E)-topogenous order $\xi: E \to [0, 1]^{([0,1]^X)^E \times ([0,1]^X)^E}$ as follows

$$\xi_e(f,g) = \begin{cases} 1, & \text{if } f = 0_X \text{ or } g = 1_X, \\ 0.6, & \text{if } f \sqsubseteq l \sqsubseteq g, \\ 0.3, & \text{if } 0_X \neq f \sqsubseteq l \odot l \sqsubseteq g, l \not\sqsubseteq g, \\ 0, & \text{otherwise,} \end{cases}$$

$$\xi_b(f,g) = \begin{cases} 1, & \text{if } f = 0_X \text{ or } g = 1_X, \\ 0.5, & \text{if } 0_X \neq f \sqsubseteq l \sqsubseteq g \neq 1_X, \\ 0, & \text{otherwise,} \end{cases}$$

We obtain $u_{l,l}, u_{l \odot l, l \odot l}, u_{m,m} \in ([0, 1]^{X \times X})^E$ as follows

$$u_{l,l}(e) = \begin{pmatrix} 1 & 1 & 1 \\ 0.8 & 1 & 1 \\ 0.7 & 0.9 & 1 \end{pmatrix}, u_{l,l}(b) = \begin{pmatrix} 1 & 0.7 & 1 \\ 1 & 1 & 1 \\ 1 & 0.7 & 1 \end{pmatrix}$$

$$u_{l \odot l, l \odot l}(e) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0.8 & 0.8 & 1 \end{pmatrix}, u_{l \odot l, l \odot l}(b) = \begin{pmatrix} 1 & 0.8 & 1 \\ 1 & 1 & 1 \\ 1 & 0.8 & 1 \end{pmatrix}$$

$$u_{m,m}(e) = \begin{pmatrix} 1 & 0.9 & 1 \\ 1 & 1 & 1 \\ 0.9 & 0.8 & 1 \end{pmatrix}, u_{m,m}(b) = \begin{pmatrix} 1 & 1 & 1 \\ 0.6 & 1 & 1 \\ 0.6 & 1 & 1 \end{pmatrix}$$

By Theorem 3.3, we obtain a [0,1]-fuzzy soft (E,E)- quasi- uniformity $\mathcal{U}^{\xi}: E \to [0,1]^{([0,1]^{X\times X})^E}$ as follows

$$\mathcal{U}_{e}^{\xi}(u) = \begin{cases}
1, & \text{if } u = 1_{X \times X}, \\
0.6, & \text{if } u_{l,l} \sqsubseteq u \neq 1_{X \times X}, \\
0.3, & \text{if } u_{l \odot l, l \odot l} \leq u \not\supseteq u_{l,l}, \\
0.2, & \text{if } u_{l,l} \odot u_{l,l} \sqsubseteq u \not\supseteq u_{l \odot l, l \odot l}, \\
0, & \text{otherwise.}
\end{cases}$$

$$\mathcal{U}_b^{\xi}(u) = \begin{cases} 1, & \text{if } u = 1_{X \times X}, \\ 0.5, & \text{if } u_{m,m} \sqsubseteq u \neq 1_{X \times X}, \\ 0, & \text{otherwise.} \end{cases}$$

Since $u_{f,f}[f] = f$ and $u_{f \odot f, f \odot f}[f \odot f] = f \odot f$ from Lemma 3.2 (12), by Theorems 3.1 and 3.3(3), we have $\xi^{\mathcal{U}^{\xi}} = \xi$, that is, $\mathcal{U}_{\xi} \in \Pi(\xi)$.

(3) By Definition 2.9 and (1), we obtain a [0, 1]-fuzzy soft (E, E)-cotopogenous

order $\xi^s : E \to [0,1]^{([0,1]^X)^E \times ([0,1]^X)^E}$ as follows

$$\xi_e^s(f,g) = \begin{cases} 1, & \text{if } f = 0_X \text{ or } g = 1_X, \\ 0.6, & \text{if } f \sqsubseteq l^* \sqsubseteq g, \\ 0.3, & \text{if } 0_X \neq f \sqsubseteq l^* \oplus l^* \sqsubseteq g, l^* \not\sqsubseteq g \\ 0, & \text{otherwise,} \end{cases}$$

$$\xi_b^s(f,g) = \begin{cases} 1, & \text{if } f = 0_X \text{ or } g = 1_X, \\ 0.5, & \text{if } 0_X \neq f \sqsubseteq l^* \sqsubseteq g \neq 1_X, \\ 0, & \text{otherwise,} \end{cases}$$

We obtain $u_{l^*,l^*}, u_{l^*\oplus l^*,l^*\oplus l^*}, u_{m^*,m^*} \in ([0,1]^{X\times X})^E$ as follows

$$u_{l^*,l^*}(e) = \begin{pmatrix} 1 & 0.8 & 0.7 \\ 1 & 1 & 0.9 \\ 1 & 1 & 1 \end{pmatrix}, u_{l^*,l^*}(b) = \begin{pmatrix} 1 & 1 & 1 \\ 0.7 & 1 & 0.7 \\ 1 & 1 & 1 \end{pmatrix}$$
$$u_{l^* \oplus l^*,l^* \oplus l^*}(e) = \begin{pmatrix} 1 & 1 & 0.8 \\ 1 & 1 & 0.8 \\ 1 & 1 & 1 \end{pmatrix},$$
$$u_{l^* \oplus l^*,l^* \oplus l^*}(b) = \begin{pmatrix} 1 & 1 & 1 \\ 0.8 & 1 & 0.8 \\ 1 & 1 & 1 \end{pmatrix}$$

$$u_{m^*,m^*}(e) = \begin{pmatrix} 1 & 1 & 0.9 \\ 0.9 & 1 & 0.8 \\ 1 & 1 & 1 \end{pmatrix}, u_{m^*,m^*}(b) = \begin{pmatrix} 1 & 0.6 & 0.6 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

By Corollary 3.4, we obtain a [0, 1]-fuzzy soft (E, E)- quasi-uniformity \mathcal{U}^{ξ^s} : $E \to [0, 1]^{([0,1]^{X \times X})^E}$ as follows

$$\mathcal{U}_{e}^{\xi^{s}}(u) = \begin{cases} 1, & \text{if } u = 1_{X \times X}, \\ 0.6, & \text{if } u_{l^{*}, l^{*}} \sqsubseteq u \neq 1_{X \times X}, \\ 0.3, & \text{if } u_{l^{*} \oplus l^{*}, l^{*} \oplus l^{*}} \leq u \not\supseteq u_{l^{*}, l^{*}}, \\ 0.2, & \text{if } u_{l^{*}, l^{*}} \odot u_{l^{*}, l^{*}} \sqsubseteq u \not\supseteq u_{l^{*} \oplus l^{*}, l^{*} \oplus l^{*}}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathcal{U}_b^{\xi^s}(u) = \begin{cases} 1, & \text{if } u = 1_{X \times X}, \\ 0.5, & \text{if } u_{m^*, m^*} \sqsubseteq u \neq 1_{X \times X}, \\ 0, & \text{otherwise.} \end{cases}$$

Since $u_{l^*,l^*}[l^*] = l^*$ and $u_{l^* \oplus l^*,l^* \oplus l^*}[l^* \oplus l^*] = l^* \oplus l^*$ from Lemma 3.2 (12), by Corollary 3.4, we have $\xi^{\mathcal{U}^{\xi^s}} = \xi^s$, that is, $\mathcal{U}_{\xi^s} \in \Pi(\xi^s)$.

References

- [1] H. Aktas, N. Cağman, Soft sets and soft groups, Inf. Sci., 177(13)(2007),2726-2735.
- [2] A. Aygünoglu, H. Aygün, Introduction to fuzzy soft groups, Computers and Mathematics with Appl., 58(2009), 1279-1286.
- [3] A. Aygünoglu, V. Cetkin, H. Aygün, An introduction to fuzzy soft topological spaces, Hacettepe Journal of Math. and Stat., 43(2)(2014), 193-204.
- [4] R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
- [5] V. Cetkin , H. Aygün , On fuzzy soft topogenous structure, J. Intell. Fuzzy Syst. , 27(2014), 247-255.
- [6] F. Feng, C. Li, B. Davvaz, M. Arfan Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput. 14(9)(2010), 899-911.
- [7] J.Gutiérrez García, M. A. de Prade Vicente, Šostak A. P., A unified approach to the concept of fuzzy L-uniform spaces, Chapter 3 in [15], 81-114.
- [8] D.N. Georgiou, A.C. Megaritis, V.I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7(5)(2013), 1889-1901.
- [9] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht (1998) doi: 10.1007/978-94-011-5300-3.
- [10] U. Höhle, S.E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston, 1999 doi: 10.1007/978-1-4615-5079-2.

- [11] B. Hutton, Uniformities in fuzzy topological spaces, J. Math. Anal. Appl., 58 (1977), 74-79.
- [12] Y.C. Kim, A.A. Ramadan, M. A. Usama, L-fuzzy Uniform Spaces, The Journal of Fuzzy Mathematics, 14 (2006), 821-850.
- [13] W. Kotzé, Uniform spaces, in: Höhle U., Rodabaugh S. E.(Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, Handbook Series, Chapter 8, Vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999, 553-580.
- [14] R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl., 82 (1981), 370-385, doi: 10.1016/0022-247x(81)90202-x.
- [15] P.K. Maji, R. Biswas, A.R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9(3)(2001), 589-602.
- [16] P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Computers Mathematics with Appl., 45(2003), 555-562.
- [17] P. Majumdar, S.K. Samanta, Generalized fuzzy soft sets, Computers Mathematics with Appl., 59(2010), 1425-1432.
- [18] D. Molodtsov, Soft set theory, Computers Mathematics with Appl., 37(1999), 19-31.
- [19] D. Pei, D. Miao, From soft sets to information systems, Granular Computing, 2005 IEEE, International Conferences on (2)(2005), 617-621.
- [20] A.A. Ramadan, Y.C. Kim, M.K. El-Gayyar, On fuzzy uniform spaces, The Journal of Fuzzy Mathematics, 11 (2003), 279-299.
- [21] A.A. Ramadan, E.H. Elkordy and Yong Chan Kim, Relationships between L-fuzzy quasiuniform structures and L-fuzzy topologies, *Journal of Intelligent and Fuzzy Systems*, 28 (2015), 2319-2327.
- [22] A.A. Ramadan, E.H. Elkordy, Y.C. Kim, Perfect L-fuzzy topogenous space, L-fuzzy quasi-proximities and L-fuzzy quasi-uniform spaces, *Journal of Intelligent and Fuzzy Systems*, **28**(6)(2015), 2591-2604.
- [23] A.A. Ramadan, Yong Chan Kim , On L-fuzzy (K, E)- soft topogenous orders and L-fuzzy (K, E)- soft topologies, $Journal\ of\ Intelligent\ and\ Fuzzy\ Systems, (2016)\ submitted.$
- [24] S.E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, in: Höhle U., Rodabaugh S. E.(Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, Handbook Series, Chapter 4, Kluwer Academic Publishers, 1999.
- [25] S.E. Rodabaugh, E.P. Klement, Topological and Algebraic Structures In Fuzzy Sets, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Kluwer Academic Publishers, Boston, Dordrecht, London, 2003.
- [26] A.R. Roy, P.K. Maji, A fuzzy soft set theoretic approach to decision making problems, International of Computational and Applied Mathematics, 203(2007),412-418.
- [27] M. Shabir, M. Naz, On soft topological spaces, Computers and Mathematics with Appl., 61(2011), 1786-1799, doi: 10.1016/j.camwa.2011.02.006.
- [28] S.A. Solovyov, Lattice-valued soft algebras, Soft Comput. 17(10)(2013),1751-1766.
- [29] B. Tanay, M.B. Kandemir, Topological structures of fuzzy soft sets, Computers and Mathematics with Appl., 61(2011),412-418, doi: 10.1016/j.camwa.2011.03.056.
- [30] B.P. Varol, H. Aygün, Fuzzy soft topology, Hacet J. Math. Stat. 41(3)(2012), 407-419.

- [31] G. Xuechang, L. Yongming, F. Feng, A new order relation on fuzzy soft sets and its application, *Soft Comput.*, **17**(1)(2013),63-70.
- [32] J. Zhan, Y.B. Jun, Soft BL-algebras based on fuzzy sets, $Comput\ Math.\ Appl.$ ${\bf 59}(6)(2010),\ 2037\text{-}2046.$
- [33] L. Zhaowen, X. Tusheng, The relationship among soft sets, soft rough sets and topologies, Soft Comput., 18(4)(2014),717-728.