SOME COMPARISON RESULTS FOR
MOVING LEAST-SQUARE APPROXIMATIONS

Svetoslav Nenov1, Tsvetelin Tsvetkov2
1,2Department of Mathematics
University of Chemical Technology and Metallurgy
Sofia, 1756, BULGARIA
1e-mail: nenov@uctm.edu

Abstract: Some properties of moving least-square approximations for two concrete weight functions are investigated.

The used technique is based on some properties of differential equations and applications of the theory of Lyapunov functions.

AMS Subject Classification: 93E24
Key Words: moving least-squares approximation, ODE, Lyapunov functions

1. Statement

Let us us remind the definition of moving least-squares approximation and some basic results.

Let:

1. \(\{x_1, \ldots, x_m\} \) be a set of points in bounded domain \(\mathcal{D} \subset \mathbb{R}^d \); and let \(x_i \neq x_j \), if \(i \neq j \).

2. \(f : \mathcal{D} \to \mathbb{R} \) be a continuous map.

3. \(\{p_1(x), \ldots, p_l(x)\} \) be a set of fundamental functions in \(\mathcal{D} \) (i.e. continuous and linearly independent) and let \(\mathcal{P}_l \) be their linear span.
Following [6], we will use the following definition. The moving least-squares approximation of order \(l \) at a point \(\mathbf{x} \) is the value of \(p^*(\mathbf{x}) \), where \(p^* \in \mathcal{P}_l \) is minimizing the least-squares error

\[
\sum_{i=1}^{m} W(\mathbf{x}, \mathbf{x}_i) (p(\mathbf{x}) - f(\mathbf{x}_i))^2
\]

among all \(p \in \mathcal{P}_l \).

The equivalent statement is the following constrained problem:

Find the minimum of

\[
Q = \sum_{i=1}^{m} w(\mathbf{x}, \mathbf{x}_i)a_i^2,
\]

subject to

\[
\sum_{i=1}^{m} a_ip_j(\mathbf{x}_i) = p_j(\mathbf{x}), \ j = 1, \ldots l.
\]

Here we assumed:

H1.1. \(W(\mathbf{x}_i, \mathbf{x}) > 0 \) if \(\mathbf{x}_i \neq \mathbf{x} \); \(w(\mathbf{x}_i, \mathbf{x}) = W^{-1}(\mathbf{x}_i, \mathbf{x}), i = 1, \ldots, m \).

H1.2. \(\text{rank}(E^t) = l \).

H1.3. \(1 \leq l < m \).

We introduce the notations:

\[
E = \begin{pmatrix}
p_1(\mathbf{x}_1) & p_2(\mathbf{x}_1) & \cdots & p_l(\mathbf{x}_1) \\
p_1(\mathbf{x}_2) & p_2(\mathbf{x}_2) & \cdots & p_l(\mathbf{x}_2) \\
\vdots & \vdots & \ddots & \vdots \\
p_1(\mathbf{x}_m) & p_2(\mathbf{x}_m) & \cdots & p_l(\mathbf{x}_m)
\end{pmatrix},
\]

\[
a = \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_m
\end{pmatrix},
\]

\[
D = 2 \begin{pmatrix}
w(\mathbf{x}_1, \mathbf{x}) & 0 & \cdots & 0 \\
0 & w(\mathbf{x}_2, \mathbf{x}) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & w(\mathbf{x}_m, \mathbf{x})
\end{pmatrix},
\]

\[
c = \begin{pmatrix}
p_1(\mathbf{x}) \\
p_2(\mathbf{x}) \\
\vdots \\
p_l(\mathbf{x})
\end{pmatrix}.
\]

Theorem 1.1 (see [6]). Let the conditions (H1) hold true. Then:

1. The matrix

\[
A = \begin{pmatrix}
D & E^t \\
E^t & 0
\end{pmatrix}
\]

is non-singular.
2. The approximation defined by the moving least-squares method is

\[\hat{L}(f) = \sum_{i=1}^{m} a_i f(x_i), \]

(4)

where

\[a = A_0 c \quad \text{and} \quad A_0 = D^{-1} E (E^T D^{-1} E)^{-1}. \]

(5)

3. If \(w(x_i, x_i) = 0 \) for all \(i = 1, \ldots, m \) then the approximation is interpolatory.

For the approximation order of moving least-squares approximation (see [6] and [2]) it is not difficult to receive (for convenience we suppose \(P \) is the span of standard monomial basis, see [2]):

\[\left| f(x) - \hat{L}(f)(x) \right| \leq \| f(x) - p^*(x) \|_{\infty} \left[1 + \sum_{i=1}^{m} |a_i| \right], \]

(6)

and \((C_1=\text{const.})\)

\[\| f(x) - p^*(x) \|_{\infty} \leq C_1 h^{l+1} \max \left\{ \left| f^{(l+1)}(x) \right| : x \in D \right\}. \]

(7)

Of course, if \(D \) is a bounded domain in \(\mathbb{R}^d \) and the function \(f \) is \((l + 1)\)-continuously differentiable in \(D \), then there exists a constant \(C_2 \) such that

\[\max \left\{ \left| f^{(l+1)}(x) \right| : x \in \overline{D} \right\} \leq C_2. \]

Therefore, (6) and (7) yield

\[\left| f(x) - \hat{L}(f)(x) \right| \leq C_1 C_2 h^{l+1} \left[1 + \sum_{i=1}^{m} |a_i| \right] \]

\[\leq C_1 C_2 h^{l+1} \left[1 + \| a_i \|_1 \right] \]

\[\leq \sqrt{m} C_1 C_2 h^{l+1} \left[1 + \| a_i \|_2 \right]. \]

(8)

It follows from (8) that the error of moving least-squares approximation is upper-bounded of the 2-norm of coefficients of approximation \(a(x) \).

In the article, we will consider two families of weight-functions \((\alpha, \beta \geq 0)\):

\[w_1(\alpha, x, y) = \exp (\alpha \| x - y \|^2) \]

and

\[w_2(\alpha, \beta, x, y) = \exp (\alpha \| x - y \|^2) - \beta. \]
Usually the moving least-squares approximation generated by weight-function \(w_1 \) is called exp-moving least-squares approximation.

Our goal in this short note is to compare the upper bounds generated by the use of \(w_i, i = 1, 2 \).

Let us note the following facts:

1. If \(\alpha = 0 \) in \(w_1 \), then we receive classical least-squares approximation.

2. \(w_1(\alpha, x, y) = w_2(\alpha, 0, x, y) \).

3. The moving least-squares approximation generated by weight function \(w_2(\alpha, 1, x, y) \) is studied in Levin’s works, and we will call it Levin approach, see for example [6]. In this case the approximation in interpolatory.

For some application of moving least-squares approximation to predict chemical properties of oils see [15], [16], [17], and [18].

2. The Weight Family \(w_1 \) Generates “Decreasing Bounds” with Respect to \(\alpha \)

Through this section, we will suppose that conditions (H1) hold true and \(w(x, y) = w_1(\alpha, x, y) \).

Obviously \(A_0 = A_0(\alpha, x) \) and moreover

\[
a(\alpha, x) = D^{-1} E (E^t D^{-1} E)^{-1} c(x).
\] (9)

Here, in the right-hand side, only the matrix \(D \) depends on \(\alpha \) and \(x \).

Let us set

\[
H = 2 \begin{pmatrix} \|x - x_1\|^2 & 0 & \cdots & 0 \\ 0 & \|x - x_2\|^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \|x - x_m\|^2 \end{pmatrix}.
\]

Then

\[
\frac{dD}{d\alpha} = 2 \begin{pmatrix} \frac{dw_1(\alpha, x, x_1)}{d\alpha} & 0 & \cdots & 0 \\ 0 & \frac{dw_1(\alpha, x, x_2)}{d\alpha} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{dw_1(\alpha, x, x_m)}{d\alpha} \end{pmatrix}.
\]
Theorem 2.1. Let the conditions (H1) hold true. Then for any fixed point \(x \in D \setminus \{x_1, \ldots, x_m\}\) there exists a constant \(\mu > 0\) such that for any two non-negative numbers \(\alpha_1, \alpha_2\) (\(\alpha_1 \leq \alpha_2\)), we have

\[
\|a(\alpha_2, x)\| \leq \mu \|a(\alpha_1, x)\|.
\]

Proof. Let \(x \in D \setminus \{x_1, \ldots, x_m\}\) be a fixed point. Let

\[
A_1(\alpha, x) = A_0 E^t = D^{-1} E \left(E^t D^{-1} E \right)^{-1} E^t, \quad A_2(\alpha, x) = A_1(\alpha, x) - I,
\]

where \(I\) is the identity \((m \times m)\)-matrix.

To simplify notations, we will write \(A_1 = A_1(\alpha, x), A_2 = A_2(\alpha, x), \) etc.

From equality

\[
a(\alpha, x) = A_0 c = D^{-1} E \left(E^t D^{-1} E \right)^{-1} c
\]

we obtain (differentiation with respect to \(\alpha\); only the matrix \(D\) depends from \(\alpha\)):

\[
\frac{da(\alpha, x)}{d\alpha} = \left(\frac{d}{d\alpha} D^{-1} E \left(E^t D^{-1} E \right)^{-1} \right) c
\]

\[
= \left(\frac{d}{d\alpha} D^{-1} \right) E \left(E^t D^{-1} E \right)^{-1} c + D^{-1} E \left(\frac{d}{d\alpha} \left(E^t D^{-1} E \right)^{-1} \right) c
\]

\[
= - HD^{-1} E \left(E^t D^{-1} E \right)^{-1} c
\]

\[
+ D^{-1} E \left(- \left(E^t D^{-1} E \right)^{-1} \left(\frac{d}{d\alpha} E^t D^{-1} E \right) \left(E^t D^{-1} E \right)^{-1} \right) c
\]
\[\begin{align*}
&= -Ha \\
&+ D^{-1}E (E^t D^{-1}E)^{-1} (E^t HD^{-1}E) (E^t D^{-1}E)^{-1} c \\
&= -Ha \\
&+ D^{-1}E (E^t D^{-1}E)^{-1} (E^t H) \left((E^t D^{-1}E)^{-1} \right) c \\
&= -Ha \\
&+ D^{-1}E (E^t D^{-1}E)^{-1} (E^t H) a \\
&= \left((D^{-1}E (E^t D^{-1}E)^{-1} E^t - I) \right) Ha \\
&= A_2 Ha.
\end{align*} \]

Therefore \(a(\alpha) \) is a solution of the equation

\[\frac{da(\alpha)}{d\alpha} = A_2(\alpha)Ha(\alpha). \quad (10) \]

Let us set:

\[L(a) = \langle a, Ha \rangle, \quad a \in \mathbb{R}^m. \]

Our goal is to prove that \(L \) is a Lyapunov function for (10).

Indeed:

1. \(L(0) = 0 \).

2. Let \(\mu_* \) (resp. \(\mu^* \)) be the smallest (resp. largest) eigenvalue of \(H \), or equivalently smallest (resp. largest) entry of \(H \), because \(H \) is a diagonal matrix. Then

\[\mu_* \|a\|^2 \leq L(a) = \langle a, Ha \rangle \leq \mu^* \|a\|^2, \quad (11) \]

for any \(a \in \mathbb{R}^m \).

3. For any \(a \in \mathbb{R}^m \), we have \(L(a) = \langle a, Ha \rangle \geq 0 \), because the matrix \(H \) is positive definite.

4. The derivatives:

\[\frac{\partial L(a)}{\partial a} = 2Ha \quad \text{(because \(H \) is symmetric)}, \]

\[\dot{L}(a) = \frac{dL(a(\alpha))}{d\alpha} = \left\langle \frac{\partial L(a)}{\partial a}, \dot{a}(\alpha) \right\rangle \]
\[= 2 \langle Ha, A_2(\alpha)Ha \rangle \]
\[=2 \langle a_1, A_2(\alpha) a_1 \rangle \quad \text{(here } a_1 = H a)\]
\[=2 \langle a_1, (A_2(\alpha) D^{-1}) D^{1/2} D^{1/2} a_1 \rangle\]
\[=2 \langle D^{-1/2} a_2, (A_2(\alpha) D^{-1}) D^{1/2} a_2 \rangle \quad \text{(here } a_2 = D^{1/2} a_1)\]
\[=2 \langle a_2, D^{-1/2} (A_2(\alpha) D^{-1}) D^{1/2} a_2 \rangle.\]

The matrix \(A_2(\alpha) D^{-1}\) is symmetric with eigenvalues \(-1\) and \(0\), see [11].

The matrix \(D^{-1/2} (A_2(\alpha) D^{-1}) D^{1/2}\) is symmetric too:
\[
\left(D^{-1/2} (A_2(\alpha) D^{-1}) D^{1/2} \right)^t = D^{1/2} (A_2(\alpha) D^{-1})^t D^{-1/2}
\]
\[= D^{1/2} (A_2(\alpha) D^{-1})^t D^{-1/2}\]
\[= D^{-1/2} D (A_2(\alpha) D^{-1})^t D^{-1/2}\]
\[= D^{-1/2} (A_2(\alpha) D^{-1}) D D^{-1/2}\]
\[= D^{-1/2} (A_2(\alpha) D^{-1}) D^{1/2}.\]

Here, we used
\[D (A_2(\alpha) D^{-1})^t = (A_2(\alpha) D^{-1} D)^t = A_2(\alpha) = (A_2(\alpha) D^{-1}) D.\]

Moreover the matrices \(A_2(\alpha) D^{-1}\) and \(D^{-1/2} (A_2(\alpha) D^{-1}) D^{1/2}\) share one and the same characteristic polynomial \(\det(A_2(\alpha) D^{-1} - \lambda I) = 0\). Therefore the eigenvalues of \(D^{-1/2} (A_2(\alpha) D^{-1}) D^{1/2}\) are \(-1\) and \(0\).

Using Rayleigh-Ritz theorem, we obtain
\[
\hat{L}(a) = 2 \left\langle a_2, D^{-1/2} (A_2(\alpha) D^{-1}) D^{1/2} a_2 \right\rangle
\]
\[\leq 2 \max\{-1, 0\} \|a_2\|^2 \quad \text{(12)}
\]
\[\leq 0.\]

Therefore \(L\) is positive definite decrescent (and of course radially unbounded) Lyapunov function for (10).

Let \(\alpha_1 > 0\) and \(\alpha_2 > \alpha_1\). It follows from inequalities (12) that
\[L(a(\alpha_1)) \geq L(a(\alpha_2)). \quad \text{(13)}\]

Now, using (11), we obtain
\[
\mu_* \|a(\alpha_2)\|^2 \leq L(a(\alpha_2)) \leq L(a(\alpha_1)) \leq \mu^* \|a(\alpha_1)\|^2.
\]
or, if we set \(\mu = \sqrt{\frac{\mu^*}{\mu^*}} \), then
\[
\|a(\alpha_2)\| \leq \mu \|a(\alpha_1)\|.
\]

Corollary 2.1. Let the conditions (H1) hold true. Let \(x \) be a fixed point in \(D \).

Let \(\hat{L}_i(f) \), \(i = 1, 2 \) be two moving least-squares approximation of order \(l \) at a point \(x \), generated by the weight functions \(w(\alpha_i, x, y) \), respectively.

Then if \(\alpha_1 \leq \alpha_2 \) and
\[
\left| f(x) - \hat{L}_1(f)(x) \right| \leq C, \quad C = \text{const.}
\]
then
\[
\left| f(x) - \hat{L}_2(f)(x) \right| \leq \mu C,
\]
where the constant \(\mu \) is defined in the proof of Theorem 2.1.

The proof of Corollary 2.1 follows from (8) and Theorem 2.1.

3. The Weight Family \(w_2 \) Generates “Increasing Bounds” with Respect to \(\beta \in [0, 1] \)

Through this section, we will suppose that conditions (H1) hold true, \(w(x, y) = w_2(\alpha, \beta, x, y) \), and \(\alpha \) is a fixed non-negative number.

Obviously \(A_0 = A_0(\beta, x) \) and moreover
\[
a(\beta, x) = D^{-1} E \left(E^t D^{-1} E \right)^{-1} c(x).
\]
(14)

Here, in the right-hand side of the equality, only the matrix \(D \) depends on \(\beta \) and \(x \).

Obviously
\[
\frac{dD}{d\beta} = 2 \begin{pmatrix}
\frac{dw_2(\alpha, \beta, x, 1, x_1, x_2)}{d\beta} & 0 & \ldots & 0 \\
0 & \frac{dw_2(\alpha, \beta, x_2, x_2)}{d\beta} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \frac{dw_2(\alpha, \beta, x_m, x_m)}{d\beta}
\end{pmatrix}
\]
\[
= -2I,
\]
\[
\frac{dD^{-1}}{d\beta} = -D^{-1} \frac{dD}{d\beta} D^{-1}
\]
\[
= 2D^{-1} D^{-1} = 2D^{-2}.
\]
Theorem 3.1. Let the conditions (H1) hold true. Then for any two numbers β_1, β_2, we have

$$\|a(\beta_1, x)\| \geq \|a(\beta_2, x)\|, \text{ if } 0 \leq \beta_1 \leq \beta_2 \leq 1.$$

Proof. Let

$$A_1 = A_0 E^t = D^{-1} E (E^t D E^{-1})^{-1} E^t, \quad A_2 = A_1 - I.$$

A differentiation of (14) with respect to β yields:

$$\frac{da(\beta, x)}{d\beta} = \left(\frac{d}{d\beta} D^{-1} E (E^t D E^{-1})^{-1} \right) c$$

$$= \left(\frac{d}{d\beta} D^{-1} \right) E (E^t D E^{-1})^{-1} c
+ D^{-1} E \left(- (E^t D E^{-1})^{-1} \left(\frac{d}{d\beta} E^t D E^{-1} \right) (E^t D E^{-1})^{-1} \right) c$$

$$= 2 D^{-1} a
- D^{-1} E (E^t D E^{-1})^{-1} (E^t D E^{-1})^{-1} c
= 2 D^{-1} a$$

$$- 2 D^{-1} E (E^t D E^{-1})^{-1} (E^t D E^{-1}) \left(D^{-1} E (E^t D E^{-1})^{-1} \right) c$$

$$= 2 D^{-1} a$$

$$- 2 D^{-1} E (E^t D E^{-1})^{-1} (E^t D^{-1}) a$$

$$= 2 \left(I - D^{-1} E (E^t D E^{-1})^{-1} E^t \right) D^{-1} a$$

$$= - 2 A_2 D^{-1} a.$$

Therefore $a(\beta)$ is a solution of

$$\frac{da(\beta)}{d\beta} = - 2 A_2 D^{-1} a(\beta). \quad (15)$$

The matrix $-A_2 D^{-1}$ is symmetric and positive semi-definite (see [11]). Therefore,

$$L(a) = \langle a, a \rangle, \quad a \in \mathbb{R}^m$$

is a Lyapunov function for (15). Indeed

$$L(a) = \|a\|^2 \geq 0, \quad a \in \mathbb{R}^m, \quad (16)$$
\[
\frac{\partial L(a)}{\partial a} = 2a, \quad (17)
\]

\[
\dot{L}(a) = 2 \langle a, (-A_2 D^{-1}) a \rangle \geq 0 \quad a \in \mathbb{R}^m. \quad (18)
\]

Let \(x \) be a fixed point in \(D \). Let \(\beta_1, \beta_2 \in [0, 1] \) and \(\beta_1 < \beta_2 \). Then it follows from (18) that

\[
L(a(\beta_1, x)) \leq L(a(\beta_2, x)),
\]

and from (16), we receive

\[
\|a(\beta_1, x)\| \leq \|a(\beta_2, x)\|.
\]

Therefore the function \(\|a(\beta, x)\| \) is not decreasing with respect to \(\beta \in [0, 1] \).

Example 3.1. It is not difficult to see that the errors are increasing function of \(\beta \) — a little bit “strange fact”, because \(\beta = 1 \) is interpolatory approximation.

Let \(m = 4, l = 1 \), the given data

\[
\{(i, 2i) : i = 1, 3, 5, 7\}, \quad f(x) = 2x.
\]

Let \(\hat{L}_\beta(f) \) be the moving least-squares approximation of order \(l = 1 \) at a fixed point \(x \in [0, 7] \) with weight function \(w_2(1, \beta, x, y) \).

Then

\[
E = \begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}, \quad a = \begin{pmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4
\end{pmatrix}, \quad c = (1),
\]

\[
D_\beta(x) = 2 \begin{pmatrix}
w_2(1, \beta, x_1, x) & 0 & 0 & 0 \\
0 & w(1, \beta, x_2, x) & 0 & 0 \\
0 & 0 & w(1, \beta, x_3, x) & 0 \\
0 & 0 & 0 & w(1, \beta, x_4, x)
\end{pmatrix}.
\]

Then

\[
A_0 = D_\beta^{-1}(x) E \left(E^t D_\beta^{-1}(x) E \right)^{-1}
\]

and

\[
\hat{L}_\beta(f) = 2 \sum_{i=1}^{m} a_i(x) x_i.
\]

Using Maple 18, it is not hard to display the plots of \(\hat{L}_\beta(f), \beta = 0, \frac{1}{2}, 1 \), see Figure 1.
Figure 1: Plots of $\hat{L}_\beta(f)$, $x \in [0, 7]$.

References

