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1. Introduction

We consider the perturbed Hamiltonian system























−ü(t) +A(t)u(t) = λ∇F (t, u(t)) + µ∇G(t, u(t))

+∇H(u(t)), a.e. t ∈ [0, T ],

∆(u̇i(tj)) = Iij(ui(tj)), i = 1, 2, . . . , N, j = 1, 2, . . . , p,

u(0)− u(T ) = u̇(0)− u̇(T ) = 0

(1)

where T > 0, N ≥ 1, p ≥ 2, λ > 0 and µ ≥ 0 are parameters, A : [0, T ] → R
N×N

is a continuous map from the interval [0, T ] to the set of N × N symmet-
ric matrices, tj, j = 1, 2, . . . , p, are the instants at which the impulses occur,
0 = t0 < t1 < . . . < tp < tp+1 = T , and ∆(u̇i(tj)) = u̇i(t

+
j ) − u̇i(t

−
j ) =

limt→t+j
u̇i(t) − limt→t−j

u̇i(t). Here, Iij : R → R are Lipschitz continuous with

Lipschitz constants Lij > 0, i.e.,

|Iij(s1)− Iij(s2)| ≤ Lij|s1 − s2|

for every s1, s2 ∈ R, and Iij(0) = 0 for i = 1, 2, . . . , N, j = 1, 2, . . . , p. In
addition, F , G : [0, T ] × R

N → R are measurable with respect to t for all
u ∈ R

N , continuously differentiable in u for almost every t ∈ [0, T ], and satisfy
the standard summability condition

sup
|x|≤a

(max{|F (·, x)|, |∇F (·, x)|, |G(·, x)|, |∇G(·, x)|}) ∈ L1([0, T ]) (2)

for any a > 0. The function H : R
N → R is continuously differentiable,

H(0, . . . , 0) = 0, ∇H is Lipschitz continuous with Lipschitz constant L > 0,
i.e.,

|∇H(x1)−∇H(x2)| ≤ L|x1 − x2| (3)

for every x1, x2 ∈ R
N , and ∇H(0, . . . , 0) = 0. If we assume that ∇F , ∇G :

[0, T ]× R
N → R are continuous, then condition (2) is satisfied.

As is well known, a Hamiltonian system is a system of differential equations
that can model the motion of a mechanical system. An important and inter-
esting question is under what conditions will the Hamiltonian system possess
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periodic solutions. Background information and applications of Hamiltonian
systems can be found for example in [16, 28, 31, 37]. The monographs [29, 32]
have inspired a great deal of work on the existence and multiplicity of periodic
solutions for Hamiltonian systems using variational techniques; for example, see
[9, 10, 11, 13, 14, 15, 18, 19, 24, 25, 26, 36, 38, 40, 42, 43, 45] and the references
therein.

Impulsive differential equations provide a general framework for modeling
many real world phenomena; they too have been studied extensively in the
literature. Background information and applications of impulsive differential
equations can be found in [2, 3, 23, 27, 33]. Recently, using critical point
theory, several authors have studied the existence and multiplicity of solutions
of impulsive problems; see, for example, [1, 7, 20, 30, 39, 41].

The existence and multiplicity of solutions for second-order impulsive Hamil-
tonian systems have attracted a good deal of attention in the literature, and we
refer the reader to [12, 34, 35, 44] and the included references for recent results.
In [12, 35], using variational methods and critical point theory, the existence
of multiple solutions for second-order impulsive Hamiltonian systems was stud-
ied. In [21], using different variational techniques from the ones used in this
paper, the present authors obtained the existence of infinitely many classical
periodic solutions to problem (1); in [22], using variational methods and critical
point theory different from those in [21] and this paper, they investigated the
existence of nontrivial periodic solutions to problem (1) in case µ = 0.

Motivated by the results in [12, 35] and using two kinds of three critical
points theorems (Theorems 1 and 2 below), in this paper we are able ensure
the existence of at least three classical periodic solutions to problem (1); see
Theorems 5 and 6 below. Theorems 1 and 2 have been successfully employed to
establish the existence of at least three solutions for perturbed boundary value
problems in the papers [5, 6, 17].

2. Preliminaries

Our main tools are the three critical point theorems that we recall here in
convenient forms. The first has been obtained in [4], and it is a more precise
version of Theorem 3.2 of [8]. The second has been established in [8]. We will
use the notation that if X is a Banach space then X∗ is its dual space.

Theorem 1. ([4, Theorem 2.6]) Let X be a reflexive real Banach space,

Φ : X −→ R be a coercive continuously Gâteaux differentiable and sequentially

weakly lower semicontinuous functional whose Gâteaux derivative admits a con-
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tinuous inverse on X∗, Ψ : X −→ R be a continuously Gâteaux differentiable

functional whose Gâteaux derivative is compact and such that Φ(0) = Ψ(0) = 0.
Assume there exist r > 0 and x ∈ X with r < Φ(x) such that

(a1)
supx∈Φ−1(−∞,r]Ψ(x)

r
<

Ψ(x)

Φ(x)
,

(a2) for each λ ∈ Λr :=

(

Φ(x)

Ψ(x)
,

r

supx∈Φ−1(−∞,r]Ψ(x)

)

, the functional Φ−λΨ

is coercive.

Then, for each λ ∈ Λr, the functional Φ−λΨ has at least three distinct critical

points in X.

Theorem 2. ([8, Corollary 3.1]) Let X be a reflexive real Banach space,

Φ : X −→ R be a convex, coercive, and continuously Gâteaux differentiable

functional whose Gâteaux derivative admits a continuous inverse on X∗, Ψ :
X −→ R be a continuously Gâteaux differentiable functional whose Gâteaux

derivative is compact and such that

(b1) infX Φ = Φ(0) = Ψ(0) = 0.

Assume that there are two positive constants r1, r2 and x ∈ X, with 2r1 <
Φ(x) < r2

2 , such that:

(b2)
supx∈Φ−1(−∞,r1)Ψ(x)

r1
<

2

3

Ψ(x)

Φ(x)
;

(b3)
supx∈Φ−1(−∞,r2)Ψ(x)

r2
<

1

3

Ψ(x)

Φ(x)
;

(b4) For each

λ ∈ Λ′
r1,r2

:=

(

3

2

Φ(x)

Ψ(x)
, min

{

r1
supu∈Φ−1(−∞,r1)Ψ(x)

,

r2
2

supx∈Φ−1(−∞,r2)Ψ(x)

})

and for every x1, x2 ∈ X, which are local minima for the functional Φ−λΨ
and such that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, we have

inf
s∈[0,1]

Ψ(sx1 + (1− s)x2) ≥ 0.
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Then, for each λ ∈ Λ′
r1,r2

, the functional Φ − λΨ has at least three distinct

critical points that lie in Φ−1(−∞, r2).

We assume that A satisfies the following conditions:

(A1) A(t) = (akl(t)), k = 1, . . . , N , l = 1, . . . , N , is a symmetric matrix with
akl ∈ L∞[0, T ] for any t ∈ [0, T ];

(A2) There exists κ > 0 such that (A(t)x, x) ≥ κ|x|2 for any x ∈ R
N and a.e.

t ∈ [0, T ].

Next, we recall some basic concepts. Let

E = {u : [0, T ] → R
N | u is absolutely continuous,

u(0) = u(T ), u̇ ∈ L2([0, T ],RN )}

with the inner product

≺ u, v ≻E =

∫ T

0
[(u̇(t), v̇(t)) + (u(t), v(t))]dt

where (·, ·) denotes the inner product in R
N . The corresponding norm is defined

by

‖u‖2E =

∫ T

0
(|u̇(t)|2 + |u(t)|2)dt for all u ∈ E.

For every u, v ∈ E, we define

≺ u, v ≻ =

∫ T

0
[(u̇(t), v̇(t)) + (A(t)u(t), v(t))]dt,

and we observe that, by assumptions (A1) and (A2), this defines an inner
product in E. Then, E is a separable and reflexive Banach space with the
norm

‖u‖ = ≺ u, u ≻ 1

2 for all u ∈ E.

Clearly, E is a uniformly convex Banach space.
A simple computation shows that

(A(t)x, x) =
N
∑

k,l=1

akl(t)xkxl ≤
N
∑

k,l=1

‖akl‖∞|x|2

for every t ∈ [0, T ] and x ∈ R
N , and this, along with condition (A2), yields

√
m‖u‖E ≤ ‖u‖ ≤

√
M‖u‖E (4)



90 J.R. Graef, S. Heidarkhani, L. Kong

where m = min{1, κ} and M = max{1,∑N
k,l=1 ‖akl‖∞}. This means that the

norms ‖ · ‖ and ‖ · ‖E are equivalent.
Since (E, ‖ · ‖) is compactly embedded in C([0, T ],RN ) (see [29]), there

exists a positive constant c such that

‖u‖∞ ≤ c‖u‖, (5)

where ‖u‖∞ = maxt∈[0,T ] | u(t) | and c =
√

2
m
max{ 1√

T
,
√
T} (see [12]).

If u ∈ E, then u is absolutely continuous and u̇ ∈ L2([0, T ],RN ). In this
case, ∆u̇(t) = u̇(t+)− u̇(t−) = 0 is not necessarily valid for every t ∈ (0, T ), and
the derivative u̇ may possess some discontinuities that lead to the impulsive
effects.

Next we define what is meant by a solution of (1).

Definition 3. A function u ∈ {u ∈ E : u̇ ∈ (W 1,2(tj, tj+1))
N, j =

0, 1, 2, . . . , p} is said to be a classical solution of the problem (1) if u satisfies
(1). By a weak solution of problem (1), we mean any u ∈ E such that

∫ T

0

[

(u̇(t), v̇(t)) + (A(t)u(t), v(t)) − (∇H(u(t)), v(t))
]

dt

+

p
∑

j=1

N
∑

i=1

Iij(ui(tj))vi(tj)− λ

∫ T

0
(∇F (t, u(t)), v(t))dt

− µ

∫ T

0
(∇G(t, u(t)), v(t))dt = 0

for every v ∈ E.

The following lemma should come as no surprise.

Lemma 4. ([21, Lemma 2.2]) If u ∈ E is a weak solution of (1), then u
is a classical solution of (1).

We assume throughout that

K := c2(2LT +

p
∑

j=1

N
∑

i=1

Lij) < 1.

We set Gθ :=

∫

[0,T ]
max
|x|≤θ

G(t, x)dt for every θ > 0 and Gη := inf [0,T ]×[0,η]N G(t, x)

for every η > 0, where [0, η]N = [0, η] × . . .× [0, η].
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3. Main Results

We begin by letting D > 0 be the constant

D =
(T − tp)

2

t1t2p
+

t1
3t2p

(t2p + tpT + T 2) + (tp − t1) +
T − tp
t2p

+
1

3t2p
(T 3 − t3p).

For notational purposes, for any two positive constants θ and η such that

(1 +K)DMη2
∫ tp

t1

F (t, ηε)dt

<
(1−K)(θ

c
)2

∫ T

0
max
|ξ|≤θ

F (t, ξ)dt

,

where ε = (1, 0, · · · , 0) ∈ R
N , we take

λ ∈ Λ :=











(1 +K)DMη2

2

∫ tp

t1

F (t, ηε)dt

,
(1−K)(θ

c
)2

2

∫ T

0
max
|ξ|≤θ

F (t, ξ)dt











and set

δλ,G = min



















(1−K)(θ
c
)2 − 2λ

∫ T

0
max
|ξ|≤θ

F (t, ξ)dt

2Gθ
,

(1 +K)DMη2 − 2λ

∫ tp

t1

F (t, ηε)dt

2TGη



















(6)

and

δλ,G := min























δλ,G,
1

max

{

0,
2c2

(1−K)
lim sup
|ξ|→∞

supt∈[0,T ]G(t, ξ)

|ξ|2

}























. (7)

We will use the convention that ρ/0 = +∞ for ρ ∈ R
+; hence, δλ,G = +∞ if

lim sup
|ξ|→∞

supt∈[0,T ]G(t, ξ)

|ξ|2 ≤ 0,
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and Gη = Gθ = 0.
We now formulate our main result.

Theorem 5. Assume that there exist two positive constants θ and η with
θ

c
√
Dm

< η such that

(A1) F (t, ξ) ≥ 0 for each t ∈ [0, t1] ∪ [tp, T ], |ξ| ≤ ηT
tp
;

(A2)

∫ T

0
max
|ξ|≤θ

F (t, ξ)dt

θ2
<

1−K

c2(1 +K)DM

∫ tp

t1

F (t, ηε)dt

η2
;

(A3) lim sup
|ξ|→∞

supt∈[0,T ] F (t, ξ)

|ξ|2 ≤ 0.

Then, for each λ ∈ Λ and for every function G : [0, T ] × R
N → R that is

measurable with respect to t for all u ∈ R
N , continuously differentiable in u for

almost every t ∈ [0, T ], and satisfies (2),

Gη ≤ 0, Gθ ≥ 0, (8)

and

lim sup
|ξ|→∞

supt∈[0,T ]G(t, ξ)

|ξ|2 < +∞, (9)

there exists δλ,G > 0 given by (7) such that, for each µ ∈ [0, δλ,G), the problem

(1) admits at least three distinct classical periodic solutions in E.

Proof. Fix λ and µ as in the conclusion of the theorem. Set X = E and
define the functionals Φ, Ψ : X → R by

Φ(u) =
1

2
‖u‖2 +

p
∑

j=1

N
∑

i=1

∫ ui(tj )

0
Iij(s)ds−

∫ T

0
H(u(t))dt

and

Ψ(u) =

∫ T

0
[F (t, u(t)) +

µ

λ
G(t, u(t))]dt

for every u ∈ X. It is well known that Ψ is a Gâteaux differentiable functional
whose Gâteaux derivative at the point u ∈ X is the functional Ψ′(u) ∈ X∗

given by

Ψ′(u)v =

∫ T

0

(

∇F (t, u(t)) +
µ

λ
∇G(t, u(t)), v(t)

)

dt
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for every v ∈ X, and Ψ′ : X → X∗ is a compact operator. Moreover, Φ is a
Gâteaux differentiable functional whose Gâteaux derivative at the point u ∈ X
is the functional Φ′(u) ∈ X∗ given by

Φ′(u)v =

∫ T

0

[

(u̇(t), v̇(t)) + (A(t)u(t), v(t)) − (∇H(u(t)), v(t))
]

dt

+

p
∑

j=1

N
∑

i=1

Iij(ui(tj))vi(tj)

for every v ∈ X. Also, [22, Proposition 2.4] ensures that Φ′ admits a continuous
inverse on X∗.

To show that Φ is sequentially weakly lower semicontinuous, let un ∈ X
with un → u weakly in X. We then have lim infn→+∞ ||un|| ≥ ||u|| and un → u
uniformly on [0, T ]. Since H is continuous,

lim inf
n→+∞

(1

2
‖un‖2 +

p
∑

j=1

N
∑

i=1

∫ uni(tj)

0
Iij(s)ds−

∫ T

0
H(un(t))dt

)

≥ 1

2
‖u‖2 +

p
∑

j=1

N
∑

i=1

∫ uni(tj )

0
Iij(s)ds−

∫ T

0
H(u(t))dt.

That is, lim infn→+∞Φ(un) ≥ Φ(u), which means that Φ is sequentially weakly
lower semicontinuous.

From (3) and the fact that H(0, . . . , 0) = 0, we have |H(ξ)| ≤ L|ξ|2 for all
ξ ∈ R

N . This, in conjunction with the fact that −Lij|s|2 ≤ Iij(s)s ≤ Lij |s|2 for
every s ∈ R for all i = 1, 2, . . . , N , j = 1, 2, . . . , p, and inequality (5), we have

1

2
(1−K)‖u‖2 ≤ Φ(u) ≤ 1

2
(1 +K)‖u‖2 (10)

for u ∈ X. Let r = 1
2(1−K)(θ

c
)2 and

w(t) =











(T +
tp−T

t1
t)ηε

tp
, t ∈ [0, t1),

ηε, t ∈ [t1, tp],
ηε
tp
t, t ∈ (tp, T ].

(11)

It is easy to see that w ∈ X = E and ‖w‖2E = Dη2. Hence, in view of (4),

Dmη2 ≤ ‖w‖2 ≤ DMη2, (12)
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and this together with the condition θ

c
√
Dm

< η, ensures that 0 < r < Φ(w).

From (5) and (10), we see that for each u ∈ X,

Φ−1(−∞, r] = {u ∈ X : Φ(u) ≤ r}

⊆
{

u ∈ X :
1

2
(1−K)‖u‖2 ≤ r

}

⊆ {u ∈ X : |u(t)| ≤ θ for each t ∈ [0, T ]} ,

and it follows that

sup
u∈Φ−1(−∞,r]

Ψ(u) = sup
u∈Φ−1(−∞,r]

∫ T

0
[F (t, u(t)) +

µ

λ
G(t, u(t))]dt

≤
∫ T

0
sup
|ξ|≤θ

F (t, ξ)dx+
µ

λ
Gθ.

On the other hand, from condition (A1), we have

Ψ(w) ≥
∫ tp

t1

F (t, ηε)dt +
µ

λ

∫ T

0
G(t, w(t))dt

≥
∫ tp

t1

F (t, ηε)dt + T
µ

λ
inf

[0,T ]×[0,η]N
G

=

∫ tp

t1

F (t, ηε)dt + T
µ

λ
Gη.

Therefore, we have

sup
u∈Φ−1(−∞,r]

Ψ(u)

r
=

sup
u∈Φ−1(−∞,r)

∫ T

0
[F (t, u(t)) +

µ

λ
G(t, u(t))]dt

r

≤

∫ T

0
sup
|ξ|≤θ

F (t, ξ)dx+
µ

λ
Gθ

1
2 (1−K)(θ

c
)2

, (13)

and so

Ψ(w)

Φ(w)
≥

∫ tp

t1

F (t, ηε)dt +
µ

λ

∫ T

0
G(t, w(t))dt

1
2(1 +K)DMη2
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≥

∫ tp

t1

F (t, ηε)dt + T
µ

λ
Gη

1

2
(1 +K)DMη2

. (14)

Since µ < δλ,G, we have

µ <

(1−K)(θ
c
)2 − 2λ

∫ T

0
max
|ξ|≤θ

F (t, ξ)dt

2Gθ
,

which implies
∫ T

0
max
|ξ|≤θ

F (t, ξ)dt +
µ

λ
Gθ

1

2
(1−K)

(

θ

c

)2 <
1

λ
.

Moreover, since

µ <

(1 +K)DMη2 − 2λ

∫ tp

t1

F (t, ηε)dt

2TGη

and Gη ≤ 0, we see that

∫ tp

t1

F (t, ηε)dt + T
µ

λ
Gη

1
2 (1 +K)DMη2

>
1

λ
.

Therefore,

∫ T

0
max
|ξ|≤θ

F (t, ξ)dt +
µ

λ
Gθ

1

2
(1−K)

(

θ

c

)2 <
1

λ
<

∫ tp

t1

F (t, ηε)dt + T
µ

λ
Gη

1
2(1 +K)DMη2

. (15)

Hence, from (13)–(15), we see that condition (a1) of Theorem 1 is satisfied.

Finally, since µ < δλ,G, by (9), we can fix l > 0 such that

lim sup
|ξ|→∞

supt∈[0,T ]G(t, ξ)

|ξ|2 < l
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and µl <
1−K

2Tc2
. Therefore, there exists a function h ∈ L1([0, T ]) such that

G(t, ξ) ≤ l|ξ|2 + h(t), (16)

for every t ∈ [0, T ] and ξ ∈ R
N . Now, for λ > 0, choose 0 < ǫ <

1−K

2λTc2
− µl

λ
.

From (A3), there is a function hǫ ∈ L1([0, T ]) such that

F (t, ξ) ≤ ǫ|ξ|2 + hǫ(t), (17)

for every t ∈ [0, T ] and ξ ∈ R
N . From (5) (10), (16), and (17), it follows that,

for each u ∈ X,

Φ(u)− λΨ(u) =
1

2
‖u‖2 +

p
∑

j=1

N
∑

i=1

∫ ui(tj)

0
Iij(s)ds −

∫ T

0
H(u(t))dt

− λ

∫ T

0
[F (t, u(t)) +

µ

λ
G(t, u(t))]dt

≥ 1

2
(1−K)‖u‖2 − λǫ

∫ T

0
|u(t)|2dt− λ‖hǫ‖1

− µl

∫ T

0
|u(t)|2dt− µ‖h‖1

≥
(1

2
(1−K)−λǫTc2 −µlTc2

)

‖u‖2−λ‖hǫ‖1 −µ‖h‖1,

and so
lim

‖u‖→+∞
(Φ(u)− λΨ(u)) = +∞,

which means the functional Φ− λΨ is coercive. Now (13)–(15) imply

λ ∈
(

Φ(w)

Ψ(w)
,

r

supΦ(x)≤r Ψ(x)

)

,

so condition (a2) of Theorem 1 is satisfied. Clearly, weak solutions of problem
(1) are precisely the solutions of the equation Φ′(u)−λΨ′(u) = 0. Therefore, in
view of Lemma 4, the conclusion of the theorem follows from Theorem 1 with
x = w.

Next, we present a variant of Theorem 5 in which no asymptotic condition
on the nonlinear term G is required, but F and G are assumed to be nonnega-
tive.
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For positive constants θ1, θ2, and η with

3

2

(1 +K)DMη2
∫ tp
t1

F (t, ηε)dt

< (1−K)

(

1

c

)2

min



















θ21
∫ T

0
max
|ξ|≤θ1

F (t, ξ)dt

,
θ22

2

∫ T

0
max
|ξ|≤θ2

F (t, ξ)dt



















,

we introduce the notation

Λ′ :=









3

4

(1 +K)DMη2
∫ tp
t1

F (t, ηε)dt
,

1

2
(1−K)

(

1

c

)2

min



















θ21
∫ T

0
max
|ξ|≤θ1

F (t, ξ)dt

,
θ22

2

∫ T

0
max
|ξ|≤θ2

F (t, ξ)dt





























.

We then have the following existence result.

Theorem 6. Let F : [0, T ]×R
N → R be a non-negative function. Assume

that there exist three positive constants θ1, θ2, and η with

θ1
c

√

2

Dm
< η <

√

1−K

2DM(1 +K)

θ2
c

such that condition (A1) in Theorem 5 holds. In addition, assume that

(B1)

max



















∫ T

0
max
|ξ|≤θ1

F (t, ξ)dt

θ21
,

2

∫ T

0
max
|ξ|≤θ2

F (t, ξ)dt

θ22



















<
2

3

1−K

c2
(

1 +K
)

DM

∫ tp

t1

F (t, ηε)dt

η2
.
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Then, for each λ ∈ Λ′ and for every nonnegative function G : [0, T ] × R
N → R

that is measurable with respect to t for all u ∈ R
N , continuously differentiable

in u for almost every t ∈ [0, T ], and satisfies (2), there exists δ∗λ,G > 0 given by

min



















(1−K)(θ1
c
)2 − 2λ

∫ T

0
max
|ξ|≤θ

F (t, ξ)dt

2Gθ1
,

(1−K)(θ2
c
)2 − 4λ

∫ T

0
max
|ξ|≤θ

F (t, ξ)dt

4Gθ2



















such that, for each µ ∈ [0, δ∗λ,G), the problem (1) admits at least three distinct

classical periodic solutions uk = (uk1 , . . . , u
k
N ) for k = 1, 2, 3, such that

|uk(t)| < θ2 for all t ∈ [0, T ], k = 1, 2, 3.

Proof. Fix λ, G, and µ as in the conclusion of the theorem and take X, Φ,
and Ψ as in the proof of Theorem 5. Note that the regularity assumptions in
Theorem 2 on Φ and Ψ, and condition (b1) are satisfied. We need to show that
(b2) and (b3) hold, so choose w as in (11) and set

r1 =
1

2
(1−K)

(

θ1
c

)2

and r2 =
1

2
(1−K)

(

θ2
c

)2

.

From the condition θ1
c

√

2
Dm

< η < θ2
c

√

1−K
2DM(1+K) , and recalling (10), we see

that 2r1 < Φ(w) <
r2
2
. Since µ < δ∗λ,G and Gη = 0, we have

sup
u∈Φ−1(−∞,r1)

Ψ(u)

r1
=

sup
u∈Φ−1(−∞,r1)

∫ T

0
[F (t, u(t)) +

µ

λ
G(t, u(t))]dt

r1

≤

∫ T

0
sup
|ξ|≤θ1

F (t, ξ)dt+
µ

λ
Gθ1

1

2
(1−K)

(

θ1
c

)2
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<
1

λ
<

2

3

∫ tp

t1

F (t, ηε)dt + T
µ

λ
Gη

1
2 (1 +K)DMη2

≤ 2

3

Ψ(w)

Φ(w)
,

and

2 sup
u∈Φ−1(−∞,r2)

Ψ(u)

r2
=

2 sup
u∈Φ−1(−∞,r2)

∫ T

0
[F (t, u(t)) +

µ

λ
G(t, u(t))]dt

r2

≤
2

∫ T

0
sup
|t|≤θ2

F (t, ξ)dx + 2
µ

λ
Gθ2

1

2
(1−K)

(

θ2
c

)2

<
1

λ
<

2

3

∫ tp

t1

F (t, ηε)dt + T
µ

λ
Gη

1
2 (1 +K)DMη2

≤ 2

3

Ψ(w)

Φ(w)
.

Therefore, (b2) and (b3) of Theorem 2 are satisfied.
To complete our proof, we need to show that condition (b4) is satisfied. Let

u∗ = (u⋆1, ..., u
⋆
N ) and u⋆⋆ = (u⋆⋆1 , ..., u⋆⋆N ) be two local minima for Φ−λΨ. Then

u⋆ and u⋆⋆ are critical points for Φ − λΨ, and so, they are weak solutions for
the problem (1). Since F and G are nonnegative, F (t, su⋆ + (1 − s)u⋆⋆) ≥ 0
and G(t, su⋆ + (1− s)u⋆⋆) ≥ 0, and so Ψ(su⋆ + (1− s)u⋆⋆) ≥ 0 for all s ∈ [0, 1].
Hence, by Theorem 2, for every

λ ∈







3

2

Φ(w)

Ψ(w)
, min











r1
sup

u∈Φ−1((−∞,r1))

Ψ(u)
,

r2/2

sup
u∈Φ−1((−∞,r2))

Ψ(u)
















,

the functional Φ − λΨ has at least three distinct critical points that are weak
solutions of problem (1). An application of Lemma 4 completes the proof of
the theorem.

Before presenting our next theorem, note that if G is independent of t, i.e.,
G(t, x) = Ḡ(x), then Ḡθ = T max

|x|≤θ
Ḡ(x) and Ḡη = inf

[0,η]N
Ḡ(x). The following

result is a special case of Theorem 5.
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Theorem 7. Let F : RN → R be a continuously differentiable function

such that

lim inf
x→0

max|ξ|≤x F (ξ)

|x|2 = lim sup
|ξ|→+∞

F (ξ)

|ξ|2 = 0.

Then, there is λ∗ > 0 such that for each λ > λ∗ and for every continuously dif-

ferentiable function G : RN → R satisfying Ḡη ≤ 0, Ḡθ ≥ 0, and the asymptotic

condition

lim sup
|ξ|→∞

G(ξ)

|ξ|2 < +∞,

there exists δ∗λ,G > 0 such that, for each µ ∈ [0, δ∗λ,G), the problem























−ü(t) +A(t)u(t) = λ∇F (u(t)) + µ∇G(u(t))

+∇H(u(t)), a.e. t ∈ [0, T ],

∆(u̇i(tj)) = Iij(ui(tj)), i = 1, 2, . . . , N, j = 1, 2, . . . , p,

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

admits at least three classical periodic solutions.

Proof. Fix λ > λ∗ := (1+K)DMη2

2(tp − t1)F (ηε)
for some η > 0. Since

lim inf
x→0

max|ξ|≤x F (ξ)

x2
= 0,

there is a sequence {θn} ⊂ (0,+∞) such that lim
n→∞

θn = 0 and

lim
n→∞

max|ξ|≤θn F (ξ)

θ2n
= 0.

Hence, there exists θ > 0 such that

max
|ξ|≤θ

F (ξ)

θ
2 < min

{

(1−K)(tp − t1)F (ηε)

c2T (1 +K)DMη2
,
1−K

2λTc2

}

and θ

c
√
Dm

< η. The conclusion follows from Theorem 5.

The following result is a consequence of Theorem 6.
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Theorem 8. Let F : R2 → R be a nonnegative continuously differentiable

function such that

lim
x→0+

max|(ξ1,ξ2)|≤x F (ξ1, ξ2)

x2
= 0

and

max
|(ξ1,ξ2)|≤4

F (ξ1, ξ2) <
4(1 − 36L− 6

∑2
j=1

∑2
i=1 Lij)

378
(

1 + 36L+ 6
∑2

j=1

∑2
i=1 Lij

)F (2, 0).

Then, for every

λ ∈





21
(

1 + 36L+ 6
∑2

j=1

∑2
i=1 Lij

)

F (2, 0)
,

4(1− 36L− 6
∑2

j=1

∑2
i=1 Lij)

18 max
|(ξ1,ξ2)|≤4

F (ξ1, ξ2)





and for every nonnegative continuously differentiable function G : R2 → R,

there exists δ∗λ,G > 0 such that, for each µ ∈ [0, δ∗λ,G), the problem























−ü(t) +A(t)u(t) = λ∇F (t, u(t))

+µ∇G(t, u(t)) +∇H(u(t)), a.e. t ∈ [0, 3],

∆(u̇i(tj)) = Iij(ui(tj)), i = 1, 2, t1 = 1, t2 = 2,

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

where A(t) is the second-order identity matrix, admits at least three classical

periodic solutions.

Proof. Here N = p = 2, T = 3, t1 = 1, t2 = 2, θ2 = 4, and η = 2.
Therefore, since m = 1, M = 2, c =

√
6, D = 7

2 , we see that

3

2

1
2(1 +K)DMη2
∫ tp
t1

F (t, ηε)dt
=

21
(

1 + 36L+ 6
∑2

j=1

∑2
i=1 Lij

)

F (2, 0)

and

1

2
(1−K)(

1

c
)2

θp2

2

∫ T

0
max
|ξ|≤θ2

F (t, ξ)dt

=
4(1 − 36L− 6

∑2
j=1

∑2
i=1 Lij)

18 max
|(ξ1,ξ2)|≤4

F (ξ1, ξ2)
.
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Moreover, since

lim
x→0+

max|(ξ1,ξ2)|≤x F (ξ1, ξ2)

x2
= 0,

there exists a positive constant θ1 <
√
42 such that

max
|(ξ1,ξ2)|≤θ1

F (ξ1, ξ2)

θ21
<

1− 36L− 6
∑2

j=1

∑2
i=1 Lij

378
(

1 + 36L+ 6
∑2

j=1

∑2
i=1 Lij

)F (2, 0)

and
θ21

max
|(ξ1,ξ2)|≤θ1

F (ξ1, ξ2)
>

8

max
|(ξ1,ξ2)|≤4

F (ξ1, ξ2)
.

Now it is easy to see that all assumptions of Theorem 6 are satisfied, and so
the conclusion follows.
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