 GENERALIZED NOWHERE DENSE SETS IN CLUSTER TOPOLOGICAL SETTING

M. Matejdes
Department of Mathematics and Computer Science
Faculty of Education
Trnava University in Trnava
Priemyselná 4, 918 43 Trnava, SLOVAKIA

Abstract: The aim of the article is to generalize the notion of nowhere dense set with respect to a cluster topological space which is defined as a triplet \((X, \tau, \mathcal{E})\) where \((X, \tau)\) is a topological space and \(\mathcal{E}\) is a nonempty family of nonempty subsets of \(X\). The notions of \(\mathcal{E}\)-nowhere dense and locally \(\mathcal{E}\)-scattered sets are introduced and the necessary and sufficient conditions under which the family of all \(\mathcal{E}\)-nowhere dense sets is an ideal are given.

AMS Subject Classification: 54A05, 54E52, 54G12
Key Words: cluster system, cluster topological space, ideal topological space, \(\mathcal{E}\)-scattered set, \(\mathcal{E}\)-nowhere dense set

1. Introduction and Basic Definitions

Cluster topological spaces provide a general framework with the involvement of ideal topological spaces [1], [2], [3], [9]. They have a wider application and its progress can find in [6], [7], [10]. The paper can be considered as a continuation of [5] where some cluster topological notions were introduced and it corresponds with the efforts to generalize the Baire classification of sets and the Baire category theorem [4], [11].

In [5] one can find an open problem to discover a necessary and sufficient condition under which the family of all \(\mathcal{E}\)-nowhere dense sets forms an ideal. In the first part we recall the basic notions and results of [5], a few counter examples are given and Section 3 is devoted to our main goal.
In the sequel, \((X, \tau)\) is a nonempty topological space. By \(\overline{A}\), \(A^o\), we denote the closure, the interior of \(A\) in \(X\), respectively. By \(A^\circ\) we denote the interior of \(A\).

Definition 1.1. (see [5]) Any nonempty system \(E \subset 2^X \setminus \{\emptyset\}\) will be called a cluster system in \(X\). If \(G\) is a nonempty open set and any nonempty open subset of \(G\) contains a set from \(E\), then \(E\) is called a \(\pi\)-network in \(G\). For a cluster system \(E\) and a subset \(A\) of \(X\), we define the set \(E(A)\) of all points \(x \in X\) such that for any neighborhood \(U\) of \(x\), the intersection \(U \cap A\) contains a set from \(E\). A triplet \((X, \tau, E)\) is called a cluster topological space. If \(\emptyset \neq Y \subset \emptyset\), then \((Y, \tau_Y, E_Y)\) where \(\tau_Y\) is the subspace topology is called a cluster topological subspace of \((X, \tau, E)\), provided \(E_Y \neq \emptyset\).

Remark 1.1. (see [1], [2], [3], [9]) Specially, if \(I\) is a proper ideal on \(X\), then a cluster system \(E_I = \{E \subset X : E \notin I\}\) leads to a local function of \(A\), i.e., \(E_I(A) = \{x \in X : \text{for any open set } U \text{ containing } x \text{ there is } E \in E_I \text{ such that } E \subset U \cap A\} = \{x \in X : U \cap A \notin I, \text{ for any open set } U \text{ containing } x \}\). Then, \(A^*(I, \tau)\) what is called the local function of \(A\) with respect to \(I\) and \(\tau\). Note, if \(E = 2^X \setminus \{\emptyset\}\), then \(E(A) = \overline{A}\).

The next definition introduces some basic notions derived from \(E\)-operator reminding the properties of local function which are known from an ideal topological space.

Definition 1.2. A set \(A\) is called \(E\)-scattered if \(A\) contains no set from \(E\). A set \(A\) is locally \(E\)-scattered at a point \(x \in X\) if there is an open set \(U\) containing \(x\) such that \(U \cap A\) is \(E\)-scattered (i.e., \(x \notin E(A)\)). A is locally \(E\)-scattered if \(A\) is locally \(E\)-scattered at any point from \(A\) (i.e., \(A \cap E(A) = \emptyset\)) and \(A\) is \(E\)-dense in itself if \(A \subset E(A)\). A set \(A\) is \(E\)-nowhere dense if for any nonempty open set \(U\) there is a nonempty open subset \(H\) of \(U\) such that \(H \cap A\) is \(E\)-scattered. The family of all \(E\)-nowhere dense sets, locally \(E\)-scattered sets, nowhere dense sets, is denoted by \(N_E, S_E, N\), respectively.

Remark 1.2. By Definition 1.1, \(E\) is a nonempty system of nonempty subsets of \(X\). A trivial case \(E = \emptyset\) (\(\emptyset \in E\)) leads to the trivial results, since \(E(A) = \emptyset\) and \(N_E = 2^X\) \((E(A) = X\) and \(N_E = \emptyset)\) for any \(A \subset X\).

Definition 1.3. Let \(E_1\) and \(E_2\) be two cluster systems. \(E_1 < E_2\) if for any \(E_1 \in E_1\) there is \(E_2 \in E_2\) such that \(E_2 \subset E_1\). \(E_1\) and \(E_2\) are equivalent, \(E_1 \sim E_2\), if \(E_1 < E_2\) and \(E_2 < E_1\).
2. Preliminary Results

The next properties of \(\mathcal{E} \)-operator are clear and the proof of the following lemma is omitted.

Lemma 2.1. (see [5])

(1) \(\mathcal{E}(\emptyset) = \emptyset \),
(2) \(\mathcal{E}(A) \) is closed,
(3) \(\mathcal{E}(A) \subset \overline{A} \),
(4) \(\mathcal{E}(\mathcal{E}(A)) \subset \mathcal{E}(A) \),
(5) \(\mathcal{E} \) is a \(\pi \)-network in an open set \(G \neq \emptyset \) if and only if \(\mathcal{E}(G) = \mathcal{E}(\overline{G}) = \overline{G} \).

Lemma 2.2.

(1) If \(\mathcal{E}_1 \subset \mathcal{E}_2 \), then \(\mathcal{E}_1 < \mathcal{E}_2 \),
(2) if \(\mathcal{E}_1 < \mathcal{E}_2 \), then \(\mathcal{E}_1(A) \subset \mathcal{E}_2(A) \) and \(\mathcal{N}_{\mathcal{E}_2} \subset \mathcal{N}_{\mathcal{E}_1} \),
(3) if \(\mathcal{E}_1 \sim \mathcal{E}_2 \), then \(\mathcal{E}_1(A) = \mathcal{E}_2(A) \) and \(\mathcal{N}_{\mathcal{E}_2} = \mathcal{N}_{\mathcal{E}_1} \),
(4) \(\mathcal{N}_{\mathcal{E}_1} \cup \mathcal{E}_2 \subset \mathcal{N}_{\mathcal{E}_i} , i = 1, 2 \),
(5) \(\mathcal{N}_{\mathcal{E}_i} \subset \mathcal{N}_{\mathcal{E}_i \cap \mathcal{E}_2} , i = 1, 2 \),
(6) if \(A_1 \subset A_2 \), then \(\mathcal{E}(A_1) \subset \mathcal{E}(A_2) \),
(7) let \(A \subset Y \subset X \). If \(A \) is \(\mathcal{E}_Y \)-nowhere dense, then \(A \in \mathcal{N}_{\mathcal{E}} \),
(8) if \(A_t \) is \(\mathcal{E} \)-dense in itself for any \(t \in T \), then \(\bigcup_{t \in T} A_t \) is so,
(9) if \(A \) is \(\mathcal{E} \)-dense in itself, then \(\overline{A} \) is so.

Proof. We will show only (7), (8) and (9). Other items are easy to prove.

(7) Let \(G \) be a nonempty open subset of \(X \). If \(G \cap Y = \emptyset \), there is noting to prove. Suppose \(G \cap Y \neq \emptyset \). Then \(G \cap Y \in \tau_Y \), so there is a nonempty open set \(H \in \tau \), such that \(\emptyset \neq H \cap Y \subset G \cap Y \) and \(H \cap Y \cap A \) contains no set from \(\mathcal{E}_Y \), hence \(H \cap Y \cap A = H \cap A \) contains no set from \(\mathcal{E} \). Since \(H \cap G \) is a nonempty open subset of \(G \) and \(H \cap G \cap A \) contains no set from \(\mathcal{E} \), \(A \in \mathcal{N}_\mathcal{E} \).

(8) It follows from \(\bigcup_{t \in T} A_t \subset \bigcup_{t \in T} \mathcal{E}(A_t) \subset \mathcal{E}(\bigcup_{t \in T} A_t) \).

(9) Since \(A \subset \mathcal{E}(A) \), \(\overline{A} \subset \mathcal{E}(\overline{A}) = \mathcal{E}(A) \subset \mathcal{E}(\overline{A}) \) by Lemma 2.1 (2) and Lemma 2.2 (6).

Lemma 2.3. (see [5]) The next conditions are equivalent:
Theorem 2.1. (see [5])

(1) \(N \subset N_\mathcal{E} \). Consequently, if \(A \in N \), then \(A \in N_\mathcal{E} \),

(2) if \(A \in N_\mathcal{E} \) and \(B \subset A \), then \(B \in N_\mathcal{E} \),

(3) \(A \setminus \mathcal{E}(A) \in N_\mathcal{E} \) and \(A \setminus \mathcal{E}(A) \) is locally \(\mathcal{E} \)-scattered,

(4) any \(\mathcal{E} \)-scattered set is locally \(\mathcal{E} \)-scattered and any locally \(\mathcal{E} \)-scattered set is from \(N_\mathcal{E} \),

(5) if \(A \in N \) and \(B \in N_\mathcal{E} \), then \(A \cup B \in N_\mathcal{E} \),

(6) if \(G_t \in N_\mathcal{E} \) and \(G_t \) is open for any \(t \in T \), then \(\bigcup_{t \in T} G_t \in N_\mathcal{E} \). Consequently, if \(A_t \subset Y \subset X \) is \(\tau_Y \)-open and \(A_t \in N_{\mathcal{E}Y} \), then \(\bigcup_{t \in T} A_t \in N_\mathcal{E} \),

(7) \(A \in N_\mathcal{E} \) if and only if \(A \) is a sum of a locally \(\mathcal{E} \)-scattered set and a set from \(N \),

(8) if \(A, B \in N_\mathcal{E} \) and one of them is closed, then \(A \cup B \in N_\mathcal{E} \).

Proof. (1): Let \(A \in N \). By Lemma 2.1 (3), \(\mathcal{E}(A) \subset \overline{A} \), so \((\mathcal{E}(A))^\circ \subset \overline{A}^\circ = \emptyset \) and by Lemma 2.3, \(A \in N_\mathcal{E} \).

(2): It follows from the implications: \(B \subset A \Rightarrow \mathcal{E}(B) \subset \mathcal{E}(A) \Rightarrow (\mathcal{E}(B))^\circ \subset (\mathcal{E}(A))^\circ = \emptyset \) and Lemma 2.3.

(3): Let \(G \) be nonempty open. If \(G \cap (A \setminus \mathcal{E}(A)) \) is empty, there is nothing to prove. Let \(x \in G \cap (A \setminus \mathcal{E}(A)) \). Then there is an open subset \(H \) of \(G \) containing \(x \), such that \(H \cap A \) contains no set from \(\mathcal{E} \). Then \(H \cap (A \setminus \mathcal{E}(A)) \) is \(\mathcal{E} \)-scattered. That means \(A \setminus \mathcal{E}(A) \in N_\mathcal{E} \). The second part is clear.

(4): The first part is clear. Let \(A \) be locally \(\mathcal{E} \)-scattered. Since \(A \cap \mathcal{E}(A) = \emptyset \), \(A = A \setminus \mathcal{E}(A) \) is \(\mathcal{E} \)-nowhere dense by (3).

(5): Let \(G \) be nonempty open. Since \(A \) is nowhere dense and \(B \) is \(\mathcal{E} \)-nowhere dense, there are two nonempty open sets \(G_0 \subset G \) and \(H \subset G_0 \) such
that $A \cap G_0 = \emptyset$ and $B \cap H$ is E-scattered. Hence $(A \cup B) \cap H = B \cap H$ is E-scattered, so $A \cup B$ is E-nowhere dense.

(6): Let $\{H_s\}_{s \in S}$ be a maximal family of pairwise disjoint open sets such that any H_s is a subset of some set from $\{G_t\}_{t \in T}$ and $A := \cup_{t \in T}G_t \setminus \cup_{s \in S}H_s$ is nowhere dense. It is clear that $B := \cup_{s \in S}H_s$ is E-nowhere dense. By item (5), $\cup_{t \in T}G_t = A \cup B$ is E-nowhere dense. The consequence follows from Lemma 2.2 (7).

(7): ” \Rightarrow ” It follows from equation $A = (A \setminus \mathcal{E}(A)) \cup (A \cap \mathcal{E}(A))$, item (3) and Lemma 2.3. The opposite implication follows from the items (4) and (5).

(8): Suppose A is closed. If $A^0 = \emptyset$, then A is nowhere dense and by item (5), $A \cup B \in \mathcal{N}_E$.

Let $A^0 \neq \emptyset$ and U be a nonempty open set. Suppose $U \cap A^0 = \emptyset$. Since $A \setminus A^0$ is nowhere dense, so there is a nonempty open set $H \subset U$ such that $H \cap (A \setminus A^0) = H \cap A = \emptyset$. Since $B \in \mathcal{N}_E$, there is a nonempty open set $H_0 \subset H$, such that $H_0 \cap B = (H_0 \cap A) \cup (H_0 \cap B) = H_0 \cap (A \cup B)$ contains no set from \mathcal{E}, hence $A \cup B \in \mathcal{N}_E$. Finally, suppose $U \cap A^0 \neq \emptyset$. Since $A \in \mathcal{N}_E$, there is a nonempty open set $H_1 \subset U \cap A^0 \subset A$, such that $H_1 \cap A = H_1$ contains no set from \mathcal{E}, consequently $(A \cup B) \cap H_1$ contains no set from \mathcal{E}. So $A \cup B \in \mathcal{N}_E$. \qed

If $\mathcal{E}_{II} = \{E : E$ is of second category in $(X, \tau)\}$, then $\mathcal{N}_{\mathcal{E}_{II}}$ is the family of all sets of first category. So, item (6) of Theorem 2.1 is a generalization of the Banach category theorem.

3. Main Results

Next theorem deals with a relationship between an E-nowhere dense set and a nowhere dense one and we will find some conditions under which \mathcal{N}_E forms an ideal.

Theorem 3.1. Let \mathcal{E} be a π-network in an open set G_0. If $A \subset \overline{G_0}$ is closed and E-nowhere dense, then A is nowhere dense. Consequently, if $\mathcal{E}(X) = X$ and A is a closed subset of X, then A is nowhere dense if and only if A is \mathcal{E}-nowhere dense.

Proof. Let G_1 be nonempty open. If $A \cap G_1 = \emptyset$, there is nothing to prove. Let $A \cap G_1 \neq \emptyset$ and $G := G_1 \cap G_0$. Since \mathcal{E} is a π-network in G_0, $H := G \cap (X \setminus A) \neq \emptyset$ (if $G \subset A$, then there is a nonempty open subset H_0 of G such that $H_0 \cap A = H_0$ contains no set from \mathcal{E}, contradiction with assumption that \mathcal{E} is a π-network in G_0). So, H is a nonempty open subset of G and disjoint from A. \qed
Remark 3.1. No assumption in Theorem 3.1 can be omitted. Let \(X = \{a, b\} \), \(\tau = \{X, \emptyset\} \), \(\mathcal{E} = \{X\} \), \(A = \{a\} \). Then \(\mathcal{E} \) is a \(\pi \)-network in \(X \). The set \(A \) is \(\mathcal{E} \)-nowhere dense, \(A \) is not closed and \(A \) is not nowhere dense.

The assumption that \(\mathcal{E} \) is a \(\pi \)-network can not be omitted. Consider \(X = \{0, 1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\} \) with the usual topology, \(\mathcal{E} = \{E : E \text{ is infinite}\} \). It is clear that \(\mathcal{E} \) is not a \(\pi \)-network in \(X \). Put \(A = \{1, \frac{1}{2}\} \). The set \(A \) is closed and \(\mathcal{E} \)-nowhere dense. But \(A \) is not nowhere dense.

It is known that \(A \) is nowhere dense iff \(\overline{A} \) is so. An analogous equivalence for the \(\mathcal{E} \)-nowhere dense sets leads to the fact that \(N_{\mathcal{E}} \) is an ideal.

Theorem 3.2. (see [5]) If \(\overline{A} \) is \(\mathcal{E} \)-nowhere dense whenever \(A \) is \(\mathcal{E} \)-nowhere dense, then \(N_{\mathcal{E}} \) is an ideal.

An obvious question is whether the assumption of Theorem 3.2 implies the equality \(N = N_{\mathcal{E}} \) and if the opposite implication holds. Next examples will give the negative answers.

Example 3.1. Let \(X = \{a, b\} \), \(\tau = 2^X \), \(\mathcal{E} = \{X\} \). Then \(N_{\mathcal{E}} = 2^X \) and \(N = \{\emptyset\} \neq N_{\mathcal{E}} \).

Example 3.2. Let \(X = \{a, b, c\} \), \(\tau = \emptyset, \{a, b\}, X \), \(\mathcal{E} = \{\{a\}\} \). Then \(N_{\mathcal{E}} = \emptyset, \{b\}, \{c\}, \{b, c\} \) is an ideal. The set \(\{b\} \in N_{\mathcal{E}} \), but \(\overline{\{b\}} = \{a, b, c\} \notin N_{\mathcal{E}} \).

In the case if \(\mathcal{E} \) is a \(\pi \)-network in \(X \), the opposite implication is valid but the assumption that \(\overline{A} \) is \(\mathcal{E} \)-nowhere dense whenever \(A \) is \(\mathcal{E} \)-nowhere dense seems to be too strong and it leads to the equation \(N = N_{\mathcal{E}} \).

Theorem 3.3. (see [5]) Let \(\mathcal{E} \) be a \(\pi \)-network in \(X \). Then the next conditions are equivalent:

1. \(\overline{A} \) is \(\mathcal{E} \)-nowhere dense if and only is \(A \) is \(\mathcal{E} \)-nowhere dense,
2. \(N = N_{\mathcal{E}} \).

In [5] it is recommended to investigate a condition under which \(N_{\mathcal{E}} \) is an ideal. In this section we introduce a notion of additive cluster system.

Theorem 3.4. \(N_{\mathcal{E}} \) is an ideal if and only if any sum of two locally \(\mathcal{E} \)-scattered sets is from \(N_{\mathcal{E}} \).

Proof. "\(\Rightarrow \)" By Theorem 2.1 (4), any locally \(\mathcal{E} \)-scattered set is from \(N_{\mathcal{E}} \), so the sum of two \(\mathcal{E} \)-scattered sets is from \(N_{\mathcal{E}} \).
“⇐” Let $A, B \in \mathcal{N}_\mathcal{E}$. By Theorem 2.1 (7), $A = A_1 \cup A_2$ and $B = B_1 \cup B_2$, where A_1, B_1 are locally \mathcal{E}-scattered and $A_2, B_2 \in \mathcal{N}$. Then $A \cup B = (A_1 \cup B_1) \cup (A_2 \cup B_2)$ is a sum of a locally \mathcal{E}-scattered and a nowhere dense set, so $A \cup B \in \mathcal{N}_\mathcal{E}$, by Theorem 2.1 (7). \hfill \Box

Corollary 3.1. If $S_\mathcal{E}$ is an ideal, then $N_\mathcal{E}$ is so.

The opposite implication does not hold, as the next example shows.

Example 3.3. Let $X = \{0, 1, \frac{1}{2}, \frac{1}{3}, \ldots\}$ with the usual topology and $\mathcal{E} = \{E \subset X : X \setminus E$ is finite $\}$. Then $X_1 = \{\frac{1}{n} : n = 1, 2, 3, \ldots\}$ and $X_2 = \{0\}$ are locally \mathcal{E}-scattered, but $X_1 \cup X_2 = X$ is not so. It is clear $N_\mathcal{E} = 2^X$ is an ideal.

Definition 3.1. A cluster system \mathcal{E} is \mathcal{N}-additive if for any $A, B \subset X$ there is a nowhere dense set R, such that $\mathcal{E}(A \cup B) = \mathcal{E}(A) \cup \mathcal{E}(B) \cup R$.

Theorem 3.5. $N_\mathcal{E}$ is an ideal if and only if \mathcal{E} is \mathcal{N}-additive.

Proof. "⇒" Let $A, B \in N_\mathcal{E}$. First, we will show $(\mathcal{E}(A \cup B))^o \subset \mathcal{E}(A) \cup \mathcal{E}(B)$. Let $x \in (\mathcal{E}(A \cup B))^o$ and $x \notin \mathcal{E}(A) \cup \mathcal{E}(B)$. Then there is an open subset H of $(\mathcal{E}(A \cup B))^o$ containing x and $H \cap A$ and $H \cap B$ contain no set from \mathcal{E}. So, $H \cap A$ and $H \cap B$ are \mathcal{E}-nowhere dense set. Since $N_\mathcal{E}$ is an ideal, there is a nonempty open subset G of H, such that $G \cap (A \cup B)$ contains no set from \mathcal{E}. On the other hand, $x \in (\mathcal{E}(A \cup B))^o$, hence $G \cap (A \cup B)$ contains a set from \mathcal{E}, a contradiction.

Since $\mathcal{E}(A \cup B) \setminus (\mathcal{E}(A \cup B))^o$ in nowhere dense and $\mathcal{E}(A \cup B) = [\mathcal{E}(A \cup B) \setminus (\mathcal{E}(A \cup B))^o] \cup \mathcal{E}(A) \cup \mathcal{E}(B)$, \mathcal{E} is \mathcal{N}-additive.

"⇐" Let $A, B \in N_\mathcal{E}$. Then $\mathcal{E}(A \cup B) = R \cup \mathcal{E}(A) \cup \mathcal{E}(B)$, where R is a nowhere dense set. Since $\mathcal{E}(A), \mathcal{E}(B)$ are nowhere dense, $\mathcal{E}(A \cup B)$ is a nowhere dense set, so $A \cup B \in N_\mathcal{E}$, by Lemma 2.3. \hfill \Box

4. Derived Cluster Systems

It is well known that a set A is of first category if and only if $D(A) = \emptyset$ where $D(A)$ is the set of all points in which A is of first category, i.e., for any $x \in A$ there is an open set U containing x such that $A \cap U$ does not contain a set of second category. Question is if there is a similar characterization of \mathcal{E}-nowhere dense sets, namely $A \in N_\mathcal{E}$ iff $\mathcal{E}(A) = \emptyset$. Next example shows that similar characterization exists for the ideal \mathcal{N} of all nowhere dense sets.
Example 4.1. Let \(\mathcal{E}_N = \{ E : E \not\subseteq \mathcal{N} \} \). It is clear that \(\mathcal{E}_N(A) = \overline{\mathcal{A}}^\circ \). By Lemma 2.3, \(A \in \mathcal{N}_{\mathcal{E}_N} \) iff \(\mathcal{E}_N(A) \) is nowhere dense iff \(\overline{\mathcal{A}}^\circ = \emptyset \) iff \(A \) is nowhere dense. Consequently, \(\mathcal{N}_{\mathcal{E}_N} = \mathcal{N} \). So, \(A \) is a nowhere dense set iff \(A \in \mathcal{N}_{\mathcal{E}_N} \) iff \(\mathcal{E}_N(A) = \overline{\mathcal{A}}^\circ = \emptyset \).

The next example shows that the equivalence \(A \in \mathcal{N}_\mathcal{E} \) if and only if \(\mathcal{E}(A) = \emptyset \) does not hold in general.

Example 4.2. Let \(X = \{ 0, 1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots \} \) with the usual topology and \(\mathcal{E} = \{ \{ 1 \} \} \cup \{ E : E \text{ is infinite} \} \). Then \(\mathcal{E}(A) = \emptyset \) iff \(A \) is finite and \(1 \not\in A \). It is clear \(\mathcal{N}_\mathcal{E} = \{ A : 1 \not\in A \} \).

Definition 4.1. Let \(\mathcal{E} \) be a cluster system. Put \(\mathcal{E}^* = \{ E : E \not\subseteq \mathcal{N}_\mathcal{E} \} = \{ E : (\mathcal{E}(E))^\circ \neq \emptyset \} \) (see Lemma 2.3). A set \(A \) is called \(\mathcal{E} \)-preopen if \(A \subset (\mathcal{E}(A))^\circ \). A cluster system of all nonempty \(\mathcal{E} \)-preopen sets is denoted by \(\mathcal{E}^{\text{po}} \).

Now we will study a connection among \(\mathcal{N}_\mathcal{E}, \mathcal{N}_{\mathcal{E}^*} \) and \(\mathcal{N}_{\mathcal{E}^{\text{po}}} \).

Lemma 4.1. Let \((\mathcal{E}(A))^\circ \neq \emptyset \). If \(H \) is a nonempty open subset of \((\mathcal{E}(A))^\circ \), then \(A \cap H \in \mathcal{E}^* \) and \(A \cap (\mathcal{E}(A))^\circ \) is \(\mathcal{E} \)-preopen.

Proof. Denote \(\mathcal{G} := (\mathcal{E}(A))^\circ \). First we prove \(H \subset \mathcal{E}(A \cap H) \). Let \(x \in H \) and \(U \subset H \subset G \) be an open set containing \(x \). Since \(x \in U \subset G \subset \mathcal{E}(A) \), \(A \cap U = A \cap H \cap U \) contains a set from \(\mathcal{E} \), so \(x \in \mathcal{E}(A \cap H) \). Since \(H \subset \mathcal{E}(A \cap H) \), \((\mathcal{E}(A \cap H))^\circ \) is nonempty, so \(A \cap H \in \mathcal{E}^* \).

Let \(x \in (\mathcal{E}(A))^\circ \). Then for any open set \(U \) containing \(x \) and \(U \subset (\mathcal{E}(A))^\circ \subset \mathcal{E}(A) \) there is \(E \in \mathcal{E} \) such that \(E \subset U \subset A \subset U \cap A \subset (\mathcal{E}(A))^\circ \), hence \(x \in \mathcal{E}(A \cap (\mathcal{E}(A))^\circ) \). We have proved \((\mathcal{E}(A))^\circ \subset \mathcal{E}(A \cap (\mathcal{E}(A))^\circ) \). That means \(A \cap (\mathcal{E}(A))^\circ \subset (\mathcal{E}(A))^\circ \subset [\mathcal{E}(A \cap (\mathcal{E}(A))^\circ)]^\circ \), so \(A \cap (\mathcal{E}(A))^\circ \) is \(\mathcal{E} \)-preopen. \(\Box \)

Theorem 4.1. Let \(\mathcal{E} \) be a cluster system. Then \(\mathcal{E}^{\text{po}} \sim \mathcal{E}^* < \mathcal{E} \) and \(\mathcal{N}_\mathcal{E} = \mathcal{N}_{\mathcal{E}^*} = \mathcal{N}_{\mathcal{E}^{\text{po}}} \).

Proof. Since \(\mathcal{E}^{\text{po}} \subset \mathcal{E}^* \), \(\mathcal{E}^{\text{po}} < \mathcal{E}^* \). Let \(A \in \mathcal{E}^* \). Then \((\mathcal{E}(A))^\circ \neq \emptyset \) and by Lemma 4.1, \(A \subset (\mathcal{E}(A))^\circ \) is \(\mathcal{E} \)-preopen subset of \(A \), so \(\mathcal{E}^* < \mathcal{E}^{\text{po}} \). That means \(\mathcal{E}^* \sim \mathcal{E}^{\text{po}} \) and by Lemma 2.2 (3), \(\mathcal{N}_{\mathcal{E}^*} = \mathcal{N}_{\mathcal{E}^{\text{po}}} \).

The relation \(\mathcal{E}^* < \mathcal{E} \) is clear, so by Lemma 2.2 (2), \(\mathcal{N}_\mathcal{E} \subset \mathcal{N}_{\mathcal{E}^*} \). Let \(A \in \mathcal{N}_{\mathcal{E}^*} \) and \(A \not\in \mathcal{N}_\mathcal{E} \). Then \(G := (\mathcal{E}(A))^\circ \neq \emptyset \). Since \(A \in \mathcal{N}_{\mathcal{E}^*} \), there is a nonempty open set \(H \subset G \), such that \(A \cap H \) contains no set from \(\mathcal{E}^* \). By Lemma 4.1, \(A \cap H \in \mathcal{E}^* \), a contradiction. \(\Box \)

The following theorem gives a characterization of sets from \(\mathcal{N}_\mathcal{E} \) by the \(\mathcal{E}^* \)-operator.
Theorem 4.2. $A \in \mathcal{N}_\mathcal{E}$ if and only if $\mathcal{E}^*(A) = \emptyset$.

Proof. If $\mathcal{E}^*(A) = \emptyset$, then $A \in \mathcal{N}_\mathcal{E}$ and by Theorem 4.1, $A \in \mathcal{N}_\mathcal{E}$.

Let $A \in \mathcal{N}_\mathcal{E}$ and suppose $\mathcal{E}^*(A) \neq \emptyset$. Let $x \in \mathcal{E}^*(A)$. Then for any open set G containing x the intersection $G \cap A$ contains a set $B \in \mathcal{E}^*$ and by Definition 4.1, $(\mathcal{E}(B))^\circ \neq \emptyset$. Since $A \in \mathcal{N}_\mathcal{E}$, for $(\mathcal{E}(B))^\circ$ there is a nonempty open set $H \subset (\mathcal{E}(B))^\circ$ such that $A \cap H$ does not contain a set from \mathcal{E}. By Lemma 4.1 and Theorem 4.1, $A \cap H \in \mathcal{E}^* \prec \mathcal{E}$, so $A \cap H$ contains a set from \mathcal{E}, a contradiction. \qed

References
