SOME REMARKS ON RELATED FIXED POINT THEOREMS

Yumnam Rohen1, P.P. Murthy2

1Department of Mathematics
National Institute of Technology Manipur
Langol 795004, INDIA

2Department of Applied Mathematics
Guru Gasidas University
Koni, Bilaspur (Chhatititsgarh) 495009, INDIA

Abstract: In this paper we present a survey of related fixed point theorems in different spaces starting from the results of Fisher. It also includes results in set valued and implicit functions. Regarding the spaces we include metric space, uniform space, fuzzy metric space, menger space, symmetric space, partial metric space etc. Further, we prove two related fixed point theorems in three metric spaces by considering three set valued mappings.

AMS Subject Classification: 47H10, 54H25
Key Words: fixed point, common fixed point, related fixed point

1. Introduction

Related fixed point theorem was initiated by Brian Fisher (1981). Since then it is extended to various directions by different researchers and as a result of it a flood of research results came out in this area. The extension work goes mainly in two directions. One direction is about the condition of the function used. Important points carried out in this direction are continuity of the mappings, implicit nature and also the number of functions used. Second direction is

1Correspondence author

Received: January 14, 2016
Published: September 8, 2016
© 2016 Academic Publications, Ltd.
url: www.acadpubl.eu
about the space in which the related fixed point is to be examined. Regarding the spaces used are complete and compact metric spaces, uniform space, fuzzy metric space, menger space, symmetric space, partial metric space etc.

Following two theorems were proved by Fisher.

Theorem 1.1. (Fisher 1981)[1] Let \((X, d_1)\) and \((Y, d_2)\) be complete metric spaces. If \(T\) is a mapping of \(X\) into \(Y\) and let \(S\) is a mapping of \(Y\) into \(X\) satisfying the inequalities

\[
\begin{align*}
 d_2(Tx, TSy) & \leq c \max\{d_1(x, Sy), d_2(y, Tx), d_2(y, TSy)\} \\
 d_1(Sy, STx) & \leq c \max\{d_2(y, Tx), d_1(x, Sy), d_1(x, STx)\}
\end{align*}
\]

for all \(x\) in \(X\) and \(y\) in \(Y\), where \(0 \leq c < 1\). Then \(ST\) has a unique fixed point \(z\) in \(X\) and \(TS\) has a unique fixed point \(w\) in \(Y\). Further, \(Tz = w\) and \(Sw = z\).

Theorem 1.2. (Fisher)[2] Let \((X, d)\) and \((Y, \rho)\) be complete metric spaces, let \(T\) be a continuous mapping of \(X\) into \(Y\) and let \(S\) be a mapping of \(Y\) into \(X\) satisfying the inequalities

\[
\begin{align*}
 d(STx, STx') & \leq c \max\{d(x, x'), d(x, STx), d(x', STx'), \rho(Tx, Tx')\} \\
 \rho(TSy, TSy') & \leq c \max\{\rho(y, y'), \rho(y, STy), \rho(y', STy'), d(Sy, Sy')\}
\end{align*}
\]

for all \(x, x'\) in \(X\) and \(y, y'\) in \(Y\), where \(0 \leq c < 1\). Then \(ST\) has a unique fixed point \(z\) in \(X\) and \(TS\) has a unique fixed point \(w\) in \(Y\). Further, \(Tz = w\) and \(Sw = z\).

Fisher B., R. K. Namdeo, N. K. Tiwari and Kenan Tas [8] proved the following related fixed point theorem.
Theorem 1.3. Let \((X,d)\) and \((Y,\rho)\) be complete metric spaces. Let \(T\) be a mapping of \(X\) into \(Y\) and let \(S\) be a mapping of \(Y\) into \(X\) satisfying the inequalities

\[
d(Sy, Sy')d(STx, STx') \leq c \max \left\{ d(Sy, Sy')\rho(Tx, Tx'), d(x', Sy)\rho(y', Tx), d(x, x')d(Sy, Sy'), d(Sy, STx)d(Sy', STx') \right\}
\]

\[
\rho(Tx, Tx')\rho(TSy, TSy') \leq c \max \left\{ d(Sy, Sy')\rho(Tx, Tx'), d(x', Sy)\rho(y', Tx), \rho(y, y')d(Tx, Tx'), \rho(Tx, TSy)\rho(Tx', TSy') \right\}
\]

for all \(x, x'\) in \(X\) and \(y, y'\) in \(Y\), where \(0 \leq c < 1\). If either \(T\) or \(S\) is continuous then \(ST\) has a unique fixed point \(z\) in \(X\) and \(TS\) has a unique fixed point \(\omega\) in \(Y\). Further, \(Tz = \omega\) and \(S\omega = z\).

Brain Fisher and Duran Turkoghu [12] generalized theorem 1.2 to set valued mappings. This is the first result in set valued mappings. They proved the following theorem.

Theorem 1.4. Let \((X,d_1)\) and \((Y,d_2)\) be complete metric spaces, let \(F\) be mapping of \(X\) into \(B(Y)\) and \(G\) be mapping of \(Y\) into \(B(X)\) satisfying the inequalities

\[
\delta_1(GFx, GFx') \leq c \max \{d_1(x, x'), \delta_1(x, GFx), \delta_1(x', GFx'), \delta_2(Fx, Fx') \}
\]

\[
\delta_2(FGy, FGy') \leq c \max \{d_2(y, y'), \delta_2(y, FGy), \delta_2(y', FGy'), \delta_1(Gy, Gy') \}
\]

for all \(x, x'\) in \(X\) and \(y, y'\) in \(Y\), where \(0 \leq c < 1\). If \(F\) is continuous, then \(GF\) has a unique fixed point \(z\) in \(X\) and \(FG\) has a unique fixed point \(w\) in \(Y\).

Abdelkrim Aliouche and Brian Fisher [16] proved the following theorem which uses rational inequalities.
Theorem 1.5. Let \((X, d)\) and \((Y, \rho)\) be complete metric spaces. Let \(A, B\) be mappings of \(X\) into \(Y\) and let \(S, T\) be mappings of \(Y\) into \(X\) satisfying the inequalities

\[
\rho(BSy, ATy'') \leq c \frac{f(x, x'', y, y'')}{h(x, x'', y, y'')}
\]

\[
d(SAx, TBx'') \leq c \frac{g(x, x'', y, y'')}{h(x, x'', y, y'')}
\]

for all \(x, x'\) in \(X\) and \(y, y'\) in \(Y\) for which \(h(x, x'', y, y'') \neq 0\), where

\[
f(x, x'', y, y'') = \max \{d(x, x'')\rho(y, y''), d(x, Sy)d(x'', Ty''), d(x, Ty'')d(x'', Sy), \rho(y, By'')\rho(y'', Ax)\}
\]

\[
g(x, x'', y, y'') = \max \{\rho(Ax, Bx'')d(Sy, Ty''), \rho(Ax, BSy)\rho(Bx'', ATy''), \rho(Ax, ATy'')\rho(Bx'', BSy), d(Sx, TBx'')d(Ty'', SAx)\}
\]

\[
h(x, x'', y, y'') = \max \{\rho(Ax, Bx''), d(SAx, TBx''), d(Sy, Ty''), \rho(BSy, ATy'')\}
\]

and \(0 \leq c < 1\). If one of the mappings \(A, B, S\) and \(T\) is continuous, then \(SA\) and \(TB\) have a unique common fixed point \(z\) in \(X\) and \(BS\) and \(AT\) have a unique common fixed \(w\) in \(Y\). Further, \(Az = Bz = w\) and \(Sw = Tw = z\).

Abdelkrim Aliouche and Brian Fisher [17] proved a theorem similar to theorem 1.5 without using the continuity of mappings. R. K. Namdeo and Brian Fisher [18] proved another version of theorem 1.5 with different inequalities. R. K. Namdeo and Brian Fisher [19] generalized theorem 1.5 by considering three pairs of mappings in three complete metric spaces with the condition that two of the mappings are continuous. R. K. Namdeo and Brian Fisher [20] generalized theorem 1.5 by considering three pairs of mappings in three complete metric spaces. They also put the condition that two of the mappings must be continuous.

R.K. Jain, H. K. Sahu and Brian Fisher [21] proved the following theorem.

Theorem 1.6. Let \((X, d), (Y, \rho)\) and \((Z, \sigma)\) be complete metric spaces and suppose \(T\) is a mapping of \(X\) into \(Y\), \(S\) is a mapping of \(Y\) into \(Z\) and \(R\) is a mapping of \(Z\) into \(X\) satisfying the inequalities

\[
d(RSy, RSTx) \leq c \frac{f_1(x, y)}{g_1(x, y)}
\]
\[\rho(TRz, TRSy) \leq c \frac{f_2(y, z)}{g_2(y, z)} \]
\[\sigma(STx, STRz) \leq c \frac{f_3(z, x)}{g_3(z, x)} \]

for all \(x \) in \(X \), \(y \) in \(Y \) for which
\[g_1(x, y) \neq 0, g_2(y, z) \neq 0, g_3(z, x) \neq 0, \]
where \(0 \leq c < 1 \) and
\[
\begin{align*}
f_1(x, y) &= \max \left\{ d(x, RSTx)\sigma(Sy, STx), d(x, RSTx)\rho(y, TRSy), \\
&\quad d(x, RSy)\rho(y, Tx) \right\}, \\
f_2(y, z) &= \max \left\{ \rho(y, TRSy)d(Rz, RSy), \rho(y, TRSy)\sigma(z, STRz), \\
&\quad \rho(y, TRz)\sigma(z, Sy) \right\}, \\
f_3(z, x) &= \max \left\{ \sigma(z, STRz)\rho(Tx, TRz), \sigma(z, STRz)d(x, RSTx), \\
&\quad \sigma(z, STx)d(x, Rz) \right\}, \\
g_1(x, y) &= \max \left\{ d(x, RSy), d(x, RSTx), \rho(Tx, TRSy) \right\}, \\
g_2(y, z) &= \max \left\{ \rho(y, TRz), \rho(y, TRSy), d(Sy, STRz) \right\}, \\
g_3(z, x) &= \max \left\{ \sigma(z, STx), \sigma(z, STRz), d(Rz, RSTx) \right\}.
\end{align*}
\]

Then \(RST \) has a unique fixed point \(u \) in \(X \), \(TRS \) has a unique fixed point \(v \) in \(Y \) and \(STR \) has a unique fixed point \(w \) in \(Z \). Further, \(Tu = v, Sv = w \) and \(Rw = u \).

Luljeta Kakina and Kristaq [22] generalized theorem 1.6 by considering four pairs of mappings in four complete metric spaces. Here mappings are not continuous. A.K. Chaubey, M.D. Gupta and D.P. Sahu [23] generalized theorem 1.6 by considering five pairs of mappings in five complete metric spaces. In this case the continuity of mappings is not necessary. Luljeta Kakina [24] proved a related fixed point theorem in three complete metric spaces with new inequalities. In this case mappings need not be continuous.

Sampada Navshinde, J. Achari and Brian Fisher [25] proved the following theorem.

Theorem 1.7. Let \((X, d) \), \((Y, \rho) \) and \((Z, \sigma) \) be complete metric spaces. If \(T \) is continuous mapping of \(X \) into \(Y \), \(S \) is a mapping of \(Y \) into \(Z \) and \(R \) is a mapping of \(Z \) into \(X \) satisfying the inequalities
\[
d(RSTx, RSTx') \leq c \max \left\{ \frac{d(x, x')\{1 + d(x, RSTx)\}}{1 + d(x, x')}, \\
\frac{d(x, x')\{1 + d(x, RSTx)\}}{1 + d(x, x')} \right\},
\]

Luljeta Kakina and Kristaq [22] generalized theorem 1.6 by considering four pairs of mappings in four complete metric spaces. Here mappings are not continuous. A.K. Chaubey, M.D. Gupta and D.P. Sahu [23] generalized theorem 1.6 by considering five pairs of mappings in five complete metric spaces. In this case the continuity of mappings is not necessary. Luljeta Kakina [24] proved a related fixed point theorem in three complete metric spaces with new inequalities. In this case mappings need not be continuous.

Sampada Navshinde, J. Achari and Brian Fisher [25] proved the following theorem.

Theorem 1.7. Let \((X, d) \), \((Y, \rho) \) and \((Z, \sigma) \) be complete metric spaces. If \(T \) is continuous mapping of \(X \) into \(Y \), \(S \) is a mapping of \(Y \) into \(Z \) and \(R \) is a mapping of \(Z \) into \(X \) satisfying the inequalities
\[
d(RSTx, RSTx') \leq c \max \left\{ \frac{d(x, x')\{1 + d(x, RSTx)\}}{1 + d(x, x')}, \\
\frac{d(x, x')\{1 + d(x, RSTx)\}}{1 + d(x, x')} \right\},
\]

Then \(RST \) has a unique fixed point \(u \) in \(X \), \(TRS \) has a unique fixed point \(v \) in \(Y \) and \(STR \) has a unique fixed point \(w \) in \(Z \). Further, \(Tu = v, Sv = w \) and \(Rw = u \).
\[
\begin{align*}
 d(x', RSTx) \{1 + d(x, RSTx)\} & \over 1 + d(x, x'), \\
 d(x', RSTx') \{1 + d(x, RSTx)\} & \over 1 + d(x, x'), \\
 \rho(Tx, Tx'), \sigma(STx, STx') \}
\end{align*}
\]

\[
\begin{align*}
 \rho(TRSy, TRSy') & \leq c \max \left\{ \frac{\rho(y, y') \{1 + \rho(y, TRSy)\}}{1 + \rho(y, y')}, \\
 \frac{\rho(y', TRSy) \{1 + \rho(y, TRSy')\}}{1 + \rho(y, y')}, \\
 \frac{\rho(y', TRSy') \{1 + \rho(y, TRSy)\}}{1 + \rho(y, y')}, \\
 \sigma(Sy, Sy'), d(RSy, RSy') \right\}
\end{align*}
\]

\[
\begin{align*}
 \sigma(STRz, STRz') & = c \max \left\{ \frac{\sigma(z, z') \{1 + \sigma(z, STRz)\}}{1 + \sigma(z, z')}, \\
 \frac{\sigma(z', STRz) \{1 + \sigma(z, STRz')\}}{1 + \sigma(z, z')}, \\
 \frac{\sigma(z', STRz') \{1 + \sigma(z, STRz)\}}{1 + \sigma(z, z')}, \\
 d(Rz, Rz'), \rho(TRz, TRz') \right\},
\end{align*}
\]

for all \(x, x'\) in \(X\), \(y, y'\) in \(Y\) and \(z, z'\) in \(Z\), where \(0 \leq c < 1\), then \(RST\) has a unique fixed point \(u\) in \(X\). \(TRS\) has a unique fixed point \(v\) in \(Y\) and \(STR\) has a unique fixed point \(w\) in \(Z\). Further, \(Tu = v\), \(Sw = w\) and \(Rw = u\).

Taieb Hamaizia and Abdelkrim Aliouche [26] proved a theorem which is one of the theorem proved by Ranjit and Rohen [9] in 1999. Vishal Gupta [27] generalized the result of Jain, Sahu and Fisher [5] by taking four mappings in four complete metric spaces. Out of the four mappings three mappings are continuous.
R. K. Saini, Seema Devi and Naveen Gulati [28] proved the following theorem:

Theorem 1.8. Let \((X, d)\) and \((Y, \rho)\) be complete metric spaces. If \(T : X \to Y\) and \(S : Y \to X\) satisfying the inequalities,

\[
\begin{align*}
\rho^3(Tx, TSy) &\leq c_1 \max \left\{ \rho(y, Tx)d(x, Sy), \rho(y, Tx)\rho(y, Tx)\rho(y, TSy), \rho(y, TSy)d(x, Sy)\rho(y, TSy) \right\} \\
d^3(Sy, STx) &\leq c_2 \max \left\{ d(x, Sy)\rho(y, Tx)d(x, Sy), d(x, Sy)d(x, Sy)d(x, STx), \rho(y, Tx)d(x, STx)d(x, STx) \right\}
\end{align*}
\]

\(\forall x \in X\) and \(y \in Y\) where \(0 \leq c_1, c_2 < 1\) then \(ST\) has a unique fixed point \(z \in X\) and \(TS\) has a unique fixed point \(w \in Y\). Further, \(Tz = w\), and \(Sw = z\).

Karim Chaira, El-Miloudi Marhrani [29] proved the following theorem.

Theorem 1.9. Let \((X, d)\) and \((Y, \delta)\) be two metric spaces; we assume that \((X, d)\) is complete. Let \(T : X \to Y\) and \(S : Y \to X\) be two mappings such that

\[
\begin{align*}
d(Sy, STx) &\leq \alpha(\delta(y, Tx)) \max\{d(x, Sy), \delta(y, Tx)\} + \beta(\delta(y, Tx))d(x, STx) \\
\delta(Tx, TSy) &\leq \alpha(\delta(x, Sy)) \max\{d(x, Sy), \delta(y, Tx)\} + \beta(\delta(x, Sy))\delta(y, TSy)
\end{align*}
\]

where \(\alpha, \beta : [0, \infty[\) are two functions satisfying:

\[
\lim_{t \to t_0^+} \sup \{\alpha(t) + \beta(t)\} < 1, t_0 \in [0, \infty[
\]

Then there exists a unique pair \((x^*, y^*) \in X \times Y\) such that \(Tx^* = y^*\) and \(Sy^* = x^*\) then \(STx^* = x^*\) and \(TSy^* = y^*\).

Ismat Beg and Sunny Chauhan [30] proved the following theorem as the first related fixed point theorem in Menger space. They used set valued mappings.

Theorem 1.10. Let \((X, F, \triangle)\), \((Y, G, \triangle)\) and \((Z, H, \triangle)\) be three complete Menger spaces, where \(\triangle\) is a continuous \(t\)-norm. If \(P\) is a continuous mapping of \(X\) into \(CB(Y)\), \(Q\) is a continuous mapping of \(Y\) into \(CB(Z)\), and \(R\) is a mapping of \(Z\) into \(CB(X)\) satisfying the inequalities

\[
\delta F_{RQP_{x}}(kt) \geq \min \left\{ F_{x,x'}(t), \delta F_{x, RQP_{x}}(t), \delta F_{x', RQP_{x'}}(t) \right\}
\]

where \(\delta F_{RQP_{x}}(kt) \geq \min \left\{ F_{x,x'}(t), \delta F_{x, RQP_{x}}(t), \delta F_{x', RQP_{x'}}(t) \right\}\).
Y. Rohen, P.P. Murthy

\[\delta_{G_{P_{x,P_{x}'}(t),H_{Q_{P_{x},Q_{P_{x}'}(t)}}}} \geq \min \{ \delta_{G_{y,y'}(t),H_{Q_{y,Q_{y}'}(t)}} \}, \]

for all \(x, x' \in X, y, y' \in Y \) and \(z, z' \in Z, k \in (0,1) \) and \(t > 0 \). Then \(RQP \) has a unique fixed point \(u \) in \(X \), \(PRQ \) has a unique fixed point \(v \) in \(Y \) and \(QPR \) has a unique fixed point \(w \) in \(Z \).

Sunny Chauhan, Ismat Beg and B. D. Pant \[31\] proved a related fixed point theorem in two menger spaces by using two pairs of single valued mappings. Out of the four mappings they consider one to be continuous. R. C. Dimri and M. Sharma \[32\] generalized theorem 1.10 to three pairs of set valued mappings. D. Turkoglu and B. Fisher \[33\] proved the first related fixed point theorem in uniform space by extending theorem 1.2.

Theorem 1.11. Let \((X, U_1)\) and \((Y, U_2)\) be complete Hausdorff uniform spaces defined by \(\{d_i^1, i \in I\} = P_1^* \), \(\{d_i^2, i \in I\} = P_2^* \) and \((2^X, U_1^*), (2^Y, U_2^*)\) hyperspaces, let \(F\) is a mapping of \(X\) into \(2^Y\) and \(G\) is a mapping of \(Y\) into \(2^X\) satisfying the inequalities

\[\delta_1^1(GFx, GFx') \leq c_i \max \{d_i^1(x, x'), d_i^1(x, GFx), \delta_1^1(x', GFx'), \delta_2^1(Fx, Fx')\} \]

\[\delta_2^2(FGy, FGy') \leq c_i \max \{d_i^2(y, y'), d_i^2(y, FGy), \delta_2^2(y', FGy'), \delta_1^2(Gy, Gy')\}, \]

for all \(x, x' \in X, y, y' \in Y, i \in I \) where \(0 \leq c_i < 1 \). If \(F\) is continuous then \(GF\) has a unique fixed point \(z\) in \(X\). \(FG\) has a unique fixed point \(w\) in \(Y\). Further, \(Fz = \{w\}\), and \(Gw = \{z\}\).

L. Bishwakumar and Y. Rohen \[34\] generalized the result of Murthy and Fisher \[7\] to uniform space. Yumnam Rohen and L. Bishwakumar \[35\] generalized the result of Namdeo, Tiwari, Fisher and Tas \[8\] to uniform space. L. Ibeni and Yumnam Rohen \[36\] extended theorem 1.11 to three mappings in three uniform spaces. Y. Rohen, L. Bishwakumar and B. Fisher \[37\] extended the result of Ranjit and Rohen \[9\] to uniform space.

Valeriu Popa, \[38\] proved the following theorem.
Theorem 1.12. Let \((X, d)\) and \((Y, e)\) be complete metric spaces. If \(T\) is a mapping of \(X\) into \(Y\) and \(S\) is a mapping of \(Y\) into \(X\) satisfying the inequalities
\[
e^2(Tx, TSy) \leq c_1 \max\{d(x, Sy)e(y, Tx), d(x, Sy)e(y, TSy), e(y, Tx), e(y, TSy)\}
\]
\[
d^2(Sy, STx) \leq c_2 \max\{e(y, Tx)d(x, Sy), e(y, TSy)d(x, STx), d(x, Sy), d(x, STx)\}
\]
For all \(x\) in \(X\) and \(y\) in \(Y\), where \(0 \leq c_1, c_2 < 1\), then \(ST\) has a unique fixed point \(z\) in \(X\) and \(TS\) has a unique fixed point \(w\) in \(Y\). Further, \(Tz = w\) and \(Sw = z\).

B. Fisher and K. P. R. Rao [48] proved a related fixed point theorem for three mappings without using the continuity of the mappings. They take three metric spaces of which one is a compact metric space. L. Bishwakumar and Y. Rohen [49] proved another version of the theorem of Fisher and Rao [48] by taking different inequality. Zaheer K. Ansari, Manish Sharma and Arun Garg [50] proved two related fixed point theorems in three complete metric spaces by considering three continuous mappings. Rajesh Shrivastava, Kiran Rathore and K. Qureshi [51] proved a result similar to Fisher and Rao [48].

M. Aamri, A. Bassou, S. Bennani and D. El Moutawakil [52] proved following theorem in symmetric space.

Theorem 1.13. Let \((X, d)\) be a symmetric space and \((Y, \delta)\) be a complete metric space, let \(T\) be a mapping of \(X\) into \(Y\), and let \(S\) be a mapping of \(Y\)
into \(X \) such that
\[
\delta(Tx, TSy) \leq c \max \{d(x, Sy), \delta(y, Tx), \delta(y, TSy)\},
\]
\[
d(Sy, STx) \leq c \max \{\delta(y, Tx), d(x, Sy), d(x, STx)\},
\]
for all \(x \in X \) and \(y \in Y \) where \(0 \leq c < 1 \). Then \(ST \) has a unique fixed point \(z \in X \) and \(TS \) has a unique fixed point \(w \in Y \) such that \(Tz = w \) and \(Sw = z \).

M. Aamri, A. Bassou, S. Bennani and D. El Moutawakil [53] proved the following related fixed point theorem in symmetric spaces.

Theorem 1.14. Let \((X, d)\) and \((Y, \delta)\) be two \(1\)-continuous semi-metric spaces. Let \(A, B \) be mappings of \(X \) into \(Y \), and let \(S, T \) be mappings of \(Y \) into \(X \) satisfying

\[
d(SAx, TBx') \leq c \max \{d(x, x'), d(x, SAx), d(x', TBx'), \delta(Ax, Bx')\}
\]
\[
\delta(BSy, ATy') \leq c \max \{\delta(y, y'), \delta(y, BSy), \delta(y', ATy'), d(Sy, Ty')\}
\]

for all \(x, x' \) in \(X \) and \(y, y' \) in \(Y \), where \(0 \leq c < 1 \).

If either \(X \) is \((\sum)\) \(d\)-complete and \(Y \) satisfies \((W_4)\) or \(Y \) is \((\sum)\) \(d\)-complete and \(X \) satisfies \((W_4)\), and one of the mappings \(A, B, S \) and \(T \) is continuous then \(SA \) and \(TB \) have a unique common fixed point \(z \) in \(X \) and \(BS \) and \(AT \) have a unique common fixed point \(w \) in \(Y \). Further, \(Az = Bz = w \) and \(Sw = Tw = z \).

Note: For condition \((W_4)\) see [53].

Sushil Sharma, Bhavma Deshpande and Deepti Thakur [54] proved the following theorem in Fuzzy metric spaces.

Theorem 1.15. Let \((X, M_1, N_1, *, \diamond)\) and \((Y, M_2, N_2, *, \circ)\) be two complete intuitionistic fuzzy metric spaces. Let \(A, B \) be mappings from \(X \) into \(Y \) and let \(S, T \) be mappings from \(Y \) into \(X \) satisfying the inequalities:

\[
M_1(SAx, TBx', kt) \geq M_1(x, x', t) \ast M_1(x, SAx, t) \\
\ast M_1(x', TBx', t) \ast M_1(SAx, TBx', t)
\]
\[
and \quad N_1(SAx, TBx', kt) \leq N_1(x, x', t) \circ N_1(x, SAx, t) \\
\circ N_1(x', TBx', t) \circ N_1(SAx, TBx', t)
\]
\[
M_2(BSy, ATy', kt) \geq M_2(y, y', t) \ast M_2(y, BSy, t) \\
\ast M_2(y', ATy', t) \ast M_2(BSy, ATy', t)
\]
\[
and \quad N_2(BSy, ATy', kt) \leq N_2(y, y', t) \circ N_2(y, BSy, t)
\]
for all \(x, x'\) in \(X\) and \(y, y'\) in \(Y\). If one of the mappings \(A, B, S, T\) is continuous, then \(SA\) and \(TB\) have a unique common fixed point \(z\) in \(X\) and \(BS\) and \(AT\) have a unique common fixed point \(w\) in \(Y\). Further, \(Az = Bz = w\) and \(Sw = Tw = z\).

2. Main Result

We now prove the following related fixed point theorem which improves Theorem 1.7.

Theorem 2.1. Let \((X, d_1), (Y, d_2)\) and \((Z, d_3)\) be complete metric spaces. Let \(T\) be a mapping from \(X\) into \(B(Y)\), \(S\) be a mapping from \(Y\) into \(B(Z)\) and \(R\) be a mapping from \(Z\) into \(B(X)\) satisfying the inequalities

\[
\delta_1(RST x, RST x') \leq c \max \left\{ \frac{d_1(x, x')}{1 + d_1(x, x')} \{1 + \delta_1(x, RST x)\}, \frac{\delta_1(x', RST x)\{1 + \delta_1(x, RST x')\}}{1 + d_1(x, x')}, \frac{\delta_1(x', RST x')\{1 + \delta_1(x, RST x)\}}{1 + d_1(x, x')} \right\},
\]

\[
\delta_2(T x, T x') \leq c \max \left\{ \frac{d_2(y, y')}{1 + d_2(y, y')} \{1 + \delta_2(y, TRS y)\} \right\},
\]

\[
\delta_3(TRS y, TRS y') \leq c \max \left\{ \frac{d_2(y, y')}{1 + d_2(y, y')} \{1 + \delta_2(y, TRS y)\} \right\},
\]
\[
\delta_2(y', T R Sy) \{1 + \delta_2(y, T R Sy')\} \\
\frac{1 + d_2(y, y')}{1 + d_2(y, y')}, \\
\delta_2(y', T R Sy') \{1 + \delta_2(y, T R Sy)\} \\
\frac{1 + d_2(y, y')}{1 + d_2(y, y')}, \\
\delta_2(S y, S y'), \delta_3(R S y, R S y') \}
\]

(2)

\[
\delta_3(S T R z, S T R z') \leq c \max \left\{ \frac{d_3(z, z') \{1 + \delta_3(z, S T R z)\}}{1 + d_3(z, z')} , \right. \\
\frac{\delta_3(z', S T R z) \{1 + \delta_3(z, S T R z')\}}{1 + d_3(z, z')} , \\
\frac{\delta_3(z', S T R z') \{1 + \delta_3(z, S T R z)\}}{1 + d_3(z, z')} , \\
\delta_1(R z, R z'), \delta_2(T R z, T R z') \}
\]

(3)

for all \(x, x'\) in \(X\), \(y, y'\) in \(Y\) and \(z, z'\) in \(Z\), where \(0 \leq c < 1\), if \(S\) and \(T\) are continuous then \(R S T\) has a unique fixed point \(u\) in \(X\), \(T R S\) has a unique fixed point \(v\) in \(Y\) and \(S T R\) has a unique fixed point \(w\) in \(Z\).

Proof. Let \(x = x_0\) be an arbitrary point in \(X\). Define sequences \(\{x_n\}\) in \(X\), \(\{y_n\}\) in \(Y\) and \(\{z_n\}\) in \(Z\) inductively by \(x_n = R z_n, y_n = T x_{n-1}, z_n = S y_n\) for \(n = 1, 2, \ldots\).

Applying inequality (2.2), we have

\[
d_2(y_n, y_{n+1}) = \delta_2(T R Sy_{n-1}, T R Sy_n) \\
\leq c \max \left\{ \frac{d_2(y_{n-1}, y_n) \{1 + \delta_2(y_{n-1}, T R Sy_{n-1})\}}{1 + d_2(y_{n-1}, y_n)} , \right. \\
\frac{\delta_2(y_n, T R Sy_{n-1}) \{1 + \delta_2(y_{n-1}, T R Sy_n)\}}{1 + d_2(y_{n-1}, y_n)} , \\
\frac{\delta_2(y_n, T R Sy_n) \{1 + \delta_2(y_{n-1}, T R Sy_{n-1})\}}{1 + d_2(y_{n-1}, y_n)} , \\
\frac{\delta_3(S y_{n-1}, S y_n), \delta_1(R S y_{n-1}, R S y_n)}{1 + d_2(y_{n-1}, y_n)} \} \\
\leq c \max \left\{ d_1(x_{n-1}, x_n), d_2(y_{n-1}, y_n), d_3(z_{n-1}, z_n) \right\}
\]

(4)
Using inequality (2.3), we have
\[
d_3(z_n, z_{n+1}) = \delta_3(STRz_{n-1}, STRz_n)
\]
\[
\leq c \max \left\{ \frac{d_3(z_{n-1}, z_n)\{1 + \delta_3(z_{n-1}, STRz_{n-1})\}}{1 + d_3(z_{n-1}, z_n)}, \frac{\delta_3(z_n, STRz_{n-1})\{1 + \delta_3(z_{n-1}, STRz_n)\}}{1 + d_3(z_{n-1}, z_n)}, \frac{\delta_3(z_n, STRz_n)\{1 + \delta_3(z_{n-1}, STRz_{n-1})\}}{1 + d_3(z_{n-1}, z_n)}, \delta_1(Rz_{n-1}, Rz_n), \delta_2(TS z_{n-1}, TRz_n) \right\}
\]
\[
\leq c \max \left\{ d_1(x_{n-1}, x_n), d_2(y_{n-1}, y_n), d_3(z_{n-1}, z_n) \right\}
\]
(5)
on using inequality (2.4).

Using inequality (2.1), we have
\[
d_1(x_n, x_{n+1}) = \delta_1(RST x_{n-1}, RST x_n)
\]
\[
\leq c \max \left\{ \frac{d_1(x_{n-1}, x_n)\{1 + \delta_1(x_{n-1}, RST x_{n-1})\}}{1 + d_1(x_{n-1}, x_n)}, \frac{\delta_1(x_n, RST x_{n-1})\{1 + \delta_1(x_{n-1}, RST x_n)\}}{1 + d_1(x_{n-1}, x_n)}, \frac{\delta_1(x_n, RST x_n)\{1 + \delta_1(x_{n-1}, RST x_{n-1})\}}{1 + d_1(x_{n-1}, x_n)}, \delta_2(T x_{n-1}, T x_n), \delta_3(ST x_{n-1}, ST x_n) \right\}
\]
\[
\leq c \max \left\{ d_1(x_{n-1}, x_n), d_2(y_{n-1}, y_n), d_3(z_{n-1}, z_n) \right\}
\]
(6)
on using inequalities (2.4) and (2.5).

It follows easily by induction on using inequalities (2.4), (2.5) and (2.6) that
\[
d_1(x_n, x_{n+1}) \leq c \max \{d_1(x_1, x_2), d_2(y_1, y_2), d_3(z_1, z_2)\}
\]
\[
d_2(y_n, y_{n+1}) \leq c \max \{d_1(x_1, x_2), d_2(y_1, y_2), d_3(z_1, z_2)\}
\]
\[
d_3(z_n, z_{n+1}) \leq c \max \{d_1(x_1, x_2), d_2(y_1, y_2), d_3(z_1, z_2)\}
\]
\[
d_1(x_1, x_2) = \delta_1(RST x_0, RST x_1)
\]
\[
\leq c \max \{d_1(x_0, x_1), d_2(y_0, y_1), d_3(z_0, z_1)\}
\[d_1(x_1, x_2) \leq cd_1(x_0, x_1) \]
\[d_1(x_1, x_2) \leq c^2d_1(x_0, x_1) \]
and so on

\[d_1(x_n, x_{n+1}) \leq c^n d_1(x_0, x_1) \to 0 \text{ as } 0 < c < 1 \text{ and } n \to \infty \]
\[d_1(x_n, x_{n+p}) \leq c^{n+p-1} d_1(x_0, x_1) \]

Hence \(\{x_n\} \) is a Cauchy sequence.

Since \(0 \leq c < 1 \), it follows that \(\{x_n\}, \{y_n\} \) and \(\{z_n\} \) are Cauchy sequences with limits \(u, v \) and \(w \) in \(X, Y \) and \(Z \) respectively. Since \(T \) and \(S \) are continuous, we have

\[
\lim_{n \to \infty} y_{n+1} = \lim_{n \to \infty} Tx_n = Tu = v, \\
\lim_{n \to \infty} z_{n} = \lim_{n \to \infty} Sy_n = Sv = w.
\]

Using inequality (2.1) again, we have

\[
\delta_1(RSTu, x_n) = \delta_1(RSTu, RSTx_{n-1}) \\
\leq c \max \left\{ \frac{d_1(u, x_{n-1})\{1 + \delta_1(u, RSTu)\}}{1 + d_1(u, x_{n-1})}, \frac{\delta_1(x_{n-1}, RSTu)\{1 + \delta_1(u, RSTx_{n-1})\}}{1 + d_1(u, x_{n-1})}, \frac{\delta_1(x_{n-1}, RSTx_{n-1})\{1 + \delta_1(u, RSTu)\}}{1 + d_1(u, x_{n-1})} \right\},
\]

\[
\delta_2(Tu, Tx_{n-1}), \delta_3(STu, STx_{n-1}) \}
\leq c \max \left\{ \frac{d_1(u, x_{n-1})\{1 + \delta_1(u, RSTu)\}}{1 + d_1(u, x_{n-1})}, \frac{\delta_1(x_{n-1}, RSTu)\{1 + d_1(u, x_n)\}}{1 + d_1(u, x_{n-1})}, \frac{d_1(x_{n-1}, x_n)\{1 + \delta_1(u, RSTu)\}}{1 + d_1(u, x_{n-1})} \right\},
\]

\[
\delta_2(Tu, Tx_{n-1}), \delta_3(STu, STx_{n-1}) \}
\]

Since \(S \) and \(T \) are continuous, it follows on letting \(n \to \infty \) that

\[
\delta_1(RSTu, u) \leq c\delta_1(RSTu, u).
\]
Thus $RSTu = u$, since $c < 1$ and so u is a fixed point of RST. We therefore have $TRSv = TRSTu = Tu = v$ and so $STRw = STRSv = Sv = w$. Hence v and w are fixed points of TRS and STR respectively.

We now prove the uniqueness of the fixed point u. Suppose that RST has a second fixed point u'. Then using inequality (1), we have

$$d_1(u, u') = \delta_1(RSTu, RSTu')$$

$$\leq c \max \left\{ \frac{d_1(u, u')\{1 + \delta_1(u, RSTu)\}}{1 + d_1(u, u')}, \right.$$

$$\frac{\delta_1(u', RSTu)\{1 + \delta_1(u, RSTu')\}}{1 + d_1(u, u')},$$

$$\frac{\delta_1(u', RSTu')\{1 + \delta_1(u, RSTu)\}}{1 + d_1(u, u')},$$

$$\left. \delta_2(Tu, Tu'), \delta_3(STu, STu') \right\}$$

$$\leq c \max \left\{ \frac{d_1(u, u')\{1 + d_1(u, u)\}}{1 + d_1(u, u')}, \right.$$

$$\frac{d_1(u', u)\{1 + d_1(u, u')\}}{1 + d_1(u, u')},$$

$$\frac{d_1(u', u')\{1 + d_1(u, u)\}}{1 + d_1(u, u')},$$

$$\left. \delta_2(Tu, Tu'), \delta_3(STu, STu') \right\}$$

$$= c \max \{\delta_2(Tu, Tu'), \delta_3(STu, STu')\}$$

Further, using inequality (2.2), we have

$$\delta_2(Tu, Tu') = \delta_2(TRSTu, TRSTu')$$

$$\leq c \max \left\{ \frac{\delta_2(Tu, Tu')\{1 + \delta_2(Tu, TRSTu)\}}{1 + \delta_2(Tu, Tu')}, \right.$$

$$\frac{\delta_2(Tu', TRSTu)\{1 + \delta_2(Tu, TRSTu')\}}{1 + \delta_2(Tu, Tu')},$$

$$\frac{\delta_2(Tu', TRSTu')\{1 + \delta_2(Tu, TRSTu)\}}{1 + \delta_2(Tu, Tu')}.$$
\[
\delta_1(RST u, RST u'), \delta_3(ST u, ST u') \right)
\leq c \max \left\{ \frac{\delta_2(Tu, Tu') \{1 + \delta_2(Tu, Tu)\}}{1 + \delta_2(Tu, Tu')}, \frac{\delta_2(Tu', Tu) \{1 + \delta_2(Tu, Tu)\}}{1 + \delta_2(Tu, Tu')}, \frac{\delta_2(Tu', Tu') \{1 + \delta_2(Tu, Tu)\}}{1 + \delta_2(Tu, Tu')} \right\}, \\
\delta_1(u, u'), \delta_3(ST u, ST u') \right)
\right)
= c \max \{d_1(u, u'), \delta_3(ST u, ST u')\}
\]

Hence we have
\[
d_1(u, u') \leq c \delta_3(ST u, ST u')
\]

Finally on using inequality (2.3), we have
\[
d_1(u, u') = c \delta_3(ST u, ST u') \\
\leq c \delta_3(STRST u, STRST u') \\
\leq c^2 \max \left\{ \frac{\delta_3(ST u, ST u') \{1 + \delta_3(ST u, STRST u)\}}{1 + \delta_3(ST u, ST u')}, \frac{\delta_3(ST u, STRST u) \{1 + \delta_3(ST u, STRST u)\}}{1 + \delta_3(ST u, ST u')}, \frac{\delta_3(ST u', STRST u') \{1 + \delta_3(ST u, STRST u)\}}{1 + \delta_3(ST u, ST u')} \right\}, \\
\delta_1(RST u, RST u'), \delta_2(TRST u, TRST u') \right)
\right)
\right)
= c^2 d_1(u, u')
\]

Since \(c < 1 \), it follows that \(u = u' \) and the uniqueness of \(u \) follows.

Similarly, it can be proved that \(v \) is the unique fixed point of \(TRS \) and \(w \) is the unique fixed point of \(STR \). We finally prove that \(Rw = u \). To do this, note that \(Rw = R(STRw) = RST(Rw) \) and so \(Rw \) is a fixed point of \(RST \). Since \(u \) is the unique fixed point of \(RST \), it follows that \(Rw = u \). This completes the proof of the theorem.
Next we prove the following analogous result for compact metric spaces.

Theorem 2.2. Let \((X, d_1), (Y, d_2)\) and \((Z, d_3)\) be compact metric spaces. If \(T\) is continuous mapping of \(X\) into \(B(Y)\), \(S\) is a continuous mapping of \(Y\) into \(B(Z)\) and \(R\) is a continuous mapping of \(Z\) into \(B(X)\) satisfying the inequalities

\[
\delta_1(RST x, RST x') < c \max \left\{ \frac{d_1(x, x')\{1 + \delta_1(x, RST x)\}}{1 + d_1(x, x')}, \frac{\delta_1(x', RST x)\{1 + \delta(x, RST x')\}}{1 + d_1(x, x')}, \frac{\delta_1(x', RST x')\{1 + \delta_1(x, RST x)\}}{1 + d_1(x, x')} \right\}
\]

(7)

\[
\delta_3(TRSy, TRSy') < c \max \left\{ \frac{\delta_2(y, y')\{1 + \delta_2(y, TRSy)\}}{1 + d_2(y, y')}, \frac{\delta_2(y', TRSy)\{1 + \delta_2(y, TRSy')\}}{1 + d_2(y, y')}, \frac{\delta_2(y', TRSy')\{1 + \delta_2(y, TRSy)\}}{1 + d_2(y, y')} \right\}
\]

(8)

\[
\delta_3(STRz, STRz') < c \max \left\{ \frac{d_3(z, z')\{1 + \delta_3(z, STRz)\}}{1 + d_3(z, z')}, \frac{\delta_3(z', STRz)\{1 + \delta_3(z, STRz')\}}{1 + d_3(z, z')}, \frac{\delta_3(z', STRz')\{1 + \delta_3(z, STRz)\}}{1 + d_3(z, z')} \right\}
\]

(9)
for all \(x, x' \) in \(X \), \(y, y' \) in \(Y \) and \(z, z' \) in \(Z \), where \(0 \leq c < 1 \), then \(RST \) has a unique fixed point \(u \) in \(X \). \(TRS \) has a unique fixed point \(v \) in \(Y \) and \(STR \) has a unique fixed point \(w \) in \(Z \). Further, \(Tu = v, Sv = w \) and \(Rw = u \).

Proof. Let us denote the right-hand side of inequalities (2.7), (2.8) and (2.9) by \(h(x, x') \), \(k(y, y') \) and \(p(z, z') \) respectively.

Suppose first of all that there exist \(u, u' \) in \(X \) such that \(h(u, u') = 0 \). Then it follows immediately that \(u = u' \) and \(RSTu = u \). Then on putting \(Tu = v, Sv = w \), we have \(RSv = u \Rightarrow TRSv = Tu = v, STRSv = STRw = Sv = w \Rightarrow RSt = Rw = u \). The result of the theorem therefore holds in this case.

Similarly, if there exist \(v, v' \) in \(Y \) such that \(k(v, v') = 0 \) or if there exist \(w, w' \) in \(Z \) such that \(p(w, w') = 0 \), then the results of the theorem also hold.

Now suppose that \(h(x, x') \neq 0 \) for all \(x, x' \) in \(X \), \(k(y, y') \neq 0 \) for all \(y, y' \) in \(Y \) and \(p(z, z') \neq 0 \) for all \(z, z' \) in \(Z \). Define the function \(f \) on \(X^2 \) by

\[
f(x, x') = \frac{\delta_1(RSTx, RSTx')}{h(x, x')}
\]

Then \(f \) is continuous and since \(X \times X \) is compact, \(f \) attains its maximum value \(c_1 \). Because of inequality (2.7), \(c_1 < 1 \) and so

\[
\delta_1(RSTx, RSTx') \leq c_1 h(x, x')
\]

for all \(x, x' \) in \(X \).

Similarly, there exist \(c_2, c_3 < 1 \) such that

\[
\delta_2(TRSy, TRSy') \leq c_2 h(y, y')
\]

for all \(y, y' \) in \(Y \) and

\[
\delta_3(STRz, STRz') \leq c_3 p(z, z')
\]

for all \(z, z' \) in \(Z \). It follows that the conditions of Theorem 2.2 are satisfied with \(c = \max\{c_1, c_2, c_3\} \) and so the results of the theorem are again satisfied. The uniqueness of \(u, v \) and \(w \) follows easily.

References

[27] Vishal Gupta, Related fixed point theorems for four complete metric spaces, Acta. Univ. Sapientiae Mathematica, 5(2), 2013, 147-156.

[38] Valeriu Popa, Fixed points on two complete metric spaces, Review of Research, Faculty of Science, Math. Series, Univ. of Novi. Sad \textbf{21(1)} (1991), 83-93.
SOME REMARKS ON RELATED FIXED POINT THEOREMS 277

[45] Luljeta Gjoni and Kristaq Kakina, A related fixed point theorems for four mappings on four complete metric spaces, AKTET Journal of Institute ALB-Shkenca 3(IV), 2011, 535-542.

