FIXED POINTS FOR COMPATIBLE MAPPINGS IN MULTIPLICATIVE METRIC SPACES

Parveen Kumar¹, Sanjay Kumar², Shin Min Kang³ §, Chahn Yong Jung⁴

¹,²Department of Mathematics
Deenbandhu Chhotu Ram University of Science and Technology
Murthal, Sonepat 131039, Haryana, INDIA
³Department of Mathematics and RINS
Gyeongsang National University
Jinju, 52828, KOREA
⁴Department of Business Administration
Gyeongsang National University
Jinju 52828, KOREA

Abstract: In this paper, we proved the common fixed point result for compatible mappings in multiplicative metric spaces.

AMS Subject Classification: 47H10, 54H25
Key Words: multiplicative metric spaces, compatible mappings

1. Introduction and Preliminaries

It is well known that the set of positive real numbers \mathbb{R}_+ is not complete according to the usual metric. To overcome this problem, in 2008, Bashirov et al. [1] introduced the concept of multiplicative metric spaces as follows:
Definition 1.1. Let X be a nonempty set. A multiplicative metric is a mapping $d : X \times X \to \mathbb{R}_+$ satisfying the following conditions:

(i) $d(x, y) \geq 1$ for all $x, y \in X$ and $d(x, y) = 1$ if and only if $x = y$;
(ii) $d(x, y) = d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leq d(x, z) \cdot d(z, y)$ for all $x, y, z \in X$ (multiplicative triangle inequality).

Then the mapping d together with X, that is, (X, d) is a multiplicative metric space.

Example 1.2. ([3]) Let \mathbb{R}^n_+ be the collection of all n-tuples of positive real numbers. Let $d^* : \mathbb{R}^n_+ \times \mathbb{R}^n_+ \to \mathbb{R}$ be defined as follows:

$$d^*(x, y) = \left| \frac{x_1}{y_1} \right|^* \left| \frac{x_2}{y_2} \right|^* \cdots \left| \frac{x_n}{y_n} \right|^*,$$

where $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n_+$ and $| \cdot |^* : \mathbb{R}_+ \to \mathbb{R}_+$ is defined by

$$|a|^* = \begin{cases} a & \text{if } a \geq 1, \\ \frac{1}{a} & \text{if } a < 1. \end{cases}$$

Then it is obvious that all conditions of a multiplicative metric are satisfied. Therefore (\mathbb{R}^n_+, d^*) is a multiplicative metric space.

One can refer to [3] for detailed a multiplicative metric topology.

Definition 1.3. Let (X, d) be a multiplicative metric space. Then a sequence $\{x_n\}$ in X said to be

(1) a multiplicative convergent to x if for every multiplicative open ball $B_\epsilon(x) = \{y \mid d(x, y) < \epsilon\}, \epsilon > 1$, there exists $N \in \mathbb{N}$ such that $x_n \in B_\epsilon(x)$ for all $n \geq N$, that is, $d(x_n, x) \to 1$ as $n \to \infty$.

(2) a multiplicative Cauchy sequence if for all $\epsilon > 1$, there exists $N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ for all $m, n \geq N$, that is, $d(x_n, x_m) \to 1$ as $n, m \to \infty$.

(3) We call a multiplicative metric space complete if every multiplicative Cauchy sequence convergent to $x \in X$.

In 2012, Özavsar and Çevikel [3] gave the concept of multiplicative contractive mappings and proved some fixed point theorem of such mappings in a multiplicative metric space.

Definition 1.4. Let f be a mapping of a multiplicative metric space (X, d) into itself. Then f is said to be a multiplicative contraction if there exists a real number $\lambda \in [0, 1)$ such that

$$d(fx, fy) \leq \lambda d(x, y) \quad \text{for all } x, y \in X.$$
In 2015, Kang et al. [2] introduced the notion of compatible mappings as follows:

Definition 1.5. Let f and g be mappings of a multiplicative metric space (X, d) Then f and g are called **compatible** if

$$\lim_{n \to \infty} d(fgx_n, gfx_n) = 1,$$

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some $t \in X$.

Now we give some properties related to compatible mappings and its variants in a multiplicative metric space, see [2].

Proposition 1.6. Let f and g be compatible mappings of a multiplicative metric space (X, d) into itself. If $ft = gt$ for some $t \in X$, then $fgt = fgt = ft = gt$.

Proposition 1.7. Let f and g be compatible mappings of a multiplicative metric space (X, d) itself. Suppose that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some $t \in X$. Then

(i) $\lim_{n \to \infty} gfx_n = ft$ if f is continuous at t.

(ii) $\lim_{n \to \infty} gfx_n = gt$ if g is continuous at t.

(iii) $fgt = gft$ and $ft = gt$ if f and g are continuous at t.

2. Main Results

Now we give the following theorem for compatible mappings.

Theorem 2.1. Let A, B, S and T be mappings of a complete multiplicative metric space (X, d) satisfying the following conditions

(C1) $SX \subset BX, \quad TX \subset AX$;

(C2) $d(Sx, Ty) \leq M^\lambda(x, y)$
for each $x, y \in X$ and $\lambda \in (0, 1/2)$, where

$$M(x, y) = \max \left\{ d(Ax, Sx), d(By, Ty), d(By, Ax), (d(Ax, Ty) \cdot d(By, Sx))^1/2, \frac{d(Ax, Sx) \cdot d(By, Ty)}{d(Ax, By)} \cdot \frac{d(Ax, Ty) \cdot d(By, Sx)}{d(Ax, By)}, \frac{d(Ax, Ty) \cdot d(By, Sx)}{d(Sx, Ty)} \right\}.$$

(C3) one of A, B, S and T is continuous.

Assume that the pairs A, S and B, T are compatible. Then A, B, S and T have a unique common fixed point.

Proof. Let $x_0 \in X$ be an arbitrary point. Since $SX \subseteq BX$ and $TX \subseteq AX$, there exists $x_1 \in X$ such that $Sx_0 = Bx_1 = y_0$ and for this point x_1, there exists $x_2 \in X$ such that $Tx_1 = Ax_2 = y_1$. Continuing in this way, we can construct a sequence $\{y_n\}$ such that

$$y_{2n+1} = Tx_{2n+1} = Ax_{2n+2}; \quad y_{2n} = Sx_{2n} = Bx_{2n+1}.$$

From (C2) by putting $x = x_{2n}$ and $y = x_{2n+1}$, we have

$$d(y_{2n}, y_{2n+1}) = d(Sx_{2n}, Tx_{2n+1}) \leq M^\lambda(x_{2n}, x_{2n+1}),$$

where

$$M(x_{2n}, x_{2n+1}) = \max \left\{ d(Ax_{2n}, Sx_{2n}), d(Bx_{2n+1}, Tx_{2n+1}), d(Bx_{2n+1}, Ax_{2n}), (d(Ax_{2n}, Tx_{2n+1}) \cdot d(Bx_{2n+1}, Sx_{2n}))^{1/2}, \frac{d(Ax_{2n}, Sx_{2n}) \cdot d(Bx_{2n+1}, Tx_{2n+1})}{d(Ax_{2n}, Bx_{2n+1})}, \frac{d(Ax_{2n}, Tx_{2n+1}) \cdot d(Bx_{2n+1}, Sx_{2n})}{d(Ax_{2n}, Bx_{2n+1})}, \frac{d(Ax_{2n}, Tx_{2n+1}) \cdot d(Bx_{2n+1}, Sx_{2n})}{d(Sx_{2n}, Tx_{2n+1})} \right\}$$

$$= \max \left\{ d(y_{2n}, y_{2n-1}), d(y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n-1}), (d(y_{2n}, y_{2n-1}) \cdot d(y_{2n+1}, y_{2n-1}))^{1/2}, \frac{d(y_{2n}, y_{2n-1}) \cdot d(y_{2n}, y_{2n+1})}{d(y_{2n}, y_{2n-1})} \right\},$$
Thus to some point z follows from Proposition 1.7 that
\[
\frac{d(y_{2n}, y_{2n}) \cdot d(y_{2n+1}, y_{2n-1})}{d(y_{2n}, y_{2n-1})}, \frac{d(y_{2n+1}, y_{2n-1})}{d(y_{2n+1}, y_{2n})}
\]
\[
= \max\{d(y_{2n}, y_{2n-1}), d(y_{2n+1}, y_{2n})\}.
\]

Now if $d(y_{2n+1}, y_{2n}) > d(y_{2n-1}, y_{2n})$, then $M(x_{2n}, x_{2n+1}) = d(y_{2n+1}, y_{2n})$. Then we have,
\[
d(y_{2n}, y_{2n+1}) \leq d^\lambda(y_{2n}, y_{2n+1}),
\]
which is a contradiction as $\lambda \in (0, 1/2)$. So, $d(y_{2n}, y_{2n-1}) \geq d(y_{2n+1}, y_{2n})$, which implies that $M(x_{2n}, x_{2n+1}) = d(y_{2n-1}, y_{2n})$ and hence
\[
d(y_{2n}, y_{2n+1}) \leq d^\lambda(y_{2n-1}, y_{2n}).
\]

Similarly, we have
\[
d(y_{2n-1}, y_{2n}) \leq d^\lambda(y_{2n-2}, y_{2n-1}).
\]

Hence, in general we get
\[
d(y_n, y_{n+1}) \leq d^\lambda(y_{n-1}, y_n)
\leq d^{2^2}(y_{n-2}, y_{n-1})
\leq \cdots \leq d^{\lambda^n}(y_0, y_1).
\]

Let $m, n \in \mathbb{N}$ with $m > n$. Then
\[
d(y_m, y_n) \leq d(y_m, y_{m-1}) \cdot d(y_{m-1}, y_{m-2}) \cdots d(y_{n+1}, y_n)
\leq d^{\lambda^{m-1}}(y_0, y_1) \cdot d^{\lambda^{m-2}}(y_0, y_1) \cdots d^\lambda(y_0, y_1)
\leq \frac{\lambda^n}{1-\lambda}(y_0, y_1).
\]

Taking $n \to \infty$, we have $d(y_m, y_n) \leq 1$ and hence $\lim_{n \to \infty} d(y_m, y_n) = 1$. Thus $\{y_n\}$ is a multiplicative Cauchy sequence in X and hence it converges to some point $z \in X$. Consequently, the subsequence $\{Ax_{2n}\}$, $\{Bx_{2n+1}\}$, $\{Tx_{2n+1}\}$ and $\{Sx_{2n}\}$ of the sequence $\{y_n\}$ also converges to z.

Now suppose that A is continuous. Since A and S are compatible on X, it follows from Proposition 1.7 that
\[
AAx_{2n} \to Az, \quad SAx_{2n} \to Az \quad \text{as } n \to \infty.
\]

Now putting $x = Ax_{2n}$ and $y = x_{2n+1}$ in (C_2), we have
\[
d(SAx_{2n}, Tx_{2n+1}) \leq M^\lambda(Ax_{2n}, x_{2n+1}),
\]
where
\[M(Ax_{2n}, x_{2n+1}) = \max \left\{ d(AAx_{2n}, SaAx_{2n}), d(Bx_{2n+1}, Tx_{2n+1}), d(Bx_{2n+1}, AAx_{2n}), \right. \]
\[\left. (d(AAx_{2n}, Tx_{2n+1}) \cdot d(Bx_{2n+1}, SaAx_{2n}))^{1/2}, \right\} \]

\[\min \left\{ \frac{d(AAx_{2n}, SaAx_{2n}) \cdot d(Bx_{2n+1}, Tx_{2n+1})}{d(AAx_{2n}, Bx_{2n+1})}, \right. \]
\[\left. \frac{d(AAx_{2n}, Tx_{2n+1}) \cdot d(Bx_{2n+1}, SaAx_{2n})}{d(AAx_{2n}, Bx_{2n+1})}, \right\} \]

\[\frac{d(AAx_{2n}, Tx_{2n+1}) \cdot d(Bx_{2n+1}, SaAx_{2n})}{d(SaAx_{2n}, Tx_{2n+1})} \} \}

Letting \(n \to \infty \), we have
\[\lim_{n \to \infty} M(Ax_{2n}, x_{2n+1}) = \max \left\{ d(Az, Az), d(z, z), d(z, Az), (d(Az, z) \cdot d(z, Az))^{1/2}, \right. \]
\[\left. \min \left\{ \frac{d(Az, Az) \cdot d(z, z)}{d(Az, z)}, d(z, Az), d(Az, z) \right\} \right\} \]
\[= d(z, Az). \]

Hence
\[d(z, Az) \leq d^\lambda(z, Az), \]

which a contradiction, we get \(z = Az \).

Next putting \(x = z \) and \(y = x_{2n+1} \) in (\(C_2 \)), we have
\[d(Sz, Tx_{2n+1}) \leq M^\lambda(z, x_{2n+1}), \]

where
\[M(z, x_{2n+1}) = \max \left\{ d(Az, Sz), d(Bx_{2n+1}, Tx_{2n+1}), d(Bx_{2n+1}, Az), \right. \]
\[\left. (d(Az, Tx_{2n+1}) \cdot d(Bx_{2n+1}, Sz))^{1/2}, \right\} \]
\[\min \left\{ \frac{d(Az, Sz) \cdot d(Bx_{2n+1}, Tx_{2n+1})}{d(Az, Bx_{2n+1})}, \right. \]
\[\left. \frac{d(Az, Tx_{2n+1}) \cdot d(Bx_{2n+1}, Sz)}{d(Az, Bx_{2n+1})}, \right\} \]
Letting \(n \to \infty \), we have

\[
\lim_{n \to \infty} M(z, x_{2n+1}) = \max\{d(z, Sz), d(z, z), d(z, z) \cdot d(z, Sz)\}^{1/2},
\]

\[
\min\{d(z, Sz), d(z, Sz), d(z, z)\}
\]

\[= d(Sz, z). \]

Then we have

\[d(Sz, z) \leq d^{\lambda}(Sz, z),\]

which a contradiction, we get \(Sz = z \). Since \(SX \subset BX \), there exists a point \(u \in X \) such that \(z = Sz = Bu \).

Again putting \(x = z \) and \(y = u \) in \((C_2)\), we have

\[d(z, Tu) = d(Sz, Tu) \leq M^\lambda(z, u),\]

where

\[
M(z, u) = \max \left\{d(Az, Sz), d(Bu, Tu), d(Bu, Az), (d(Az, Tu) \cdot d(Bu, Sz))^{1/2}, \min \left\{ \frac{d(Az, Sz) \cdot d(Bu, Tu)}{d(Az, Bu)}, \frac{d(Az, Tu)}{d(Az, Bu)}, \frac{d(Bu, Sz)}{d(Sz, Tu)} \right\} \right\}
\]

\[= \max\{1, d(z, Tu), 1, d^{1/2}(z, Tu), 1\}
\]

\[= d(z, Tu). \]

Then

\[d(z, Tu) \leq d^{\lambda}(z, Tu),\]

which a contradiction. This implies that \(z = Tu \). Since \(B \) and \(T \) are compatible on \(X \) and \(Bu = Tu = z \), by Proposition 1.6, \(BTu = TBu \) and hence \(Bz = BTu = TBu = Tz \).

Also, we have

\[d(z, Bz) = d(Sz, Tz) \leq M^\lambda(z, z),\]
where

\[M(z, z) = \max \left\{ d(Az, Sz), d(Bz, Tz), d(Bz, Az), \right. \]
\[\left. (d(Az, Tz) \cdot d(Bz, Sz))^{1/2}, \min \left\{ \frac{d(Az, Sz) \cdot d(Bz, Tz)}{d(Az, Bz)}, \frac{d(Az, Tz) \cdot d(Bz, Sz)}{d(Sz, Tz)} \right\} \right\} \]
\[= \max \left\{ 1, 1, d(Bz, z), d(Bz, z), \min \left\{ \frac{1}{d(z, Bz)}, d(Bz, z), d(Bz, z) \right\} \right\} \]
\[= d(Bz, z). \]

This implies that \(z = Bz \). Hence, \(z = Bz = Tz = Az = Sz \). Therefore, \(z \) is a common fixed point of \(A, B, S \) and \(T \).

Similarly, we can also complete the proof when \(B \) is continuous.

Next suppose that \(S \) is continuous. Since \(A \) and \(S \) are compatible on \(X \), it follows that

\[S^2 x_{2n} \to Sz, \quad AS x_{2n} \to Sz \quad \text{as} \quad n \to \infty. \]

Now putting \(x = Sx_{2n} \) and \(y = x_{2n+1} \) in \((C_2) \)

\[d(SS x_{2n}, Tx_{2n+1}) \leq M^\lambda(Sx_{2n}, x_{2n+1}), \]

where

\[M(Sx_{2n}, x_{2n+1}) \]
\[= \max \left\{ d(AS x_{2n}, SS x_{2n}), d(Bx_{2n+1}, Tx_{2n+1}), d(Bx_{2n+1}, AS x_{2n}), \right. \]
\[\left. (d(AS x_{2n}, Tx_{2n+1}) \cdot d(Bx_{2n+1}, SS x_{2n}))^{1/2}, \min \left\{ \frac{d(AS x_{2n}, SS x_{2n}) \cdot d(Bx_{2n+1}, Tx_{2n+1})}{d(AS x_{2n}, Bx_{2n+1})}, \frac{d(AS x_{2n}, Tx_{2n+1}) \cdot d(Bx_{2n+1}, SS x_{2n})}{d(AS x_{2n}, Bx_{2n+1})}, \frac{d(AS x_{2n}, Tx_{2n+1}) \cdot d(Bx_{2n+1}, SS x_{2n})}{d(SS x_{2n}, Tx_{2n+1})} \right\} \right\}. \]
Letting $n \to \infty$, we get
\[
\lim_{n \to \infty} M(Sx_{2n}, x_{2n+1}) = \max\left\{ d(Sz, Sz), d(z, z), d(z, Sz), d(z, Sz), \right. \\
\left. \min\left\{ \frac{1}{d(z, Sz)}, d(z, Sz), d(z, Sz) \right\} \right\} \\
= d(z, Sz).
\]
This implies that $Sz = z$. Since $SX \subset BX$, there exists a point $v \in X$ such that $z = Sz = Bv$.

Now putting $x = Sx_{2n}$ and $y = v$ in (C_2)
\[
d(SSx_{2n}, T v) \leq M^\lambda(Sx_{2n}, v),
\]
where
\[
M(Sx_{2n}, v) \\
= \max\left\{ d(ASx_{2n}, SSx_{2n}), d(Bv, T v), d(Bv, ASx_{2n}), \right. \\
\left. d(ASx_{2n}, T v) \cdot d(Bv, SSx_{2n}) \right\}, \\
\frac{d(ASx_{2n}, T v) \cdot d(Bv, SSx_{2n})}{d(ASx_{2n}, Bv)}, \min\left\{ \frac{d(ASx_{2n}, SSx_{2n}) \cdot d(Bv, T v)}{d(ASx_{2n}, Bv)}, \right. \\
\left. \frac{d(ASx_{2n}, T v) \cdot d(Bv, SSx_{2n})}{d(SSx_{2n}, T v)} \right\} \right\}.
\]
Letting $n \to \infty$, we get
\[
\lim_{n \to \infty} M(Sx_{2n}, v) \\
= \max\{1, d(z, T v), 1, d^{1/2}(z, T v), \min\{d(z, T v), d(z, T v), 1\}\} \\
= d(z, T v).
\]
This implies that $u = T v$. Since B and T are compatible on X and $Bv = T v = z$, $BT v = TB v$ and hence $Bz = BT v = TB v = T z$.

Now putting $x = x_{2n}$ and $y = z$ in (C_2)
\[
d(Sx_{2n}, T z) \leq M^\lambda(x_{2n}, z),
\]
where
\[M(x_{2n}, z) \]
\[= \max \left\{ d(Ax_{2n}, Sx_{2n}), d(Bz, Tz), d(Bu, Ax_{2n}), \right. \]
\[\left. \frac{(d(Ax_{2n}, Tz) \cdot d(Bz, Sx_{2n}))^{1/2}, \min \left\{ \frac{d(Ax_{2n}, Sx_{2n}) \cdot d(Bz, Tz)}{d(Ax_{2n}, Bz)}, \right. \right. \]
\[\left. \frac{d(Ax_{2n}, Tz) \cdot d(Bz, Sx_{2n})}{d(Sx_{2n}, Tz)} \right\} \right\}. \]

Letting \(n \to \infty \), we get
\[\lim_{n \to \infty} M(x_{2n}, z) \]
\[= \max \left\{ 1, 1, d(Tz, z), d(Tz, z), \min \left\{ \frac{1}{d(z, Tz)}, d(Tz, z), d(Tz, z) \right\} \right\} \]
\[= d(Tz, z). \]

This implies that \(Tz = z \). Since \(TX \subset AX \), there exists a point \(w \in X \) such that \(z = Tz = Aw \).

Now putting \(x = w \) and \(y = z \) in \((C_2)\)
\[d(Sw, Tz) \leq M^\lambda(w, z), \]
where
\[M(w, z) \]
\[= \max \left\{ d(Aw, Sw), d(Bz, Tz), d(Bz, Aw), \right. \]
\[\left. \frac{(d(Aw, Tz) \cdot d(Bz, Sw))^{1/2}, \min \left\{ \frac{d(Aw, Sw) \cdot d(Bz, Tz)}{d(Aw, Bz)}, \right. \right. \]
\[\left. \frac{d(Aw, Tz) \cdot d(Bz, Sw)}{d(Sw, Tz)} \right\} \right\} \]
\[= \max \left\{ d(z, Sw), 1, 1, d^{1/2}(z, Sw), \min \left\{ d(z, Sw), d(z, Sw), 1 \right\} \right\} \]
\[= d(z, Sw). \]

This implies that \(Sw = z \). Since \(A \) and \(S \) are compatible on \(X \) and \(Sw = Aw = z \), \(ASw = SAw \) and hence \(Az = ASw = SAw = Sz \). That is, \(z = Az = Sz = Bz = Tz \). Therefore, \(z \) is a common fixed point of \(A, B, S \) and \(T \).

Similarly, we can complete the proof when \(T \) is continuous.
Finally, suppose that z and w are two common fixed points of A, B, S and T.

Now putting $x = z$ and $y = w$ in (C_2)

$$d(z, w) = d(Sz, Tw) \leq M^\lambda(z, w),$$

where

$$M(z, w) = \max \left\{ \frac{d(Az, Sz)}{d(Az, Bw)} \cdot \frac{d(Bw, Sz)}{d(Az, Tw)} \cdot \frac{(d(Az, Tw) \cdot d(Bw, Sz))^{1/2}}{d(Az, Bw)}, \frac{d(Az, Tw) \cdot d(Bw, Sz)}{d(Sz, Tw)} \right\}$$

$$= \max \left\{ 1, 1, d(z, w), d(z, w), \min \left\{ \frac{1}{d(z, w)}, d(z, w), d(z, w) \right\} \right\} = d(z, w),$$

which implies that $z = w$. Therefore, A, B, S and T have a unique common fixed point in X. This completes the proof. \qed

References

