IJPAM: Volume 109, No. 3 (2016)
MODELING OF PROPAGATION OF TRANSVERSE AND
LONGITUDINAL ELECTROMAGNETIC WAVES IN
NANOSTRUCTURES WITH NONLINEAR PROPERTIES
LONGITUDINAL ELECTROMAGNETIC WAVES IN
NANOSTRUCTURES WITH NONLINEAR PROPERTIES
L. Uvarova, Ya. Burenok
Department of Applied Mathematics
Moscow state technological university ``STANKIN''
3a, Vadkovsky per., Moscow, 127055, RUSSIAN FEDERATION
Department of Applied Mathematics
Moscow state technological university ``STANKIN''
3a, Vadkovsky per., Moscow, 127055, RUSSIAN FEDERATION
Abstract. Interaction of an electromagnetic wave with nanostructure of a cylindrical form with nonlinear dependence of dielectric permeability on a field is considered. The mathematical model and algorithm of finding of a longitudinal electromagnetic wave considering influence of a transverse wave and contribution of potential of interaction near a singular point of system is offered. On the basis of the developed algorithm numerical results for a metal nanocluster were received.
Received: August 25, 2016
Revised: September 26, 2016
Published: October 1, 2016
AMS Subject Classification: 82D80
Key Words and Phrases: Schrödinger equation, nonlinear Schrödinger equation, Mie theory, nanostructures, transverse and longitudinal waves
Download paper from here.
Bibliography
- 1
- M. Homber, U. Simon, On the application potential of gold nanoparticles in nanoelectronics and biomedicine, Phil. Trans. R. Soc. A, 368, (2010), 1405-1453.
- 2
- M. Abhilash, Potential applications of Nanoparticles, International Journal of Pharma and Bio Sciences, 1, No.1, (2010), 1-12.
- 3
- J. Liu, Al. Levine, JS. Matton, M. Yamaguchi, RJ. Lee (et al.), Nanoparticles as image enhancing agents for ultrasonography, Physics in Medicine and Biology, 51, (2006), 2179-2189.
- 4
- E. Araujo, N.J. Andrade, LHM. Da Silva, PC. Bernardes, AVNC. Teixeira (et al.), Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces, Journal of Food Production, 74, No.4 (2011), 701-705.
- 5
- U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer series in material science, New York (1995).
- 6
- E. Lorin, S. Chelkowski, A. Bandrauk, A numerical Maxwell-Schrödinger model for intense laser-molecule interaction and propagatio, Computer Physics Communications, 177 (2007), 908-932.
- 7
- E. Lorin, S. Chelkowski, A. Bandrauk, AA Maxwell–Schrödinger Model for Non-perturbative Laser-molecule Interaction and Some Methods of Numerical Computation, Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes, 41 (1987), 908-932.
- 8
- L. A. Uvarova and V, K. Fedyanin, Asymptotic solutions for electromagnatic waves in a nonlinear optical cylinder Theoretical and Mathematical Physics, 106, No.1, (1996), 68-74.
- 9
- K. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series, New York (1998).
- 10
- M. Born, E. Wolf, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, Cambridge (1999).
- 11
- A. D. Bandrauk Molecules in laser field, Marcel Dekker, New York (1994).
- 12
- D. R. Hartree, The calculation of atomic structure, John Wiley & Sons, New York (1957).
- 13
- M. Brack, The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches Rev. Mod. Phys., 65, No.3 (1993), 677-732.
- 14
- M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln Annalen der Physik, 389, No.20 (1927), 457-484.
- 15
- V. K. Ivanov, Electron properties of metallic clusters Soros Education Journal, 70, (1987), 323-341 (in Russian).
- 16
- R. G. Polozkov, V. K. Ivanov, A. V. Verkhovtsev, A. V. Solov'yov, Stability of metallic hollow cluster systems: Jellium model approach Phys. Rev. A, 79, (2009), 063203.
- 17
- V.K. Ivanov, A.N.Ipatov, V.A. Kharchenko, M. L. Zhyzhin, Electronic structure and adiabatic oscillation of metal-clusters JETP Letters, 8, No. 58, (1993), 649-655.
- 18
- J. C. Morrison, Modern Physics for Scientists and Engineers, Academic Press/Elsevier, London (2015).
- 19
- Ira N. Levine, Quantum Chemistry, Prentice Hall, New Jersey (2000).
- 20
- T. Tsuneda, Density Functional Theory in Quantum Chemistry, Springer Japan, Tokyo (2014).
- 21
- D. Potter, Computational methods in Physics, John Wiley & Sons, New York (1973).
.
DOI: 10.12732/ijpam.v109i3.17 How to cite this paper?
Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 109
Issue: 3
Pages: 691 - 708
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).