IJPAM: Volume 109, No. 3 (2016)
MODELING OF PROPAGATION OF TRANSVERSE AND
LONGITUDINAL ELECTROMAGNETIC WAVES IN
NANOSTRUCTURES WITH NONLINEAR PROPERTIES
LONGITUDINAL ELECTROMAGNETIC WAVES IN
NANOSTRUCTURES WITH NONLINEAR PROPERTIES
L. Uvarova
, Ya. Burenok
Department of Applied Mathematics
Moscow state technological university ``STANKIN''
3a, Vadkovsky per., Moscow, 127055, RUSSIAN FEDERATION



Moscow state technological university ``STANKIN''
3a, Vadkovsky per., Moscow, 127055, RUSSIAN FEDERATION
Abstract. Interaction of an electromagnetic wave with nanostructure of a cylindrical form with nonlinear dependence of dielectric permeability on a field is considered. The mathematical model and algorithm of finding of a longitudinal electromagnetic wave considering influence of a transverse wave and contribution of potential of interaction near a singular point of system is offered. On the basis of the developed algorithm numerical results for a metal nanocluster were received.
Received: August 25, 2016
Revised: September 26, 2016
Published: October 1, 2016
AMS Subject Classification: 82D80
Key Words and Phrases: Schrödinger equation, nonlinear Schrödinger equation, Mie theory, nanostructures, transverse and longitudinal waves
Download paper from here.
Bibliography
- 1
- M. Homber, U. Simon, On the application potential of gold nanoparticles in nanoelectronics and biomedicine, Phil. Trans. R. Soc. A, 368, (2010), 1405-1453.
- 2
- M. Abhilash, Potential applications of Nanoparticles, International Journal of Pharma and Bio Sciences, 1, No.1, (2010), 1-12.
- 3
- J. Liu, Al. Levine, JS. Matton, M. Yamaguchi, RJ. Lee (et al.), Nanoparticles as image enhancing agents for ultrasonography, Physics in Medicine and Biology, 51, (2006), 2179-2189.
- 4
- E. Araujo, N.J. Andrade, LHM. Da Silva, PC. Bernardes, AVNC. Teixeira (et al.), Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces, Journal of Food Production, 74, No.4 (2011), 701-705.
- 5
- U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer series in material science, New York (1995).
- 6
- E. Lorin, S. Chelkowski, A. Bandrauk, A numerical Maxwell-Schrödinger model for intense laser-molecule interaction and propagatio, Computer Physics Communications, 177 (2007), 908-932.
- 7
- E. Lorin, S. Chelkowski, A. Bandrauk, AA Maxwell–Schrödinger Model for Non-perturbative Laser-molecule Interaction and Some Methods of Numerical Computation, Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes, 41 (1987), 908-932.
- 8
- L. A. Uvarova and V, K. Fedyanin, Asymptotic solutions for electromagnatic waves in a nonlinear optical cylinder Theoretical and Mathematical Physics, 106, No.1, (1996), 68-74.
- 9
- K. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series, New York (1998).
- 10
- M. Born, E. Wolf, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, Cambridge (1999).
- 11
- A. D. Bandrauk Molecules in laser field, Marcel Dekker, New York (1994).
- 12
- D. R. Hartree, The calculation of atomic structure, John Wiley & Sons, New York (1957).
- 13
- M. Brack, The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches Rev. Mod. Phys., 65, No.3 (1993), 677-732.
- 14
- M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln Annalen der Physik, 389, No.20 (1927), 457-484.
- 15
- V. K. Ivanov, Electron properties of metallic clusters Soros Education Journal, 70, (1987), 323-341 (in Russian).
- 16
- R. G. Polozkov, V. K. Ivanov, A. V. Verkhovtsev, A. V. Solov'yov, Stability of metallic hollow cluster systems: Jellium model approach Phys. Rev. A, 79, (2009), 063203.
- 17
- V.K. Ivanov, A.N.Ipatov, V.A. Kharchenko, M. L. Zhyzhin, Electronic structure and adiabatic oscillation of metal-clusters JETP Letters, 8, No. 58, (1993), 649-655.
- 18
- J. C. Morrison, Modern Physics for Scientists and Engineers, Academic Press/Elsevier, London (2015).
- 19
- Ira N. Levine, Quantum Chemistry, Prentice Hall, New Jersey (2000).
- 20
- T. Tsuneda, Density Functional Theory in Quantum Chemistry, Springer Japan, Tokyo (2014).
- 21
- D. Potter, Computational methods in Physics, John Wiley & Sons, New York (1973).
.
DOI: 10.12732/ijpam.v109i3.17 How to cite this paper?
Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 109
Issue: 3
Pages: 691 - 708
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).