IJPAM: Volume 109, No. 3 (2016)

ABOUT ONE INVERSE PROBLEM OF
THE LINEAR-FRACTIONAL PROGRAMMING
ON GENERALIZED NETWORK

L.A. Pilipchuk$^1$, A.S. Pilipchuk$^2$
Belarusian State University
Nezavisimosti avenue 4, Minsk, 220030, BELARUS

Abstract. For the one linear-fractional network programming problem with additional constraints of general kind and with inexact data we constructed a mathematical model for calculation of the new parameters of the restrictions for which the infeasible solution becomes feasible solution. For the selected feasible solution of this problem we minimally changed the parameters in the numerator of the linear-fractional objective function in order that the selected feasible solution has become an optimal. The measure proximity vectors estimated are using the norm $l_{1}$. That has allowed to remain within the framework of linear programming in solving of inverse problems.

Received: July 2, 2016

Revised: September 15, 2016

Published: October 1, 2016

AMS Subject Classification: 65K05, 90C08, 90C35, 05C50, 15A03, 15A06

Key Words and Phrases: linear-fractional programming problem, inexact data, infeasible solution, feasible solution, duality, norm, inverse optimization, the numerator of linear-fractional objective function, optimal solution
Download paper from here.

Bibliography

1
D. Burton, P.L. Toint, On an instance of the inverse shortest paths problem, J. Math. Programming, 53 (1992), 45-61.

2
R.K. Ahuja, J.B. Orlin, Inverse optimization, Operation Research, 49, Issue 5 (2001), 771-783.

3
L.A. Pilipchuk, A.S. Pilipchuk, Modeling parameters of the lower and upper bounds and parameters of the objective function for generalized network flow programming problems, In: AIP Conf. Proc., American Institute of Physics, 1690, 060007 (2015), 10 pp., doi: 10.1063/1.4936745.

4
L.A. Pilipchuk, Obratnaya zadacha korrektirovki parametrov ogranichenii dlya odnoi lineinoi neodnorodnoi zadachi setevoi optimizacii, Vestnik BGU, Ser. 1, 1 (2016), 136-143, In Russian.

5
L.A. Pilipchuk, Primenenie konstruktivnih metodov dekompozicii dlya resheniya odnoi nelineinoi zadachi setevoi optimizacii, Vesnik Grodzenskaga Dzyarjaynaga Yniversiteta imya Yanki Kupali, Ser. 2, 6, No. 2 (192) (2015), 54-61, In Russian.

6
L.A. Pilipchuk, Lineinie neodnorodnie zadachi potokovogo programmirovaniya, Minsk: BGU (2009), In Russian.

7
R. Gabasov, F.M. Kirillova, Metodi Lineinogo Programmirovaniya, Volume 3 Chastyah, Chast 3. Specialnie Zadachi, Minsk, Belorussian State Univ. (1980), In Russian.

8
L.A. Pilipchuk, Linear-fractional programming: problems of optimization of inhomogeneous flows in the generalized networks, Intern. J. Pure and Appl. Math., 82, No 2 (2013), 261-273.

.




DOI: 10.12732/ijpam.v109i3.18 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 109
Issue: 3
Pages: 709 - 718


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).