IJPAM: Volume 109, No. 3 (2016)
NON-GAUSSIAN WICK CALCULUS BASED
ON HYPERCOMPLEX SYSTEMS
ON HYPERCOMPLEX SYSTEMS
Abd-Allah Hyder, M. Zakarya
Department of Mathematics
Faculty of Science
Al-Azhar University
Naser City, Cairo, EGYPT
Department of Mathematics
Faculty of Science
Al-Azhar University
Assiut 71524, EGYPT
Department of Mathematics
Faculty of Science
Al-Azhar University
Naser City, Cairo, EGYPT
Department of Mathematics
Faculty of Science
Al-Azhar University
Assiut 71524, EGYPT
Abstract. In this paper, we developed a non-Gaussian Wick calculus based on the theory of hypecomplex systems . Using the Delsarte characters , we introduce a -Wick product, a -Hermite transform on the space of generalized functions and discuss their properties. By means of the usual properties of complex analytic functions, we proved the characterization theorem for . Moreover, we setup a framework to study the stochastic partial differential equations driven by -processes, and apply this framework to solve the -stochastic Poisson equation.
Received: April 25, 2016
Revised: July 27, 2016
Published: October 1, 2016
AMS Subject Classification: 46FXX, 30G35, 91G80
Key Words and Phrases: non-Gaussian, Wick product, Hermite transform, white noise, hypercomplex systems
Download paper from here.
Bibliography
- 1
- S. Albeverio, Yu. G. Kondratiev and L. Streit, How to generalize white noise analysis to non-Gaussian measures. Proc. Symp. Dynamics of Complex and Irregular Systems (Bielefeld, 1991); Bielefeld Encount. Math. Phys., VIII, World Sci. Publ.: River Edge, NJ (1993), 120-130.
- 2
- S. Albeverio, Yu. L. Daletsky, Yu. G. Kondratiev and L. Streit, Non-gaussian infinite dimensional analysis, J. Funct. Anal. 138 (1996), 311-350.
- 3
- Yu. M. Berezansky and E. V. Lytvynov, Generalized white noise analysis connected with perturbed field operators, Dopovidy AN: Ukrainy, 1993.
- 4
- Yu. M. Berezansky, Spectral approach to white noise analysis. Proc. Symp. Dynamics of Complex and Irregular Systems (Bielefeld, 1991); Bielefeld Encount. Math. Phys., VIII, World Sci. Publ., River Edge, NJ (1993) 131-140.
- 5
- Yu. M. Berezansky, V. O. Livinsky and E. W. Lytvynov, A generalization of Gaussian noise analysis, Methods of Functional Analysis and Topology 1 (1995), 28-55.
- 6
- Yu. M. Berezansky, A connection between the theory of hypergroups and white noise analysis, Reports on Mathematical Physics 36 (1995), 215-234.
- 7
- Yu. M. Berezansky, A generalization of white noise analysis by means of theory of hypergroups, Reports on Mathematical Physics 38 (1996), 289-300.
- 8
- L. Bers, F. John and M. Schechter, Partial differential equations, Wiley: New York (1964).
- 9
- R. L. Dobrushin and R. L. Minlos, Polynomials in linear random functions, Russian Math. Surveys 32 (1977), 71-127.
- 10
- H. A. Ghany, A. S. Okb El Bab, A. M. Zabel, and A. Hyder, “The fractional coupled KdV equations: exact solutions and white noise functional approach,Chinese Physics B, vol. 22, no. 8 (2013) Article ID 080501.
- 11
- H. A. Ghany, “Exact solutions for stochastic generalized Hirota-Satsuma coupled KdV equations,” Chinese Journal of Physics, vol. 49, no. 4 (2011) pp. 926–940.
- 12
- H. A. Ghany and A. Hyder, Local and global well-posedness of stochastic Zakharov-Kuznetsov equation Journal of Computational Analysis and Applications, 15 (7), 1332-1343
- 13
- H. A. Ghany and A. Hyder, “Exact solutions for the wicktype stochastic time-fractional KdV equations, Kuwait Journal of Science, vol. 41, no. 1,(2014) pp. 75–84.
- 14
- H. A. Ghany and A. Hyder, “Abundant solutions of Wick-type stochastic fractional 2D KdV equations, Chinese Physics B,, vol. 23, no. 6,(2014) Article ID 060503.
- 15
- H. A. Ghany and M. Zakarya, Generalized Solutions of Wick-type Stochastic KdV-Burgers Equations Using Exp-function Method International Review of Physics, (IREPHY) 8 (2),(2014) 38-46.
- 16
- H. A. Ghany and M. Zakarya, Exact Solutions for Wick-type Stochastic Coupled KdV Equations Global Journal of Science Frontier Research: F Mathematics and Decision Sciences, 14 (2014) 56-72.
- 17
- H. A. Ghany and M. Zakarya, Exact Traveling Wave Solutions for Wick-Type Stochastic Schamel KdV Equation Physics Research International, (2014) p. 1-9
- 18
- H. A. Ghany and M. A. Qurashi, Travelling Solitary Wave Solutions for Stochastic Kadomtsev-Petviashvili Equation. Journal of Computational Analysis and Applications, 21 (1) (2015) p. 121-131.
- 19
- T. Hida and N. Ikeda, Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral. Proc. Fifth Berkeley Symp.Math. Stat. Probab. II (1965), 117-143. Univ. California Press, Berkeley.
- 20
- T. Hida, Analysis of Brownian functionals, in Carleton Math. Lecture Notes 13, Carleton Univ.: Ottawa 1975.
- 21
- T. Hida, Brownian motion, Springer-Verlag: Berlin-Heidelberg-New York, 1980.
- 22
- T. Hida, H. H. Kuo, J. Potthoff, and L. Streit, White noise: An infinite dimensional calculus, Kluwer: Dordrecht (1993).
- 23
- H. Holden, T. Lindstroøm, B. Ø ksendal, J. Uboø e, and T. Zhang, The pressure equation for fluid flow in a stochastic medium, Pot. Anal. 4 (1995), 655-674.
- 24
- H. Holden, B. Øsendal, J. Ubøe and T. Zhang, Stochastic partial differential equations, Springer Science+Business Media, LLC (2010).
- 25
- T. Lindstrøm, B. Øksendal and J. Ubøe, Stochastic differential equations involving positive noise. In M. Barlow and N. Bingham (editors): Stochastic Analysis. Cambridge University Press: Cambridge, MA (1991), 261-303.
- 26
- A. S. Okb El Bab, A. M. Zabel, H. A. Ghany, Harmonic analysis in Hypercomplex systems, International Journal of Pure and Applied Mathematics, 80 (2012), 739-750.
- 27
- A. S. Okb El Bab, Hossam A. Ghany and M. Zakarya, A construction of Non-Gaussian White Noise Analysis using the Theory of Hypercomplex Systems, Global Journal of Science Frontier Research: F Mathematics and Decision Sciences, 16 (2016) 11-25.
- 28
- B. Øksendal, An introduction to Malliavin calculus with applications to economics. Working paper No 3/96, Norwegian School of Economics and Business Administration, 1996.
- 29
- G. C. Wick, The evaluation of the collinear matrix, Phys. Rev. 80 (1950), 268-272.
.
DOI: 10.12732/ijpam.v109i3.5 How to cite this paper?
Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 109
Issue: 3
Pages: 539 - 556
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).