IJPAM: Volume 109, No. 3 (2016)

NEW EXPLICIT TRIGONOMETRICALLY-FITTED
FOURTH-ORDER AND FIFTH-ORDER
RUNGE-KUTTA-NYSTRÖM METHODS FOR
PERIODIC INITIAL VALUE PROBLEMS

M.A. Demba$^1$, N. Senu$^2$, F. Ismail$^3$
$^1$Department of Mathematics
Universiti Putra Malaysia
43400 UPM Serdang, Selangor, MALAYSIA
$^{2,3}$Department of Mathematics
Institute for Mathematical Research
Universiti Putra Malaysia
43400 UPM Serdang, Selangor, MALAYSIA

Abstract. In this work, we derive two new Runge-Kutta-Nyström (RKN) methods for solving periodic second order ordinary differential equations. We constructed these methods based on the RKN method of three-stage fourth-order derived by Garcia and RKN method of four-stage fifth-order derived by Hairer. The numerical results show that the efficiency of the new methods is more than the other existing methods.

Received: May 22, 2016

Revised: July 5, 2016

Published: October 1, 2016

AMS Subject Classification: 65L05, 65L06

Key Words and Phrases: trigonometric fitting, RKN methods, periodic initial value problems
Download paper from here.

Bibliography

1
Z. Anastassi and A. Kosti, A 6(4) optimized embedded Runge-Kutta Nyström pair for the numerical solution of periodic problems, Journal of Computational Applied Mathematics, 275 (2013), 311-320.

2
G. V. Berghe, H. De Meyer, M. Van Daele, and T. Van Hecke Exponentially fitted explicit Runge-Kutta methods,,Computer Physics Communications, 123 (1999), 7-15.

3
D. Bettis, Runge-Kutta Algorithms for oscillatory problems, Zeitscrift für angewandte Mathematik und Physik ZAMP, 30 (1979), 699-704.

4
J. P. Coleman and S. C. Duxbury, mixed collocation methods for $y^{''}=f(x,y)$, Journal of computational and applied mathematics, 126 (2000), 47-75.

5
R. D'Ambrosio, B. Paternoster, and G. Santomauro, Revised exponentially fitted Runge-Kutta-Nyström methods, Applied Mathematics Letters, 30 (2014), 56-60.

6
J. Franco, and I. Gomez Symplectic explicit methods of Runge-Kutta-Nyström type for solving pertubed oscillators,Journal of Computational and Applied Mathematics, 260 (2014), 482-493.

7
J. Franco, Runge-Kutta methods adapted to the numerical integration of oscillatory problems,Applied Numerical Mathematics, 50 (2004), 427-443.

8
A. Garcia, P. Martin, and A. B. Gonzalez et al., New methods for oscillatory problems based on classical codes, Applied Numerical Mathematics, 42 (2002), 141-157.

9
W. Gautschi, Numerical integration ordinary differential equations based on trigonometric polynomials,,Computer Physics Communications, vol. 115, pp. 1-8, 1998.

10
E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I, 2nd edition, Vol. 8, Springer, Berlin Germany, 1993, non stiff Problems.

11
T. Lyche, Chebyshevian multistep methods for ordinary differential equations,Numerische Mathematik, 19 (1972), 65-75.

12
T. Monovasilis, Z. Kalogiratou, and T. E. Simos, Exponentially-fitted symplectic Runge-Kutta-Nyström methods,Appl. Math. Inf. Sci, 7 (2013), 81-85.

13
D. F. Papadopoulos, Z. Anastassi, A. Zacharias and T. E. Simos, A phase-fitted Runge-Kutta-Nystrøm method for the numerical solution of initial value problems with oscillating solutions, Computer Physics Communications,vol. 180, pp. 1839-1846, 2009.

14
H. Ramos and J. Vigo-Aguiar, A trigonometrically-fitted method with two frequencies, one for the solution and another one for the derivative,Computer Physics Communications, 185 (2014), 1-8.

15
N. Senu, Runge-Kutta-Nystrøm methods for solving oscillatory problems, Ph.D. diss., Department of Mathematics, Faculty of Science, 43400 UPM Serdang, Malaysia, 2009.

16
N. Senu, M. Suleiman, and F. Ismail, An embedded explicit Runge-Kutta-Nystrøm method for solving oscillatory problems, Physica Scripta, 80 (2009), 015005.

17
T. E. Simos, An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions,Computer Physics Communications, 115 (1998), 1-8.

18
T. E. Simos, Exponentially-fitted Runge-Kutta-Nystrøm method for the numerical integration of initial-value problems with oscillating solutions,Applied Mathematics Letter, 15 (2002), 217-225.

19
T. E. Simos, A family of fifth algebraic order trigonometrically-fitted Runge-Kutta methods for the numerical solution of the schrødinger equation,Computational materials science, 34 (2005), 342-354.

20
T. E. Simos and J. V. Aguiar, A modified phase-fitted Runge-Kutta method for the numerical solution of the schrødinger equation,Journal of mathematical chemistry, 30 (2001), 121-131.

21
H. Van de Vyver A symplectic exponentially-fitted modified Runge-Kutta-Nystrøm method for the numerical solution of orbital problems,New Astronomy, 10 (2005), 261-269.

22
H. Van de Vyver An embedded exponentially-fitted Runge-Kutta-Nystrøm method for the numerical solution of orbital problems,New Astronomy, 11 (2006), 577-587.

23
Xinyuan Wu, Xiong You and Bin Wang, Structure preserving algorithms for oscillatory differential equations,Science Press Beijing & Springer-Verlag Berlin Heidelberg, Beijing, 2013.

.




DOI: 10.12732/ijpam.v109i3.6 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 109
Issue: 3
Pages: 557 - 571


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).