IJPAM: Volume 109, No. 4 (2016)
ON GRADED 2-ABSORBING PRIMARY SUBMODULES
Ece Yetkin Celikel
Department of Mathematics
Faculty of Art and Science
Gaziantep University
Gaziantep, TURKEY
Department of Mathematics
Faculty of Art and Science
Gaziantep University
Gaziantep, TURKEY
Abstract. In this paper, we introduce and study the concept of graded
















Received: July 18, 2016
Revised: August 25, 2016
Published: October 9, 2016
AMS Subject Classification: 13A02
Key Words and Phrases: graded 2-absorbing ideal, graded 2-absorbing primary ideal, graded 2-absorbing submodule, graded -absorbing primary submodule
Download paper from here.
Bibliography
- 1
- K. Al-Zoubi, R. Abu-Dawwa, On graded 2-absorbing and weakly graded 2-absorbing submodules, Journal of Mathematical Sciences: Advances and Applications, 28 (2014), 45-60.
- 2
- S. E. Atani, On graded weakly prime ideals, Turk J. Math., 30 (2006) 351-358.
- 3
- S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., 33, No. 1 (2006) 3-7.
- 4
- S. E. Atani, On graded weakly prime submodules, Int. Math. Forum, 1, No. 2 (2006) 61-66.
- 5
- S. E. Atani and F. Farzalipour, Notes on the graded prime submodules, Int. Math. Forum, 1, No. 38 (2006) 1871-1880.
- 6
- S. E. Atani and F. Farzalipour, On Graded Secondary Modules, Turk J Math, 31 (2007) 371-378.
- 7
- S. E. Atani, R.E. Atani, Graded multiplication modules and
the graded ideal
, Turk J Math, 35 (2011) 1- 9.
- 8
- A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals over commutative rings, Bull. Korean Math. Soc., 51, No. 4 (2014), 1163-1173.
- 9
- Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16 (1988) 755-779.
- 10
- R.L. McCasland and M.E. Moore, Radicals of submodules, Comm. Algebra, 19 (1991) 1327-1341.
- 11
- C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, Amsterdam, Holland 28 (1982).
- 12
- K. H Oral, U. Tekir and A. G. Agargun, On graded prime and primary submodules, Turk. J. Math., 35 (2011), 159-167.
- 13
- M. Refai, K. Al-Zoubi, On graded primary ideals, Turk J. Math., 28 (2004), 217-229.
- 14
- F. Van Oystaeyen, J. P. Van Deuren, Arithmetically graded rings, Lecture Notes in Math., Ring Theory, Proceedings 825 (1980), 279-284.
- 15
- E. Yetkin Celikel, On Graded 2-absorbing primary ideals, Submitted.
.
DOI: 10.12732/ijpam.v109i4.10 How to cite this paper?
Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 109
Issue: 4
Pages: 869 - 879
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).