IJPAM: Volume 109, No. 4 (2016)

$J$-CLASS SEMIGROUP OPERATORS

A. Tajmouati$^1$, M. El Berrag$^2$
$^{1,2}$Faculty of Sciences
Sidi Mohamed Ben Abdellah University
Dhar El Mahraz Fez, MOROCCO

Abstract. A $C_{0}$-semigroup $\mathcal{T}=(T_{t})_{t\geq0}$ on an infinite-dimensional separable complex Banach space $X$ is called subspace-hypercyclic for a subspace $M,$ if $Orb(\mathcal{T},x)\bigcap M$ is dense in $M$ for a vector $x\in M$. In this paper, we localize the notion of M-extended semigroup(resp. M-extended semigroup mixing) limit set of $x$ under $\mathcal{T}$ and We give sufficient conditions of being $M$-hypercyclic for this semigroup. Then by this result, we prove that $(T_{t}^{-1})_{t\geq0}$ is a $M$-hypercyclic. This result is an answer of the question of B. F. Madore and R. A. Martnez-Avendano for $C_{0}$-semigroup.

Received: June 12, 2016

Revised: September 3, 2016

Published: October 9, 2016

AMS Subject Classification: 47C03, 47A10, 47A11

Key Words and Phrases: $C_{0}$-semigroup, subspace-hypercyclic, subspace-topologically transitive, $J-$class semigroup, $J^{mix}-$class semigroup
Download paper from here.

Bibliography

1
S.I. Ansari, Existance of hypercyclic operatos on topological vector space, J.F. Anal., 148 (1997), 384-390.

2
M.R. Azimi, V. Muller, A note on J-sets of linear operators, Revista de la Real Academia de Ciencias Exactass, Fisicas y Naturales, 105, No. 2 (2011), 449-453.

3
F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University Press (2009).

4
N.P. Bhatia and G.P. Szeg$\ddot{o}$, Stability Theory of Dynamical Systems, Die Grundlehren der mathematischen Wissenschaften, Band 161 Springer-Verlag, New York-Berlin (1970).

5
G. Costakis, A. Manoussos, J-class weighted shifts on the space of bounded sequences of complex numbers, Integral Equations Operator Theory, 62, No. 2 (2008), 149-158.

6
G. Costakis, A. Manoussos, J-class operators and hypercyclicity, J. Operator Theory, 67, No. 1 (2012), 101-119.

7
K.J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., vol. 194, Springer-Verlag, New York (2000).

8
K. Goswin and G. Erdmann, Universal families and hypercyclic operators, Bulletin of the American Mathematical Society, 35 (1999), 345-381.

9
R.R. Jiménez-Munguía, R.A. Martínez-Avendaño, A. Peris, Some questions about subspace hypercyclic operators, J. Math. Anal. Appl., 408 (2013), 209-212.

10
Karl-G. Grosse-Erdmann, Alfred Peris Manguillot, Linear Chaos, pringer-Verlag London Limited (2011).

11
C.M. Le, On Subspace-hypercyclicity operators, Proc. Amer. Math. Soc., 139, No. 8 (2011), 2847-2852.

12
F. Leon-Saavedra, V. Muller, Hypercyclic sequences of operators, Studia Math., 175, No. 1 (2006), 1-18.

13
B.F. Madore, R.A. Martínez-Avendano, Subspace hypercyclicity, J. Math. Anal. Appl., 373 (2011), 502-511.

14
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci., vol. 44, Springer-Verlag, New York (1992).

15
H. Rezaei, Notes on subspace-hypercyclic operators, S.J. Math. Anal. Appl., 397 (2013), 428-433.

16
M.D. Rosa, C. Read, A hypercyclic operator whose direct sum is not hypercyclic, J. Operator Theory, 61 (2009), 369-380.

17
A. Tajmouati, A. El Bakkali, A. Toukmati, On M-hypercyclic semigroup, Int. J. Math. Anal., 9, No. 9 (2015) 417-428.

18
A. Tajmouati, M. El berrag, Some results on hypercyclicity of tuple of operators, Italian Journal of Pure and Applied Mathematics, 35 (2015), 487-492.

19
S. Talebi, M. Asadipour, On subspace-transitive operators, Int. J. of Pure and Appl. Math., 84, No. 5 (2013), 643-649.

.




DOI: 10.12732/ijpam.v109i4.9 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 109
Issue: 4
Pages: 861 - 868


$J$-CLASS SEMIGROUP OPERATORS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).