ON A SEQUENCE OF \((i, \pm 1, \pm i)\)-TRIDIAGONAL MATRICES, WHOSE DETERMINANTS ARE RELATED TO FIBONACCI NUMBERS

Ivana Matoušová¹, Pavel Trojovský²

¹,²Department of Mathematics
University of Hradec Králové
Rokitanského 62, 50003 Hradec Králové, CZECH REPUBLIC

Abstract: We will generalize a previous result on connection sequence of special tridiagonal matrices to Fibonacci numbers, as we find a new sequence of tridiagonal matrices which are related to Fibonacci numbers.

AMS Subject Classification: 11B39, 11B36, 11C20
Key Words: recurrence, Fibonacci number, tridiagonal

1. Introduction

The Fibonacci sequence (or sequence of Fibonacci numbers) \((F_n)_{n \geq 0}\) is the sequence of positive integers satisfying the recurrence \(F_{n+2} = F_{n+1} + F_n\) with the initial conditions \(F_0 = 0\) and \(F_1 = 1\).
Fibonacci numbers turn up in a fantastic variety of interesting applications (see e. g. book [7]), but this paper deals with its connections to determinants of tridiagonal matrices only.

In 1976, Strang [11] included, probably the first example of determinant of \(n \times n \) matrix, which is equal to the Fibonacci number, as he showed that the following holds

\[
\begin{vmatrix}
1 & -1 & 0 & \cdots & 0 & 0 & 0 \\
1 & 1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & -1 & 0 & \cdots & 0 \\
\vdots & 0 & 1 & 1 & \ddots & \ddots & \vdots \\
0 & \vdots & \ddots & \ddots & \ddots & \ddots & -1 & 0 \\
0 & 0 & \cdots & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 1 \\
\end{vmatrix} = F_{n+1} \tag{1}
\]

for any \(n \geq 1 \). In 2003, Cahill et al. [1] showed that the following holds

\[
\begin{vmatrix}
1 & i & 0 & \cdots & \cdots & 0 \\
0 & i & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \vdots & \ddots & \ddots & \ddots & i & 0 \\
\vdots & \ddots & \ddots & \ddots & i & 1 & i \\
0 & \cdots & \cdots & 0 & i & 1 \\
\end{vmatrix} = F_{n+1} \tag{2}
\]

for any \(n \geq 1 \) (where \(i = \sqrt{-1} \)). Matrices in (1) and (2) are the special cases of a tridiagonal matrix, what is a square matrix \(A = (a_{jk}) \) of the order \(n \), with entries \(a_{jk} = 0 \) for \(|k - j| > 1 \) and \(1 \leq j, k \leq n \), i. e.

\[
A(n) = \begin{pmatrix}
a_{1,1} & a_{1,2} & 0 & \cdots & 0 \\
a_{2,1} & a_{2,2} & a_{2,3} & \ddots & \vdots \\
0 & a_{3,2} & a_{3,3} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & a_{n,n-1} & a_{n,n} \\
\end{pmatrix}.
\]

Many authors derived the similar types of matrices which determinants or permanents are related to Fibonacci numbers or different kinds of their generalizations, e. g. \(k \)-generalized Fibonacci numbers, see [2], [3], [4], [5], [6], [8],
[9], [10], [13], [14], [15] and [16]. Now we turn our attention to the relation of determinants of special tridiagonal matrices with Fibonacci numbers. We show that matrix in (2) can be changed into a matrix, whose determinant is related to Fibonacci numbers too.

2. Preliminary results

Ferguson [12] formulated the following lemma, which can be easily used for finding the recurrence relation for determinants of a sequence of tridiagonal matrices.

Lemma 1. (Lemma B1 (a) of [12]) We consider tridiagonal $n \times n$ matrices of the following form

$$A_n = \begin{pmatrix} a_1 & b_1 & 0 & \cdots & 0 \\ c_1 & a_2 & b_2 & \ddots & \vdots \\ 0 & c_2 & a_3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & b_{n-1} \\ 0 & \cdots & 0 & c_{n-1} & a_n \end{pmatrix}.$$

Let $\det A_n$ denote the determinant of A_n. Then

$$\det A_1 = a_1; \quad \det A_2 = a_1a_2 - b_1c_1; \quad \det A_n = a_n \det A_{n-1} - b_{n-1}c_{n-1}A_{n-2}. \quad (3)$$

3. Main result

Theorem 2. Let $\{\mathbb{C}^{\alpha,\beta}(n), n = 1, 2, 3, \ldots \} \cap \alpha, \beta \in \{0, 1\}$ be a sequence of tridiagonal matrices in the form

$$c^{\alpha,\beta}_{jk} = \begin{cases} \ (-1)^{j+\beta}i, & j = k - 1; \\ \ (-1)^{j+\alpha}, & j = k; \\ \ i, & j = k + 1; \\ \ 0, & \text{otherwise}, \end{cases}$$
\[C_{\alpha, \beta}(n) = \begin{pmatrix} (-1)^{1+\alpha} & (-1)^{1+\beta} i & 0 & \cdots & 0 \\ i & (-1)^{2+\alpha} & (-1)^{2+\beta} i & \ddots & \vdots \\ 0 & i & (-1)^{3+\alpha} & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & (-1)^{n-1+\beta} i \\ 0 & \cdots & 0 & i & (-1)^{n+\alpha} \end{pmatrix}. \]

Then

\[\det C_{\alpha, \beta}(n) = \begin{cases} (-1)^{\frac{n}{2}} F_{\frac{n}{2}+2-3\beta}, & 2 \mid n; \\ (-1)^{\frac{n+1}{2}} F_{\frac{n+1}{2}}, & 2 \nmid n. \end{cases} \tag{4} \]

Proof. There are four cases to consider, however the proof of them follows by the same approach. Then, in order to avoid unnecessary repetitions, we shall prove only the case \(\alpha = \beta = 0 \). Thus we consider matrix

\[\det C_{0,0}(n) = \begin{pmatrix} (-1)^1 & (-1)^1 i & 0 & \cdots & 0 \\ i & (-1)^2 & (-1)^2 i & \ddots & \vdots \\ 0 & i & (-1)^3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & (-1)^{n-1} i \\ 0 & \cdots & 0 & i & (-1)^n \end{pmatrix}. \]

For simplicity of notation, we write \(D(n) \) instead of \(\det C_{0,0}(n) \). Using Lemma 1 we obtain \(D(1) = -1, \ D(2) = -2 \) and for \(n > 2 \) the following recurrence

\[D(n) = (-1)^n D(n-1) + (-1)^{n-1} D(n-2). \tag{5} \]

We use mathematical induction on \(n \). For \(n = 1 \) and \(n = 2 \) we have \(D(1) = -1 = (-1)^{\frac{1+1}{2}} F_{\frac{1+1}{2}} = -F_1 \) and \(D(2) = -2 = (-1)^{\frac{2}{2}} F_{\frac{2+2}{2}} = -F_3 \), hence relation (4) holds. Suppose that the assertion holds for every \(k, \ 3 \leq k < n \). Then we have to show that the assertion is true for \(n \) too. We use identity (5) in the following two cases

(i) Let \(2 \mid n \). Then \(2 \nmid (n-1) \) and \(2 \mid (n-2) \). We have

\[
D(n) = D(n-1) - D(n-2) \\
= (-1)^{\frac{n}{2}} F_{\frac{n}{2}} - (-1)^{\frac{n}{2}-1} F_{\frac{n-1}{2}+1} \\
= (-1)^{\frac{n}{2}} F_{\frac{n}{2}} + (-1)^{\frac{n}{2}} F_{\frac{n-1}{2}+1} \\
= (-1)^{\frac{n}{2}} (F_{\frac{n}{2}} + F_{\frac{n-1}{2}+1}) = (-1)^{\frac{n}{2}} F_{\frac{n+2}{2}}.
\]
ON A SEQUENCE OF \((i, \pm 1, \pm i)\)-TRIDIAGONAL MATRICES...

(ii) Let \(2 \nmid n\). Then \(2 \mid (n - 1)\) and \(2 \nmid (n - 2)\) and we get

\[
D(n) = -D(n-1) + D(n-2) = -(-1)^{\frac{n-1}{2}}F_{\frac{n-1}{2}+1} + (-1)^{\frac{n-1}{2}}F_{\frac{n-1}{2}} = (-1)^{\frac{n+1}{2}}F_{\frac{n+1}{2}+1} = (-1)^{\frac{n+1}{2}}F_{\frac{n+1}{2}}.
\]

\[
\square
\]

Acknowledgements

The authors thank to Specific research PrFUK2016/No.2114 for financial support.

References

