NEW TYPE OF STRONGER FORM OF IG CLOSED SETS

A. Thiripuram
Department of Mathematics
Jeppiaar Engineering College
Chennai, Tamil Nadu, INDIA

Abstract: An ideal on a set X is a non empty collection of subsets of X with heredity property which is also closed under finite unions. In this paper, we have introduced stronger forms of g-closed sets via ideal topological space. Also we have studied the properties of the stronger forms of g-closed sets with respect to an ideal.

AMS Subject Classification: 54C10
Key Words: Topological spaces, generalized closed set, strongly generalized closed set and Ideal.

1. Introduction

Nowadays ideals are playing very important role in General Topology. It was the works of Newcomb[10], Rancin[13], Samuels[14] and Hamlet and Jankovic ([2,3,4,5,6]) which motivated the research in applying topological ideals to generalize the most basic properties in General Topology. A nonempty collection I of subsets on a topological space (X,τ) is called a topological ideal if it satisfies the following two conditions:

(i) If A ∈ I and B ⊂ A implies B ∈ I.(heredity).
(ii) If A ∈ I and B ∈ I then A ∪ B ∈ I.(finite additivity)
Throughout this paper (X,τ) will denote topological space. For a subset A of a topological space (X,τ). The closure of A (denoted as cl(A)) is defined as the intersection of all closed sets containing A and the interior of A (denoted as int(A)) is defined as the union of all open sets contained in A. Let A ⊂ B ⊂ X. Jafari [7] introduced the concept Generalized closed set with respect to an Ideal. In this paper, we introduce and study the concept of g*-closed sets with respect to an ideal, which is the extension of the concept of Ig-closed sets.

2. Preliminaries

Definition 2.1. A subset of a topological space (X,τ) is called a generalized closed set (briefly g-closed) if cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ).

Definition 2.2. Let (X,τ) be a topological space and A is a subset of X, the generalized closure operator (briefly cl*)[1] is defined by the intersection of all g-closed sets containing A. The interior operator (briefly int*) is defined by union of all g-open sets contained in A.

Definition 2.3. A subset of a topological space (X,τ) is called a strongly generalized closed set (briefly g*-closed) if cl(A) ⊆ U whenever A ⊆ U where U is g-open in (X,τ).

Definition 2.4. Let (X,τ) be a topological space and I be a ideal on X. A subset A subset of X is said to be generalized closed with respect to an ideal (briefly Ig-closed) [7] if and only if cl(A)-B ∈ I whenever A ⊂ B and B is g-open.

3. Strong form of Ig* closed sets

Definition 3.1. Let (X,τ) be a topological space and I be a ideal on X. A subset A subset of X is said to be strongly g-closed with respect to an ideal (briefly Ig*-closed) if and only if cl*(A) − B ∈ I whenever A ⊂ B and B is g-open.

Remark 3.2. Every g-closed set is Ig*-closed, but the converse need not be true.

Example 3.3. Let X = {a,b,c} with topology τ = {∅, {a}, X} and I = {∅, {b}, {c}, {b,c}} clearly the set {a} is Ig*-closed but not g-closed in (X,τ).
Theorem 3.4. A set A is Ig^*-closed in (X,τ) if and only if $F \subset cl^*(A) - A$ and F is g-closed in X implies $F \in I$.

Proof. Assume that A is Ig^*-closed. Let $F \subset cl^*(A) - A$. Suppose F is g-closed. Then, $A \subset X-F$. By assumption, $cl^*(A) - (X-F) \in I$.

Conversely, assume that $F \subset cl^*(A) - A$ and F is g-closed in X implies that $F \in I$. Suppose $A \subset U$ and U is g-open. Then $cl^*(A) - U = cl^*(A) \cap (X - U)$ is a g-closed set in X, that is contained in $cl^*(A) - A$. By assumption, $cl^*(A) - U \in I$. This implies that A is Ig^*-closed.

Theorem 3.5. If A and B are Ig^*-closed sets of (X,τ) then their union $A \cup B$ is also Ig^*-closed.

Remark 3.6. The intersection of Ig^*-closed sets need not be an Ig^*-closed.

Example 3.7. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{b\}, \{b,c\}, X\}$. If $A = \{b,c\}, B = \{a,b\}$ and $I = \{\emptyset, \{a\}, \{c\}, \{a,c\}\}$ then A and B are Ig^*-closed but their intersection $A \cap B = \{b\}$ is not Ig^*-closed.

Theorem 3.8. If A is Ig^*-closed and $A \subset B \subset cl^*(A)$ and in (X,τ), then B is Ig^*-closed in (X,τ).

Proof. Suppose A is Ig^*-closed and $A \subset B \subset cl^*(A)$ in (X,τ). Suppose $B \subset U$ and U is g-open. Then $A \subset U$. Since A is Ig^*-closed, we have $cl^*(A) - U \in I$. This implies that $cl^*(B) - U \subset cl^*(A) - U \in I$. Hence B is Ig^*-closed in (X,τ).

Theorem 3.9. Let $A \subset Y \subset X$ and suppose that A is Ig^*-closed in (X,τ). A is Ig^*-closed relative to the subspace Y of X, with respect to the ideal $I_y = \{F \subset Y : F \in I\}$.

Proof. Suppose $A \subset U \cap Y$ and U is g-open in (X,τ) then $A \subset U$. Since A is Ig^*-closed in (X,τ) we have $cl^*(A) - U \in I$. Now $(cl^*(A) \cap Y) - (U \cap Y) = (cl^*(A) \cap Y) \in I$, whenever $A \subset U \cap Y$ and U is g-open. Hence then $A \subset U$ and $B \subset U$. By definition n of Ig^*-closed $cl^*(A) - U \in I$ and $cl^*(B) - U \in I$. Hence A is Ig^*-closed relative to the subspace Y.

Theorem 3.10. Let A be an Ig^*-closed and F be a g-closed set in (X,τ), then $A \cap F$ is an Ig^*-closed in (X,τ).

Proof. Let $A \cap F \subset U$ and U is g-open. Then $A \subset U \cup (X-F)$. Since A is Ig^*-closed, we have $cl^*(A) - (U \cup (X-F)) \in I$. Now $cl^*(A \cap F) - U \subset cl^*(A \cap F) - (X-F) \subset cl^*(A) - (U \cup (X-F)) \in I$. Hence $A \cap F$ is an Ig^*-closed in (X,τ).
4. Stronger form of Ig^*-open sets

Definition 4.1. Let (X,τ) be a topological space and I be an ideal on X. A subset of A of X is said to be strongly g-open with respect to an ideal (briefly Ig^*-open) if and only if $X-A$ is Ig^*-closed.

Theorem 4.2. A set A in Ig^*-closed in (X,τ) if and only if $F-U \subset \text{int}^*(A)$ for some $U \in I$ whenever $F \subset A$ and F is g-closed.

Proof. Assume that A is Ig^*-open. Let $F \subset cl^*(A) - A$. Suppose F is g-closed. Then, $X-A \subset X-F$. By our assumption, $cl^*(A) - (X-A) \subset (X-F) \cup U$ for some $U \in I$. This implies $X-(X-F) \cup U \subset X - cl^*(X - A)$. Conversely, assume that $F \subset A$ and F is g-closed. Consider an g-open set G such that $X - A \subset G$. Then $X - G \subset A$. By our assumption, $(X-G) - U \subset \text{int}^*(A) = X - cl^*(X - A)$. This gives that $(X-(G \cup U)) \subset X - cl^*(X - A) \subset G \cup U$, for some $U \in I$. This shows that $cl^*(X - A) - G \in I$. Hence $X-A$ is Ig^*-closed.

Theorem 4.3. If A and B are separated Ig^*-open of (X,τ) then their union $A \cup B$ is also Ig^*-open.

Proof. Suppose A and B are separated Ig^*-open of (X,τ) F be a g-closed subset of $A \cup B$. Then $F \cap cl^*(A) \subset A$ and $F \cap cl^*(B) \subset B$. By assumption, $(F \cap cl^*(A)) - U_1 \subset \text{int}^*(A)$ and $(F \cap cl^*(B)) - U_2 \subset \text{int}^*(B)$, for some $U_1, U_2 \in I$. This means $F \cap cl^*(A) - \text{int}^*(A) \in I$ and $F \cap cl^*(B) - \text{int}^*(B) \in I$. Hence $F \cap cl^*(A) \cup cl^*(B) - \text{int}^*(A) \cup \text{int}^*(B) \in I$ and we have $F - \text{int}^*(A) \cup B(cl^*(B) \subset B)$. By definition n Ig^*-closed, $cl^*(A) - U \in I$ and $cl^*(B) - U \in I$. Hence $cl^*(A \cup B) - U = (cl^*(A) - U) \cup (cl^*(B) - U) \in I$. Therefore, $A \cup B$ is Ig^*-open.

Corollary 4.4. If A and B are Ig^*-closed sets and suppose $X-A$ and $X-B$ are separated in (X,τ). Then their intersection $A \cap B$ is Ig^*-closed.

Corollary 4.5. If A and B are Ig^*-open sets in (X,τ). Then $A \cap B$ is Ig^*-open.

Theorem 4.6. If A is Ig^*-closed and $A \subset B \subset X$ is Ig^*-open relative to B is Ig^*-open relative to X, then A is Ig^*-open relative to X.

Proof. Suppose $A \subset B \subset X$, A is Ig^*-closed and in (X,τ). Suppose A is Ig^*-open relative to B and B is Ig^*-open relative to X. Suppose $F \subset A$ and F is g-closed. Since A is Ig^*-open relative to B, by theorem 4.2, $F - U \subset \text{int}^*(A)$ for some $U \in I$, whenever $F \subset A$ and F is g-closed. Consider an g-open set G.
such that $X - A \subset G$. Then $X - G \subset A$. By our assumption, $(X-G)-U \subset int^*(A)$ = $X - cl^*(X-A)$. This gives that $(X-(G \cup V)) \subset X - cl^*(X-A)$. Then $cl^*(X-A) \subset G \cup U$, for some $U \in I$. This shows that $cl^*(X-A) - G \in I$. Hence $X - A$ is Ig^*-closed.

Now $F - U \subset int^*(A)$ for some $U \in I$, whenever $F \subset A$ and F is g-closed. Consider an g-open set G such that $X - A \subset G$. Then $X - G \subset A$.

Theorem 4.7. Let $int^*(A) \subset B \subset A$ and suppose A is Ig^*-open in (X,τ), A is Ig^*-open in X.

Proof. Suppose $int^*(A) \subset B \subset A$ and A is Ig^*-open. Then $X-A-B \subset X-B \subset cl^*(X-A)$ and $X-A$ is Ig^*-closed in (X,τ), theorem 3.8, $X-A$ is Ig^*-closed and hence A is Ig^*-open.

Theorem 4.8. A set A is Ig^*-closed in (X,τ), if and only if $cl^*(A)-A$ is Ig^*-open.

Proof. Necessity: Suppose $F \subset cl^*(A)-A$ and F be g-closed. Then $F \in I$. This implies that $F-U = \emptyset$ for some $U \in I$. Clearly, $F-U \subset int^*(cl^*(A)-A)$. By theorem 4.2 $cl^*(A)-A$ is Ig^*-open.

Sufficiency: Suppose $A \subset G$ and G is open in X. Let $A \cap F \subset U$ and U is g-open. Then $A \subset U \cup (X-F)$. Since A is Ig^*-closed, we have $cl^*(A) - (U \cup (X-F)) \in I$. Now $cl^*(A \cap F) \subset cl^*(A \cap F) - (X-F)$. Therefore, $cl^*(A \cap F) - U \subset cl^*(A \cap F) - (X-F) \subset cl^*(A) - (U \cup (X-F)) \in I$. Hence $A \cap F$ is Ig^*-closed in (X,τ). Thus A is Ig^*-closed.

References

