IDEAL SEMIRINGS AND THE IDEAL EXTENSION PROPERTY FOR SEMIRINGS

Ahamd Khaksari
Department of Mathematics
Payame Noor University
P.O. Box 19395-3697, Tehran, IRAN

Abstract: Suppose that R is a semiring. In this paper, we define the ideal extension property, ideal semiring, the congruence extension property for semiring R and prove that R has the ideal extension property if and only if every subsemiring of R has the ideal extension property. We prove that if R has the ideal extension property then the homomorphic image of R has the ideal extension property. Also, we show that if R is an ideal semiring then the homomorphic image of R is an ideal semiring and it is proved that each ideal semiring with the congruence extension property has the ideal extension property.

AMS Subject Classification: 16Y60
Key Words: semiring, ideal semiring, ideal extension property, congruence extension property

1. Introduction

Definition 1.1. Let $R \neq \emptyset$ be a set with $+$ and $.$ as binary operations on R, named addition and multiplication, respectively. Then $(R, +, .)$ is called a semiring if the following conditions are satisfied:
1 \((R, +)\) is a commutative semigroup;
2 \((R, \cdot)\) is a semigroup;
3 Both operations are connected by the distributive laws \(a(b + c) = a.b + a.c\) and \((a + b).c = a.c + b.c\) for all \(a, b, c \in R\).

Definition 1.2. A subset \(H\) of a semiring \(R\) is called a subsemiring provided that \(H\) is a semiring under both binary operations on \(R\).

Definition 1.3. Let \(R\) be a semiring. An equivalence relation \(\rho\) on the semiring \(R\) is called congruence if
\[
(\forall s, t, a \in R)(s, t) \in \rho \implies (a + s, a + t) \in \rho
\]
and
\[
(\forall s, t, a \in R)(s, t) \in \rho \implies (a.s, a.t) \in \rho
\]
and \((s.a, t.a) \in \rho\).

Definition 1.4. For a semiring \((R, +, \cdot)\) and a non-empty subset \(A\) of \(R\), we define the following subset of \(R\):
\[
\langle A \rangle = \left\{ \sum_{v=1}^{n} a_v : n \in \mathbb{N}, a_v \in A \right\}
\]
The subset \(\langle A \rangle\) is called the subset of \(R\) generated by \(A\).

Definition 1.5. A non-empty subset \(I\) of a semiring \(R\) will be called an ideal if \(a, b \in I\) and \(r \in R\) imply that \(a + b \in I\) and \(ra \in I\) and \(ar \in I\).

2. Ideal Semirings and Ideal Extension Property for Semirings

Definition 2.1. Let \(R\) be a semiring. \(R\) has the ideal extension property provided that for each subsemiring \(H\) of \(R\) and each ideal \(J\) of \(H\) there exists an ideal \(K\) of \(R\) such that \(K \cap H = J\).

Theorem 2.2. Let \(R\) be a semiring. Then \(R\) has the ideal extension property if and only if every subsemiring of \(R\) has the ideal extension property.
Proof. Let every subsemiring of \(R \) has the ideal extension property. Since \(R \) is a subsemiring of itself, \(R \) has the ideal extension property. Now, Suppose that \(R \) has the ideal extension property. Let \(H \) be a subsemiring of \(R \) and \(L \) be a subsemiring of \(H \) and \(J \) be an ideal of \(L \). Since \(L \) is also a subsemiring of \(R \) and \(R \) has the ideal extension property, there exists an ideal \(K \) of \(R \) such that \(K \cap L = J, K \cap H \) is an ideal of \(H \) and we have \(K \cap HL = K \cap L = J \), it follows that \(H \) has the ideal extension property.

Example 2.3. Let \(R = \{a, b, c\} \). Then \(R \) with addition and multiplication defined by the following Cayley tables is a semiring.

\[
\begin{array}{ccc}
+ & a & b & c \\
\hline
a & a & b & c \\
b & b & b & c \\
c & c & c & c \\
\end{array}
\]

Let \(R_1 = \{a\}, R_2 = \{b\}, R_3 = \{c\}, R_4 = \{a, b\}, R_5 = \{a, c\}, R_6 = \{b, c\} \) and \(R_7 = \{a, b, c\} \). Then \(R_1, R_2, ..., R_7 \) are subsemirings of \(R \). Let \(I_1 = \{a\}, I_2 = \{b\}, I_3 = \{c\}, I_5 = \{c\}, I_6 = \{c\} \) and \(I_7 = \{a, b, c\} \). Then \(I_1 \) is the only ideal of \(R_1 \), \(I_2 \) is the only ideal of \(R_2 \), \(I_3 \) is the only ideal of \(R_3 \), \(R_4 \) has not any ideal, \(I_5 \) is the only ideal of \(R_5 \), \(I_6 \) is the only ideal of \(R_6 \) and \(I_7 \) is the only ideal of \(R_7 \). Let \(J_1 = \{c\}, J_2 = \{a, b, c\} \). Then \(J_1 \), \(J_2 \) and \(J_3 \) are ideals of \(R \) and we have \(J_2 \cap R_1 = I_1, J_2 \cap R_2 = I_2, J_2 \cap R_3 = I_3, J_1 \cap R_5 = I_5, J_1 \cap R_6 = I_6, J_2 \cap R_7 = I_7 \). It follows that \(R \) has the ideal extension property.

Example 2.4. Let \(R = (\mathbb{Z}, +, \cdot) \) be the semiring of all integer number under usual addition and multiplication. Let \(H = \{0, 1, 2, 3, \ldots\} \) and \(J = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, \ldots\} = H - \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, \ldots\} \). Then \(H \) is a subsemiring of \(R \) and \(J \) is an ideal of \(H \). Suppose that there exists an ideal \(K \) of \(R \) such that \(K \cap H = J \). Then there exists \(m \geq 0 \) in \(\mathbb{Z} \) such that \(K = m\mathbb{Z} \). It follows that \(K \cap H = mH \), but \(J \neq mH \). This contradiction establishes that \(R \) does not have the ideal extension property.
Corollary 2.5. In view of 2.2 and 2.4, the rational numbers \mathbb{Q} does not have the ideal extension property.

Theorem 2.6. Let R be a semiring if R has the ideal extension property then any homomorphic image of R has the ideal extension property.

Proof. Let R be a semiring with the ideal extension property. Let $\Psi : R \rightarrow R^*$ be a homomorphism of semiring R onto a semiring R^*. Suppose that H^* be a subsemiring of R^* and J^* be an ideal of H^*. Let $H = \Psi^{-1}(H^*)$ and let $J = \Psi^{-1}(J^*)$. Then H is a subsemiring of R and J is an ideal of H. By hypothesis, there exists an ideal K of R such that $K \cap H = J$. Let $K^* = \psi(K)$. Then since Ψ is onto, we have that K^* is an ideal of R^*.

Now, we show that $K^* \cap H^* = J^*$. Let $x \in K^* \cap H^*$. Then $\Psi^{-1}(x) \subseteq K$ and $\Psi^{-1}(x) \subseteq H$. Therefore, $\Psi^{-1}(x) \subseteq K \cap H = J$. Then $x \in \Psi(J) = J^*$.

To establish the other inclusion let $a \in J^*$. Then $\Psi^{-1}(a) \subseteq J = K \cap H$. Therefore, $a \in \Psi(K \cap H) \subseteq \Psi(K \cap \Psi H) = K^* \cap H^*$. It follows that $K^* \cap H^* = J^*$. We conclude that R^* has the ideal extension property.

Definition 2.7. Let R be a semiring and let ρ be a congruence on R. Then ρ is called an ideal congruence provided that there exists an ideal J of R such that $\rho = (J \times J) \cup \Delta_R$ (where Δ_R denotes the diagonal relation on R).

Definition 2.8. A semiring R is said to be an ideal semiring provided that each congruence on R is an ideal congruence.

Theorem 2.9. Let R be a semiring. If R is an ideal semiring then the homomorphic image of R is an ideal semiring.

Proof. Suppose that R is an ideal semiring. Let $\Psi : R \rightarrow S$ be a homomorphism of R onto a semiring S and let ρ be a congruence on S. Define $\alpha = \{(a, b) \in (R \times R) : (\Psi(a), \Psi(b)) \in \rho\}$. Then α is a congruence on R. By assumption, R is an ideal semiring. Consequently there exists an ideal J of R such that $\alpha = (J \times J) \cup \Delta_R$. Let $K = \Psi(J)$. Then K is an ideal of S.

We claim that $\rho = (K \times K) \cup \Delta_S$. Assume that $(\Psi(a), \Psi(b)) \in \rho$. Therefore $(a, b) \in \alpha$. If $a \neq b$, then $(a, b) \in (J \times J)$ and $(\Psi(a), \Psi(b)) \in (K \times K)$. If $a = b$ then $(\Psi(a), \Psi(b)) \in \Delta_S$. Thus $\rho \subseteq (K \times K) \cup \Delta_S$.

Let $(s, t) \in (K \times K)$. Then there exists $(a, b) \in (J \times J)$ such that $s = \Psi(a)$ and $t = \Psi(b)$. Then $(a, b) \in \alpha$ and we have $(s, t) \in \rho$. It follows that $\rho = (K \times K) \cup \Delta_S$ and S is an ideal semiring.
3. Congruence Extension Property for Semirings

Definition 3.1. Let R be a semiring. R has the congruence extension property provided that for each subsemiring H of R and each congruence ρ on H there exists a congruence α on R such that $\alpha \cap (H \times H) = \rho$. The congruence α is called an extension of ρ.

Theorem 3.2. Let H be a subsemiring of a semiring R and ρ be a congruence on H and $\langle \rho \rangle$ be a congruence on R generated by ρ. Then ρ has an extension to R if and only if $\langle \rho \rangle$ is an extension.

Proof. If $\langle \rho \rangle$ is an extension of congruence ρ to R, it is clear that ρ has an extension to R. Let α be an extension of congruence ρ to R. We must establish that $\rho = \langle \rho \rangle \cap (H \times H)$. Since $\rho \subset \langle \rho \rangle$ and $\rho \subset (H \times H)$ it follows that $\rho \subset \langle \rho \rangle \cap (H \times H)$. Since α is an extension of congruence ρ to R, it follows that $\alpha \cap (H \times H) = \rho \subset (\rho) \cap (H \times H)$.

We claim that $\langle \rho \rangle \subset \alpha$. Let there exists $x \in (R \times R)$ such that $x \in \langle \rho \rangle$ and $x \notin \alpha$. Then we have $x = \sum_{v=1}^{n} a_v$ for some $n \in \mathbb{N}$, where $a_v \in \rho$, $1 \leq v \leq n$. Since $\alpha \cap (H \times H) = \rho$, $a_v \in \alpha$, $1 \leq v \leq n$ and so $x = \sum_{v=1}^{n} a_v \in \alpha$. This contradiction implies that $\langle \rho \rangle \subset \alpha$ and it follows that $\langle \rho \rangle \cap (H \times H) \subset \alpha \cap (H \times H) = \rho$. We conclude that $\rho = \langle \rho \rangle \cap (H \times H)$. Therefore, to establish the existence of an extension it suffices to show that $\langle \rho \rangle \cap (H \times H) \subset \rho$.

Theorem 3.3. Let R be an ideal semiring. If R has the congruence extension property, then R has the ideal extension property.

Proof. Let R be an ideal semiring which has the congruence extension property, let H be a subsemiring of R and J be an ideal of H. Then $\rho = (J \times J) \cup \Delta_H$ is a congruence on H. Since R has the congruence extension property, there exists an extension $\langle \rho \rangle$ of ρ to R. Since R is an ideal semiring there exists an ideal K of R such that $\langle \rho \rangle = (K \times K) \cup \Delta_R$. Since $\rho = \langle \rho \rangle \cap (H \times H)$, we conclude that $J = K \cap H$. Therefore R has the ideal extension property.

References

