STRONG AND WEAK VERTEX DOMINATION ON S-VALUED GRAPHS

S. Jeyalakshmi¹, M. Chandramouleeswaran²

¹Devanga Arts College
Aruppukottai - 626101, Tamilnadu, INDIA

²Saiva Bhanu Kshatriya College
Aruppukottai - 626101, Tamilnadu, INDIA

Abstract: In [5], we introduced the notion of S-valued graphs, where S is a semiring. In our earlier paper, [2], we introduced the notion of vertex domination on S-valued graphs. In this paper we introduce the notion of Strong and Weak domination on S-valued graphs and prove simple properties.

AMS Subject Classification: 05C25, 16Y60

Key Words: semirings, graphs, S-valued graphs, strong and weak dominating set, vertex domination on S-valued graphs

1. Introduction

In [3], Jonathan Golan introduced the notion of S-valued graph where S is a semiring. This motivated us to study the notion of semiring valued graphs in our paper [5]. The fastest growing area within Graph theory is the study of...
domination. The topic of domination was given formal mathematical definition by Berge [1] in 1958 and Ore [4] in 1962. Motivated by the domination theory in graphs, in our earlier paper [2], we introduced the notion of vertex domination on S-valued graphs. In this paper, we introduce the notions of strong and weak vertex domination on a S-valued graph G^S, and discuss some simple but elegant results.

2. Preliminaries

In this section, we recall some basic definitions that are needed for our work.

Definition 2.1. (see [3]) A semiring $(S, +, \cdot)$ is an algebraic system with a non-empty set S together with two binary operations $+$ and \cdot such that

1. $(S, +, 0)$ is a monoid.
2. (S, \cdot) is a semigroup.
3. For all $a, b, c \in S$, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.
4. $0 \cdot x = x \cdot 0 = 0 \ \forall \ x \in S$.

Definition 2.2. Let $(S, +, \cdot)$ be a semiring. A Canonical Pre-order \preceq in S defined as follows: for $a, b \in S$, $a \preceq b$ if and only if, there exists $c \in S$ such that $a + c = b$.

Definition 2.3. A set $D \subseteq V$ of vertices in a graph $G = (V, E)$ is called a vertex dominating set in G if every vertex $v \in V$ is either an element in D or is adjacent to an element in $V - D$.

A set $D \subseteq V$ is a Dominating vertex set of G, if $\forall v \in V - D$, $N(v) \cap D \neq \emptyset$.

Definition 2.4. A dominating set D is a minimal vertex dominating set if no proper subset of D is a vertex dominating set in G.

Definition 2.5. A set $D \subseteq V$ is a minimal dominating set of the graph $G = (V, E)$ if D is a dominating set and $\forall v \in D$, either v has no neighbour in D or there exists neighbour $u \in V - D$ of v such that u has no neighbour in $D \setminus \{v\}$.

Definition 2.6. A dominating set D is a strong dominating set if for every vertex $u \in V - D$ there is a vertex $v \in D$ with $\text{deg}(v) \geq \text{deg}(u)$ and u is adjacent to v.

Definition 2.7. A dominating set D is a weak dominating set if for every vertex $u \in V - D$ there is a vertex $v \in D$ with $\text{deg}(v) \leq \text{deg}(u)$ and u is adjacent to v.

Definition 2.8. A set $D \subseteq V$ is an Independent set of G if $u, v \in D$, $N(u) \cap \{v\} = \emptyset$.

Definition 2.9. A set $D \subseteq V$ is an Independent dominating set of G if D is both an independent and a dominating set.

Definition 2.10. (see [5]) Let $G = (V, E \subset V \times V)$ be a given graph with $V,E \neq \emptyset$. For any semiring $(S, +, \cdot)$, a semiring-valued graph (or a S-valued graph), G^S, is defined to be the graph $G^S = (V, E, \sigma, \psi)$ where $\sigma : V \rightarrow S$ and $\psi : E \rightarrow S$ is defined to be

$$\psi(x, y) = \begin{cases} \min \{\sigma(x), \sigma(y)\}, & \text{if } \sigma(x) \preceq \sigma(y) \text{ or } \sigma(y) \preceq \sigma(x), \\ 0, & \text{otherwise,} \end{cases}$$

for every unordered pair (x, y) of $E \subset V \times V$. We call σ, a S-vertex set and ψ, a S-edge set of G^S.

Definition 2.11. Consider the S-valued graph $G^S = (V, E \subset V \times V, \sigma, \psi)$. The open neighbourhood of v_i in G^S is defined as the set

$$N^S_S(v_i) = \{(v_j, \sigma(v_j)), \text{ where } (v_i, v_j) \in E, \psi(v_i, v_j) \in S.)\}.$$

Definition 2.12. The closed neighbourhood of v_i in G^S is defined to be the set $N^S_S[v_i] = N^S_S(v_i) \cup \{(v_i, \sigma(v_i))\}$

Definition 2.13. A vertex $v \in D$ of G^S is said to be an S-isolate vertex if $N^S_S(v) \subseteq V - D$.

Definition 2.14. A vertex v in G^S is said to be a weight dominating vertex if $\sigma(u) \preceq \sigma(v)$, $\forall u \in N^S_S[v]$.

Definition 2.15. A subset $D \subseteq V$ is said to be a weight dominating vertex set if for each $v \in D$, $\sigma(u) \preceq \sigma(v)$, $\forall u \in N^S_S[v]$.

3. Strong Domination on S-Valued Graphs

In this section, we introduce the notion of strong dominating set of G^S and prove some properties.
Definition 3.1. A subset $D \subseteq V$ is said to be a strong weight dominating vertex set if

1. D is a weight dominating vertex set.
2. For each vertex $v \in D$, $deg_S(u) \preceq deg_S(v) \forall u \in N_S[v]$.

Example 3.2. Let $(S = \{0,a,b,c\},+,\cdot)$ be a semiring with the following Cayley Tables:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cdot</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Let \preceq be a canonical pre-order in S, given by

$0 \preceq 0, \ 0 \preceq a, \ 0 \preceq b, \ 0 \preceq c, \ a \preceq a, \ b \preceq b, \ c \preceq c, \ c \preceq a, \ c \preceq b$

Consider $G^S = (V,E,\sigma,\psi)$. where,

$\sigma : V \to S$ by $\sigma(v_1) = \sigma(v_3) = a ; \sigma(v_2) = b ; \sigma(v_4) = c.$

and $\psi : E \to S$ by

$\psi(v_1,v_2) = \psi(v_2,v_3) = b ; \psi(v_3,v_4) = \psi(v_1,v_4) = c$ and $\psi(v_1,v_3) = a$

In graph G^S, $D = \{v_1,v_3\}$ is a weight dominating vertex set of G^S. Here

$deg_S(v_1) = \{\sigma(v_2) + \sigma(v_3) + \sigma(v_4) \ , \ 3\} = \{(b + a + c \ 3)\} = \{(a, \ 3)\}.$
Then $\deg_S(v_2) \preceq \deg_S(v_1)$; $\deg_S(v_3) \preceq \deg_S(v_1)$; $\deg_S(v_4) \preceq \deg_S(v_1)$.

Similarly,

$$
\deg_S(v_3) = \{(\sigma(v_3) + \sigma(v_1) + \sigma(v_2), 3)\} = \{(c + a + b, 3)\} = \{(a, 3)\}.
$$

Then $\deg_S(v_1) \preceq \deg_S(v_3)$; $\deg_S(v_2) \preceq \deg_S(v_3)$; $\deg_S(v_4) \preceq \deg_S(v_3)$.

Hence $D = \{v_1, v_3\}$ is a Strong weight dominating vertex set of G^S.

Definition 3.3. If D is a strong weight dominating vertex set of G^S, then the scalar cardinality of D, denoted by $|D|_S$, is defined by

$$
|D|_S = \sum_{v \in D} \sigma(v).
$$

Definition 3.4. A subset $D \subseteq V$ is said to be a minimal strong weight dominating vertex set of G^S if

1. D is a strong weight dominating vertex set.

2. No proper subset of D is a strong weight dominating vertex set.

Definition 3.5. The cardinality of the minimal Strong weight dominating vertex set $D \subseteq V$ is called the Strong weight domination vertex number of G^S. It is denoted by $\gamma_{SV}^S(G^S)$. That is

$$
\gamma_{SV}^S(G^S) = (|D|_S, |D|).
$$

Example 3.6. Consider the semiring $(S = \{0, a, b, c\}, +, \cdot)$ with canonical pre-order given in Example 3.2.

Consider $G^S = (V, E, \sigma, \psi)$, where

$$
\sigma : V \rightarrow S \text{ by } \sigma(v_1) = \sigma(v_3) = a; \sigma(v_2) = b; \sigma(v_4) = c.
$$

and $\psi : E \rightarrow S$ by

$$
\psi(v_1, v_2) = \psi(v_2, v_3) = b; \psi(v_3, v_4) = \psi(v_1, v_4) = c \text{ and } \psi(v_1, v_3) = a.
$$

From the above figure, In graph G^S, $D_1 = \{v_1\}$; $D_2 = \{v_3\}$ and $D_3 = \{v_1, v_3\}$ all weight dominating vertex sets of G^S.

$$
\deg_S(v_1) = \{(\sigma(v_2) + \sigma(v_3) + \sigma(v_4), 3)\} = \{(b + a + c, 3)\} = \{(a, 3)\},
$$

$\deg_S(v_2) \preceq \deg_S(v_1)$; $\deg_S(v_3) \preceq \deg_S(v_1)$; $\deg_S(v_4) \preceq \deg_S(v_1)$.

Similarly

\[
\deg_S(v_3) = \{(\sigma(v_4) + \sigma(v_1) + \sigma(v_2), 3)\} = \{(c + a + b, 3)\},
\]

\[
\deg_S(v_1) \preceq \deg_S(v_3); \quad \deg_S(v_2) \preceq \deg_S(v_3); \quad \deg_S(v_4) \preceq \deg_S(v_3).
\]

Hence \(D_1 = \{v_1\} \quad D_2 = \{v_3\} \quad D_3 = \{v_1, v_3\}\) all Strong weight dominating vertex sets of \(G_S\) with \(|D_1| = 1 = |D_2|\) and \(|D_3| = 2\). Further, the scalar cardinality of \(D_1\) is given by \(|D_1|_S = \sigma(v_1) = a\); \(D_2\) is \(|D_2|_S = \sigma(v_3) = a\) and \(|D_3|_S = (\sigma(v_1) + \sigma(v_3)) = (a + a) = a\).

Thus, the strong domination number of \(G_S\), is given by

\[
\gamma_{SV}^S(G_S) = (|D|_S, |D|) = (a, 1)
\]

Remark 3.7. Minimal Strong weight dominating vertex set in a \(S\)-valued graph, \(G_S\), need not be, in general, unique, as seen in Example 3.6.

Definition 3.8. A subset \(D \subseteq V\) is said to be a maximal strong weight dominating vertex set of \(G_S\) if

1. \(D\) is a strong weight dominating vertex set, and
2. there is no strong weight dominating vertex subset \(D' \subset V\) such that \(D \subset D' \subset V\).

Example 3.9. In Example 3.6 \(D_3 = \{v_1, v_3\}\) is a maximal Strong weight dominating set with \(|D_3| = 2\).

Remark 3.10. Maximal strong weight dominating vertex set in a \(S\)-valued graph, \(G_S\), need not be, in general, unique.

Definition 3.11. A subset \(D \subseteq V\) is said to be an independent strong weight dominating vertex set if

1. \(D\) is a strong weight dominating vertex set.
2. No two vertices of \(D\) are adjacent.

Example 3.12. Consider the semiring \((S = \{0, a, b, c\}, +, \cdot)\) with canonical pre-order given in Example 4.2.
Consider G^S:

![Figure 2](image)

where $\sigma : V \to S$ is defined by

$\sigma(v_1) = \sigma(v_3) = \sigma(v_4) = \sigma(v_8) = b; \sigma(v_2) = \sigma(v_6) = a; \sigma(v_5) = c = \sigma(v_7)$,

and $\psi : E \to S$ by

$\psi(v_1, v_2) = \psi(v_1, v_8) = \psi(v_2, v_8) = \psi(v_2, v_6) = \psi(v_3, v_6) = \psi(v_4, v_6) = b$

$\psi(v_2, v_7) = \psi(v_3, v_7) = \psi(v_4, v_5) = \psi(v_5, v_6) = \psi(v_6, v_7) = c$

In graph G^S, $D = \{v_2, v_6\}$ is a weight dominating vertex set of G^S.

Now

$\deg_S(v_2) = (\sigma(v_1) + \sigma(v_3) + \sigma(v_7) + \sigma(v_8), 4) = (a + b + c + b, 4) = (a, 4)$,

then

$\deg_S(v_1) \leq \deg_S(v_2)$; $\deg_S(v_8) \leq \deg_S(v_2)$;

$\deg_S(v_3) \leq \deg_S(v_2)$; $\deg_S(v_7) \leq \deg_S(v_2)$,

$\deg_S(v_6) = (\sigma(v_3) + \sigma(v_4) + \sigma(v_5) + \sigma(v_7), 4) = (c + b + b + c, 4) = (b, 4)$,

$\deg_S(v_7) \leq \deg_S(v_6)$; $\deg_S(v_3) \leq \deg_S(v_6)$;

$\deg_S(v_4) \leq \deg_S(v_6)$; $\deg_S(v_5) \leq \deg_S(v_6)$.

Hence $D = \{v_2, v_6\}$ is a strong weight dominating vertex set of G^S and also v_2 and v_6 are not adjacent.

Therefore $D = \{v_2, v_6\}$ is an independent strong weight dominating set of G^S.

Lemma 3.13. A star G^S will have a strong weight dominating vertex set if its pole has the maximum weight.

Proof. Let G^S be a star. Let the pole $\{v_1\}$ have the maximum weight then $\deg_S(v_1)$ is maximum than all the vertices in G^S.

Therefore $\{v_1\}$ is a strong weight dominating vertex set of the S-valued graph G^S.

Lemma 3.14. A wheel G^S will have a strong weight dominating vetrex set if the pole has the maximum weight.

Proof. Let G^S be a wheel. If the pole $\{v_1\}$ have the maximum weight then $\deg_S(v_1)$ is maximum than all other vertices in G^S.

Therefore $\{v_1\}$ is a strong weight dominating vertex set.

Theorem 3.15. In a S−Star or a S−Wheel of G^S, the Strong weight dominating vertex set is unique.

Proof. Follows from lemma 5.11 and 5.13.

4. Weak Domination on S-Valued Graphs

In this section, we introduce the notion of Weak dominating set of G^S and prove some properties.

Definition 4.1. A subset $D \subseteq V$ is said to be a weak weight dominating vertex set of G^S if

1. D is a weight dominating vertex set.
2. For each vertex $v \in D$, $\deg_S(v) \leq \deg_S(u) \forall u \in N_S[v]$.

Example 4.2. Let $(S = \{0, a, b, c\}, +, \cdot)$ be a semiring with the following Cayley Tables:

\[
\begin{array}{cccc}
+ & 0 & a & b & c \\
0 & 0 & a & b & c \\
a & a & a & a & a \\
b & b & a & b & b \\
c & c & a & b & c \\
\end{array}
\quad \quad
\begin{array}{cccc}
\cdot & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & a & a \\
b & b & 0 & b & b \\
c & 0 & b & b & b \\
\end{array}
\]

Let \preceq be a canonical pre-order in S, given by

\[0 \preceq 0, \ 0 \preceq a, \ 0 \preceq b, \ 0 \preceq c, \ a \preceq a, \ b \preceq b, \ b \preceq a, \ c \preceq c, \ c \preceq a, \ c \preceq b.\]
Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$.

$\sigma : V \to S$ and $\psi : E \to S$ are respectively defined by

$\sigma(v_1) = a, \sigma(v_2) = b = \sigma(v_4)$ and $\sigma(v_3) = c = \sigma(v_5)$

$\psi(v_1, v_2) = \psi(v_2, v_4) = \psi(v_4, v_5) = b$

and

$\psi(v_1, v_5) = \psi(v_1, v_3) = \psi(v_2, v_5) = \psi(v_3, v_4) = c$

In graph G^S, $D = \{v_1, v_4\}$ is a weight dominating set of G^S.

Here

$\text{degs}(v_1) = \{(\sigma(v_2) + \sigma(v_3) + \sigma(v_5), 3)\} = \{(b + c + c, 3)\} = \{(b, 3)\}.$

Then $\text{degs}(v_1) \preceq \text{degs}(v_2); \text{degs}(v_1) \preceq \text{degs}(v_3); \text{degs}(v_1) \preceq \text{degs}(v_5)$, and

$\text{degs}(v_4) = \{(\sigma(v_5) + \sigma(v_2) + \sigma(v_3), 3)\} = \{(c + b + c, 3)\} = \{(b, 3)\},$

$\text{degs}(v_4) \preceq \text{degs}(v_5); \text{degs}(v_4) \preceq \text{degs}(v_2); \text{degs}(v_4) \preceq \text{degs}(v_3).$

Here, we receive for the all $\text{degs}(v) \preceq \text{degs}(u)$.

Therefore $D = \{v_1, v_4\}$ is a weak weight dominating vertex set of G^S.

Definition 4.3. If D is a weak weight dominating vertex set of G^S, then the scalar cardinality of D, denoted by $|D|_S$, is defined by

$|D|_S = \sum_{v \in D} \sigma(v).$
Definition 4.4. A subset \(D \subseteq V \) is said to be a minimal weak weight dominating vertex set of \(G^S \), if

1. \(D \) is a weak weight dominating vertex set.
2. No proper subset of \(D \) is a weak weight dominating vertex set.

Definition 4.5. The cardinality of the minimal weak weight dominating vertex set \(D \subseteq V \) is called the weak weight domination vertex number of \(G^S \). It is denoted by \(\gamma_{WV}^S(G^S) \). That is,

\[
\gamma_{WV}^S(G^S) = (|D|_{S}, |D|)
\]

Example 4.6. Let \((S = \{0, a, b, c\}, +, \cdot) \) be a semiring with canonical pre-order given in Example 5.2.
Consider the \(S \)-valued graph \(G^S = (V, E, \sigma, \psi) \).

\[
\begin{align*}
\sigma(v_1) &= \sigma(v_4) = \sigma(v_5) = b; \quad \sigma(v_2) = a \text{ and } \sigma(v_3) = \sigma(v_6) = c, \\
\psi(v_1, v_2) &= \psi(v_4, v_5) = b
\end{align*}
\]

and

\[
\begin{align*}
\psi(v_1, v_3) &= \psi(v_1, v_6) = \psi(v_2, v_3) = \psi(v_3, v_5) = \psi(v_3, v_6) \\
&= \psi(v_3, v_4) = \psi(v_5, v_6) = \psi(v_4, v_5) = c.
\end{align*}
\]

In graph \(G^S \), \(D_1 = \{v_2, v_4, v_5\} \) is a weight dominating vertex set of \(G^S \).
Here
\[\text{deg}_S(v_2) = (\sigma(v_1) + \sigma(v_3), 2) = (b + c, 2) \leq \text{deg}_S(v_1), \]
and \(\text{deg}_S(v_2) \leq \text{deg}_S(v_3). \)
Similarly,
\[\text{deg}_S(v_4) = (\sigma(v_3) + \sigma(v_4) + \sigma(v_5), 3) = (c + b + c, 4) = (b, 3). \]
Then
\[\text{deg}_S(v_4) \leq \text{deg}_S(v_3); \quad \text{deg}_S(v_4) \leq \text{deg}_S(v_5); \quad \text{deg}_S(v_4) \leq \text{deg}_S(v_6). \]
Again, we have
\[\text{deg}_S(v_5) = (\sigma(v_3), \sigma(v_4) + \sigma(v_6), 2) = (c + b + c, 3) = (b, 3), \]
then \(\text{deg}_S(v_5) \leq \text{deg}_S(v_3); \text{deg}_S(v_5) \leq \text{deg}_S(v_4); \text{deg}_S(v_5) \leq \text{deg}_S(v_6); \) Here all \(\text{deg}_S(v) \leq \text{deg}_S(u). \)
\[\Rightarrow D_1 = \{v_2, v_4, v_5\} \text{ is a weak dominating vertex set of } G^S. \]
Similarly, \(D_2 = \{v_2, v_4\} \) is a weak dominating vertex set of \(G^S. \)
Moreover, \(D_3 = \{v_2, v_5\} \) is also a weak dominating vertex set of \(G^S. \)
Therefore \(D_2 = \{v_2, v_4\} \) and \(D_3 = \{v_2, v_5\} \) are minimal weak dominating vertex set of \(G^S \) with \(|D_2| = 2 = |D_3| \)

Definition 4.7. A set \(D \subseteq V \) is said to be a maximal weak weight dominating vertex set if
1. \(D \) is a weak weight dominating vertex set.
2. \(|D|\) is maximal among all the weak weight dominating vertex set.

Example 4.8. In Example 5.4 \(D_1 = \{v_2, v_4, v_5\} \) is a maximal weak dominating vertex set of \(G^S \) with \(|D_1| = 3\).

Definition 4.9. A subset \(D \subseteq V \) is said to be an independent weak weight dominating vertex set of \(G^S \) if
1. \(D \) is a weak weight dominating vertex set.
2. No two vertices of \(D \) are adjacent.

Example 4.10. Let \((S = \{0, a, b, c\}, +, \cdot)\) be a semiring with canonical pre-order given in Example 4.2.
Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$.

In graph G^S, $D = \{v_1, v_3\}$ is a weight dominating vertex set of G^S.

Here $\text{deg}_S(v_1) = \{(\sigma(v_2) + \sigma(v_5), 2)\} = \{(b + c, 2)\}$, then $\text{deg}_S(v_1) \preceq \text{deg}_S(v_2); \text{deg}_S(v_1) \preceq \text{deg}_S(v_5)$.

Similarly, $\text{deg}_S(v_3) = \{(\sigma(v_4) + \sigma(v_5), 2)\} = \{(c + c, 2)\}$, then $\text{deg}_S(v_3) \preceq \text{deg}_S(v_4); \text{deg}_S(v_3) \preceq \text{deg}_S(v_5)$.

Therefore all $\text{deg}_S(v_i) \preceq \text{deg}_S(u)$. Hence $D = \{v_1, v_3\}$ is a weak weight dominating set. Also v_1 and v_3 are not adjacent. $\Rightarrow D$ is an independent weak weight dominating set of the S-valued graph G^S.

Lemma 4.11. In a complete bipartite graph $K_{m,n}$ with $V = (V_1, V_2)$, the weight dominating vertex set V_1 is strong weight dominating vertex set or weak weight dominating vertex set, if $|V_1| < |V_2|$ or $|V_1| > |V_2|$.

Proof. Let G^S be a complete bipartite graph with $V = (V_1, V_2)$. Let V_1 be a weight dominating vertex set. If $|V_1| < |V_2|$, then $\text{deg}_S(v_2) \preceq \text{deg}_S(v_1)$ where $v_1 \in V_1$ and $v_2 \in V_2$.

Therefore V_1 is a strong weight dominating vertex set.

If $|V_1| > |V_2|$, then $\text{deg}_S(v_1) \preceq \text{deg}_S(v_2)$ where $v_1 \in V_1$ and $v_2 \in V_2$.

Therefore V_1 is a weak weight dominating vertex set.

Lemma 4.12. In a complete bipartite graph $K_{m,n}$ with $V = (V_1, V_2)$, the weight dominating vertex set V_1 is strong weight dominating vertex set as well as weak weight dominating vertex set, if $|V_1| = |V_2|$.

Proof. Let G^S be a complete bipartite graph with $V = (V_1, V_2)$. Let V_1 be a weight dominating vertex set. If $|V_1| = |V_2|$, then $\text{deg}_S(v_2) \preceq \text{deg}_S(v_1)$ and
\[\deg_S(v_1) \leq \deg_S(v_2) \] where \(v_1 \in V_1 \) and \(v_2 \in V_2 \).

Therefore \(V_1 \) is both strong and weak weight dominating vertex set.

Lemma 4.13. In a tree \(G^S \) a weight dominating vertex set \(V_1 \) will be strong weight dominating vertex set if all the vertices of \(V_1 \) are intermediate vertices. If the vertices of \(V_1 \) are pendent vertices then \(V_1 \) is a weak weight dominating vertex set.

Proof. Let \(G^S \) be a tree. Let \(V_1 \subset V \) be a weight dominating vertex set. If all the vertices of \(V_1 \) are intermediate vertices, then for every vertex \(v \in V_1 \), \(\deg_S(u) \leq \deg_S(v) \) where \(u \in N_S[v] \).

Hence \(V_1 \) is a strong weight dominating vertex set. If all the vertices of \(V_1 \) are pendent vertices of, then for every vertex \(v \in V_1 \), \(\deg_S(v) \leq \deg_S(u) \) where \(u \in N_S[v] \).

Therefore \(V_1 \) is a weak weight dominating vertex set.

References

