IJPAM: Volume 112, No. 1 (2017)

Title

NUMERICAL STUDY OF THREE-PARAMETER MATRIX
EIGENVALUE PROBLEM BY GRADIENT METHOD

Authors

Niranjan Bora$^1$, Arun Kumar Baruah$^2$
$^{1,2}$Department of Mathematics, DUIET
Dibrugarh University
Dibrugarh, 786004, Assam, INDIA

Abstract

In this paper, a Convergent Gradient Method, which was first developed to solve generalised eigenvalue problem of the form $Ax=\lambda Bx$, will be used to find approximate eigenvalues and corresponding eigenvectors of Multiparameter Matrix Eigenvalue Problems (MMEPs). To apply Gradient Method, we will reduce MMEPs into a single matrix pencil containing the block diagonal matrices. Although the Method can be extended to Multiparameter case, but the whole work is done by considering three-parameter case only to relax computational cost. Computational efficiency of this method will be discussed by comparing the results with Kronecker Product Method as proposed by Atkinson in $1960$, analytically with the help of numerical examples.

History

Received: February 25, 2016
Revised: October 24, 2016
Published: January 26, 2017

AMS Classification, Key Words

AMS Subject Classification: 35PXX, 65FXX, 65F15, 35A35
Key Words and Phrases: multiparameter matrix eigenvalue problems, Kroneecker product, tensor product space, convergent gradient method

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. R. Curtis, E. K. Blum, A convergent Gradient method for matrix eigenvector-eigentuple problems, Numer. Math., 31 (1978), 247-263, doi: https://doi.org/10.1007/BF01397878.

2
B Plestenjak, A continuation method for a right definite two-parameter eigenvalue problem, Siam J. Matrix Anal. Appl., 21 (2000), 1163-1184, doi: https://doi.org/10.1137/S0895479898346193.

3
E. K. Blum, G.H. Rodrigue, Solution of eigenvalue problems in Hilbert spaces by gradient method, J. Comput. System Sci., 8 (1974), 220-237, doi: https://doi.org/10.1016/S0022-0000(74)80056-5.

4
F. V. Atkinson, Multiparameter Eigenvalue Problems, Academic Press, New York (1972).ISBN: 0120658011

5
F. V. Atkinson, Multiparameter spectral theory, Bull. Amer. Math. Soc., 74 (1968), 1-27, https://projecteuclid.org/euclid.bams/1183529377.

6
M. E. Hochstenbach, B. Plestenjak, A jacobi-davidson type method for a right definite two-parameter eigenvalue problem, Siam J. Matrix Anal. Appl., 24, No. 2 (2002), 392-410, doi: https://doi.org/10.1137/S0895479801395264.

7
P. B. Geltner, E. K Blum, Numerical solution of eigentuple-eigenvector problems in Hilbert spaces by a gradient method, Numer. Math., 31 (1978), 231-246, doi: https://doi.org/ 10.1007/BF01397877.

8
T. Kosir, B. Plestenjak, On stability of invariant subspaces of commuting matrices, Linear algebra and its application, 342 (2002), 133-147, doi: https://doi.org/10.1016/S0024-3795(01)00442-6.

9
Xingzhi Ji, A two-dimensional bisection method for solving two-parameter eigenvalue problems, Siam J. Matrix Anal. Appl., 13, No. 4 (1992), 1085-1093, doi: https://doi.org/10.1137/0613065.

How to Cite?

DOI: 10.12732/ijpam.v112i1.10 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 112
Issue: 1
Pages: 125 - 135


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).