IJPAM: Volume 112, No. 1 (2017)

Title

HYERS-ULAM STABILITY OF QUADRATIC FUNCTIONAL
EQUATIONS ON DIVISIBLE SQUARE-SYMMETRIC
GROUPOID

Authors

Gwang Hui Kim$^1$, Hwan-Yong Shin$^2$
$^1$Department of Mathematics
Kangnam Universaty
Yongin, Gyeonggi, 16979, REPUBLIC OF KOREA
$^2$Department of Mathematics
Chungnam National University
99 Daehangno, Yuseong-gu, Daejeon, 34134, REPUBLIC OF KOREA

Abstract

Let $ (X, \diamond)$ be a divisible square-symmetric groupoid, and $ (Y, \ast, d) $ a complete metric divisible square-symmetric groupoid. In this paper, we obtain the Hyers-Ulam stability problem of functional inequality $ d(f(x \diamond y)\ast f(x \diamond y^{-1}), \sigma_{\ast}(f(x)\ast f(y))) \leq \varepsilon (x,y)$ for approximate mapping $f: X \rightarrow Y$ of functional equation $ h(x\diamond y) \ast h(x \diamond y^{-1}) = \sigma_{\ast}( h(x)\ast h(y) ) $ differing by $ \varepsilon : X^2 \rightarrow [0, \infty )$.

History

Received: September 28, 2016
Revised: October 16, 2016
Published: January 26, 2017

AMS Classification, Key Words

AMS Subject Classification: 39B52, 39B72, 47H09
Key Words and Phrases: Hyers-Ulam stability, quadratic functional equation, square-symmetric groupoid, fixed point theorem

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989, doi: https://doi.org/10.1017/CBO9781139086578.

2
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2, No. 1-2 (1950), 64-66, doi: https://doi.org/10.2969/jmsj/00210064.

3
D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223-237, doi: https://doi.org/10.1090/S0002-9904-1951-09511-7.

4
I.-S. Chang, H.-M. Kim, On the Hyers-Ulam stability of quadratic functional equations, J. Inequal. App., 3, No. 3 (2002), 1-12.

5
Y-J. Cho, Th. M. Rassias, R. Saadati, Stability of Functional Equations in Random Normed Spaces, Springer Optimization and Its Applications, 86, Springer, 2013, doi: https://doi.org/10.1007/978-1-4614-8477-6.

6
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Bull. Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64, doi: https://doi.org/10.1007/BF02941618.

7
S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Florida, 2003.

8
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.

9
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222-224, doi: https://doi.org/10.1073/pnas.27.4.222.

10
S-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, USA, 2011, doi: https://doi.org/10.1007/978-1-4419-9637-4.

11
G. H. Kim, Addendum to 'On the stability of functional equations on square-symmetric groupoid, J. Nonlinear Anal, 62 (2006), 365-381.

12
H.-M. Kim, H.-Y. Shin, Generalized Hyers-Ulam stability of refined quadratic functional equations, Inter. J. Pure Appl. Math, 98, No. 1 (2015), 65-79.

13
B. Margolis, J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126 (1968), 305-309.

14
D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Apple., 343 (2008), 567-572.

15
M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Brazilian Math. Soc., 37 (2006), 361-376, doi: https://doi.org/10.1007/s00574-006-0016-z.

16
Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London (2003), doi: https://doi.org/10.1007/978-94-017-0225-6.

17
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300, doi: https://doi.org/10.1090/S0002-9939-1978-0507327-1.

18
F. Skof, Local properties and approximations of operators, Rend. Sem. Math. Fis. Milano, 53 (1983), 113-129.

19
S. M. Ulam, Problems in Modern Mathematics, Chapter 6, Wiley Interscience, New York, 1964.

How to Cite?

DOI: 10.12732/ijpam.v112i1.15 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 112
Issue: 1
Pages: 189 - 201


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).